

Steam Traps

SECTION

1

Installation and Testing of Armstrong Steam Traps

Strainers. Install strainers ahead of traps if specified or when dirt conditions warrant their use. Some types of traps are more susceptible to dirt problems than others—see Recommendation Chart on page CG-2.

Some traps have built-in strainers. When a strainer blowdown valve is used, shut off steam supply valve before opening strainer blowdown valve. Condensate in trap body will flash back through strainer screen for thorough cleaning. Open steam valve slowly.

Dirt Pockets are excellent for stopping scale and core sand, and eliminating erosion that can occur in elbows when dirt pockets are not provided. Clean periodically.

Syphon Installations require a water seal and, with the exception of the DC, a check valve in or before the trap. Syphon pipe should be one size smaller than nominal size of trap used but not less than 1/2" pipe size.

Figure CG-62. Typical IB Bottom Inlet—Side Outlet Hookup

Figure CG-64. Typical IB By-pass Hookup

Elevating Condensate. Do not oversize the vertical riser. In fact, one pipe size smaller than normal for the job will give excellent results.

Check Valves are frequently needed. They are a must if no discharge line shutoff valve is used. Fig. CG-63 shows three possible locations for external check valves— Armstrong inverted bucket traps are available with internal check valves, while disc traps act as their own check valve. Recommended locations are given in Fig. CG-63.

Discharge Line Check Valves prevent backflow and isolate trap when test valve is opened. Normally installed at location B, Fig. CG-63. When return line is elevated and trap is exposed to freezing conditions, install check valve at location A.

Inlet Line Check Valves prevent loss of seal if pressure should drop suddenly or if trap is above drip point in IB traps. Armstrong Stainless Steel Check Valve in trap body, location D, Fig. CG-63, is recommended. If swing check is used, install at location C.

Figure CG-63. Possible Check Valve Locations

Figure CG-65.

Typical IB By-pass Hookup, Bottom Inlet—Top Outlet

Installation and Testing of Armstrong Steam Traps

A Safety Drain Trap should be used whenever there is a likelihood that the inlet pressure will fall below the outlet pressure of a primary steam trap, especially in the presence of freezing air. One such application would be on a modulated pressure heating coil that must be drained with an elevated return line. In the event of insufficient drainage from the primary trap, condensate rises into the safety drain and is discharged before it can enter the heat exchanger. An F&T trap makes a good safety drain because of its ability to handle large amounts of air and its simplicity of operation. Safety drain trap should be same size (capacity) as primary trap.

The proper application of a safety drain is shown in Fig. CG-66. The inlet to the safety drain must be located on the heat exchanger drip leg, above the inlet to the primary trap. It must discharge to an open sewer. The drain plug of the safety drain is piped to the inlet of the primary trap. This prevents the discharge of condensate formed in the safety drain by body radiation when the primary trap is active. The safety drain has an integral vacuum breaker to maintain operation when pressure in the heat exchanger falls below atmospheric. The inlet of the vacuum breaker should be fitted with a gooseneck to prevent dirt from being sucked in when it operates. The vacuum breaker inlet should be provided with a riser equal in elevation to the bottom of the heat exchanger to prevent water leakage when the vacuum breaker is operating, but the drip leg and trap body are flooded.

Protection Against Freezing

A properly selected and installed trap will not freeze as long as steam is coming to the trap. If the steam supply should be shut off, the steam condenses, forming a vacuum in the heat exchanger or tracer line. This prevents free drainage of the condensate from the system before freezing can occur. Therefore, install a vacuum breaker between the equipment being drained and the trap. If there is not gravity drainage through the trap to the return line, the trap and discharge line should be drained manually or automatically by means of a freeze protection drain. Also, when multiple traps are installed in a trap station, insulating the traps can provide freeze protection.

Anti-Freeze Precautions.

- 1. Do not oversize trap.
- 2. Keep trap discharge lines very short.
- 3. Pitch trap discharge lines down for fast gravity discharge.
- 4. Insulate trap discharge lines and condensate return lines.
- 5. Where condensate return lines are exposed to ambient weather conditions, tracer lines should be considered.
- If the return line is overhead, run vertical discharge line adjacent to drain line to top of return header and insulate drain line and trap discharge line together. See Fig. CG-67.

NOTE: A long horizontal discharge line invites trouble. lce can form at the far end, eventually sealing off the pipe. This prevents the trap from operating. No more steam can enter the trap, and the water in the trap body freezes.

Figure CG-67.

Outdoor installation to permit ground level trap testing and maintenance when steam supply and return lines are high overhead. Drain line and trap discharge line are insulated together to prevent freezing. Note location of check valve in discharge line and blowdown valve **A** that drains the steam main when trap is opened for cleaning or repair.

Figure CG-66. Typical Safety Drain Trap Hookup

Installation and Testing of Armstrong Steam Traps

Testing Armstrong Steam Traps Testing Schedule.

For maximum trap life and steam economy, a regular schedule should be set up for trap testing and preventive maintenance. Trap size, operating pressure and importance determine how frequently traps should be checked.

Table CG-28. Suggested Yearly Trap Testing Frequency									
Operating Pressure	Application								
(psig)	Drip	Tracer	Coil	Process					
0-100	1	1	2	3					
101-250	2	2	2	3					
251-450	2	2	3	4					
451 and above	3	3	4	12					

How to Test

The test valve method is best. Fig. CG-60 (page CG-45) shows correct hookup, with shutoff valve in return line to isolate trap from return header. Here is what to look for when test valve is opened:

- Condensate Discharge—Inverted bucket and disc traps should have an intermittent condensate discharge. F&T traps should have a continuous condensate discharge, while thermostatic traps can be either continuous or intermittent, depending on the load. When an IB trap has an extremely small load it will have a continuous condensate discharge which causes a dribbling effect. This mode of operation is normal under this condition.
- Flash Steam—Do not mistake this for a steam leak through the trap valve. Condensate under pressure holds more heat units-Btu-per pound than condensate at atmospheric pressure. When condensate is discharged, these extra heat units re-evaporate some of the condensate. See description of flash steam on page CG-4.
 How to Identify Flash: Trap users sometimes confuse flash steam with leaking steam. Here's how to tell the difference: If steam blows out continuously, in a "blue" stream, it's leaking steam. If steam "floats" out intermittently (each time the trap discharges) in a whitish cloud, it's flash steam.

- 3. Continuous Steam Blow—Trouble. Refer to page CG-49.
- 4. No Flow—Possible trouble. Refer to page CG-49.

Listening Device Test. Use a listening device or hold one end of a steel rod against the trap cap and the other end against your ear. You should be able to hear the difference between the intermittent discharge of some traps and the continuous discharge of others. This correct operating condition can be distinguished from the higher velocity sound of a trap blowing through. Considerable experience is required for this method of testing, as other noises are telegraphed along the pipe lines.

Pyrometer Method of Testing. This method may not give accurate results, depending on the return line design and the diameter of the trap orifice. Also, when discharging into a common return, another trap may be blowing through, causing a high temperature at the outlet of the trap being tested. Better results can be obtained with a listening device. Request Armstrong Bulletin 310.

Figure CG-70. Typical Disc Trap Hookup

Figure CG-71. Typical Thermostatic Hookup

Troubleshooting Armstrong Steam Traps

The following summary will prove helpful in locating and correcting nearly all steam trap troubles. Many of these are actually system problems rather than trap troubles.

More detailed troubleshooting literature is available for specific products and applications—consult factory.

Whenever a trap fails to operate and the reason is not readily apparent, the discharge from the trap should be observed. If the trap is installed with a test outlet, this will be a simple matter—otherwise, it will be necessary to break the discharge connection.

Cold Trap—No Discharge

If the trap fails to discharge condensate, then:

- A. Pressure may be too high.
 - 1. Wrong pressure originally specified.
 - 2. Pressure raised without installing smaller orifice.
 - 3. PRV out of order.
 - 4. Pressure gauge in boiler reads low.
 - 5. Orifice enlarged by normal wear.
 - 6. High vacuum in return line increases pressure differential beyond which trap may operate.
- B. No condensate or steam coming to trap.
 - 1. Stopped by plugged strainer ahead of trap.
 - 2. Broken valve in line to trap.
 - 3. Pipe line or elbows plugged.
- **C.** Worn or defective mechanism. Repair or replace as required.
- D. Trap body filled with dirt. Install strainer or remove dirt at source.
- E. For IB, bucket vent filled with dirt. Prevent by:
 - 1. Installing strainer.
 - 2. Enlarging vent slightly.
 - 3. Using bucket vent scrubbing wire.
- F. For F&T traps, if air vent is not functioning properly, trap will likely air bind.
- **G.** For thermostatic traps, the bellows element may rupture from hydraulic shock, causing the trap to fail closed.
- H. For disc traps, trap may be installed backward.

Hot Trap—No Discharge

- A. No condensate coming to trap.
 - 1. Trap installed above leaky by-pass valve.
 - 2. Broken or damaged syphon pipe in syphon drained cylinder.
 - Vacuum in water heater coils may prevent drainage. Install a vacuum breaker between the heat exchanger and the trap.

Steam Loss

If the trap blows live steam, the trouble may be due to any of the following causes:

- A. Valve may fail to seat.
 - Piece of scale lodged in orifice.
 Worn parts.
- B. IB trap may lose its prime.
 - 1. If the trap is blowing live steam, close the inlet valve for a few minutes. Then gradually open. If the trap catches its prime, chances are the trap is all right.
 - Prime loss is usually due to sudden or frequent drops in steam pressure. On such jobs, the installation of a check valve is called for—location D or C in Fig. CG-63 (page CG-46). If possible, locate trap well below drip point.
- **C.** For F&T and thermostatic traps, thermostatic elements may fail to close.

Continuous Flow

If an IB or disc trap discharges continuously, or an F&T or thermostatic trap discharges at full capacity, check the following:

- A. Trap too small.
 - 1. A larger trap, or additional traps, should be installed in parallel.
 - 2. High pressure traps may have been used for a low pressure job. Install right size of internal mechanism.
- B. Abnormal water conditions. Boiler may foam or prime, throwing large quantities of water into steam lines. A separator should be installed or else the feed water conditions should be remedied.

Sluggish Heating

When trap operates satisfactorily, but unit fails to heat properly:

- **A.** One or more units may be short-circuiting. The remedy is to install a trap on each unit. See page CG-15.
- **B.** Traps may be too small for job even though they may appear to be handling the condensate efficiently. Try next larger size trap.
- **C.** Trap may have insufficient air-handling capacity, or the air may not be reaching trap. In either case, use auxiliary air vents.

Mysterious Trouble

If trap operates satisfactorily when discharging to atmosphere, but trouble is encountered when connected with return line, check the following:

- A. Back pressure may reduce capacity of trap.
 - 1. Return line too small—trap hot.
 - 2. Other traps may be blowing steam—trap hot.
 - Atmospheric vent in condensate receiver may be plugged—trap hot or cold.
 - 4. Obstruction in return line-trap hot.
 - 5. Excess vacuum in return line-trap cold.

Imaginary Troubles

If it appears that steam escapes every time trap discharges, remember: Hot condensate forms flash steam when released to lower pressure, but it usually condenses quickly in the return line. See Chart CG-4 on page CG-4.

Trap Selection and Safety Factors

This table provides recommendations for traps likely to be most effective in various applications. The recommended safety factors ensure proper operation under varying

conditions. For more specific information on recommended traps and safety factors, contact your Armstrong Representative.

Table CG-27.					
Application	1st Choice	2nd Choice	Safety Factor		
Boiler Header	IBLV	IBLV F&T			
(Superheat)	IBCV Burnished	Wafer	Start-Up Load		
Steam Mains & Branch Lines			2.1 3.1 if @ end of main		
(Non-Freezing)	IB (CV if pressure varies)	F&T	ahead of valve, or on branch		
(Freezing)	IB	Thermostatic or Disc	Same as above		
Steam Separator	IBLV	DC	3.1		
Steam quality 90% or less	DC	—	0.1		
Tracer Lines	IB	Thermostatic or Disc	2:1		
Unit Heaters and Air Handlers					
(Constant Pressure)	IBLV	F&T	3:1		
(0-15 Variable Pressure)			2:1 @ 1/2 psi Differential		
(16-30 Variable Pressure)	F&T	IBLV	2:1 @ 2 psi Differential		
(>30 Variable Pressure)			3:1 @ 1/2 Max. Pressure Differential		
Finned Radiation & Pipe Coils					
(Constant Pressure)	IB	Thermostatic	3:1 for quick heating 2:1 normally		
(Variable Pressure)	F&T	IB			
Process Air Heaters					
(Constant Pressure)	IB	F&T	2:1		
(Variable Pressure)	F&T	IBLV	3:1 @ 1/2 Max. Pressure Differential		
Steam Absorption Machine (Chiller)	F&T	IB Ext. Air Vent	2:1 @ 1/2 psi Differential		
Shell & Tube Heat Exchangers, Pipe & Embossed Coils					
(Constant Pressure)	IB	DC or F&T	2:1		
(Variable Pressure)	F&T	DC or IBT (If >30 psi IBLV)	<15 psi 2:1 @ 1/2 psi 16-30 psi 2:1 @ 2 psi >30 psi 3:1 @ 1/2 Max. Pressure Differential		
Evaporator Single Effect & Multiple Effect	DC	IBLV or F&T	2:1, If load 50,000 lbs/hr use 3:1		
Jacketed Kettles					
(Gravity Drain)	IBLV	F&T or Thermostatic	3:1		
(Syphon Drain)	DC	IBLV			
Rotating Dryers	DC	IBLV	3:1 for DC, 8:1 for IB variable pressure, 10:1 for IB variable pressure		
Flash Tanks	IBLV	DC or F&T	3:1		

IBLV Inverted Bucket Large Vent =

IBCV = Inverted Bucket Internal Check Valve

IBT = Inverted Bucket Thermic Vent

F&T Float & Thermostatic = DC

Differential Condensate Controller =

Use an IB with external air vent above the F&T pressure limitations or if the steam is dirty. All safety factors are at the operating pressure differential unless otherwise noted.

Installation and Testing of Armstrong Steam Traps

Before Installing

Run pipe to trap. Before installing the trap, clean the line by blowing down with steam or compressed air. (Clean any strainer screens after this blowdown.)

Trap Location ABCs

Accessible for inspection and repair.

Below drip point whenever possible.

Close to drip point.

Trap Hookups. For typical hookups, see Figs. CG-60 (below) through CG-71, pages CG-45 through CG-48.

Shutoff Valves ahead of traps are needed when traps drain steam mains, large water heaters, etc., where system cannot be shut down for trap maintenance. They are not needed for small steam-heated machines—a laundry press, for example. Shutoff valve in steam supply to machine is usually sufficient.

Shutoff Valves in trap discharge line are needed when trap has a by-pass. It is a good idea when there is high pressure in discharge header. See also Check Valves.

By-passes (Figs. CG-64 and CG-65) are discouraged, for if left open, they will defeat the function of the trap. If continuous service is absolutely required, use two traps in parallel, one as a primary, one as a standby.

Unions. If only one is used, it should be on discharge side of trap. With two unions, avoid horizontal or vertical in-line installations. The best practice is to install at right angles as in Figs. CG-60 and CG-64, or parallel as in Fig. CG-65.

Standard Connections. Servicing is simplified by keeping lengths of inlet and outlet nipples identical for traps of a given size and type. A spare trap with identical fittings and half unions can be kept in storeroom. In the event a trap needs repair, it is a simple matter to break the two unions, remove the trap, put in the spare and tighten the unions. Repairs can then be made in the shop and the repaired trap, with fittings and half unions, put back in stock.

Test Valves (Fig. CG-60) provide an excellent means of checking trap operation. Use a small plug valve. Provide a check valve or shutoff valve in the discharge line to isolate trap while testing.

Figure CG-60. Typical IB Hookup

Figure CG-61. Typical IB Bottom Inlet—Top Outlet Hookup

Troubleshooting Armstrong Steam Traps

The following summary will prove helpful in locating and correcting nearly all steam trap troubles. Many of these are actually system problems rather than trap troubles.

More detailed troubleshooting literature is available for specific products and applications—consult factory.

Whenever a trap fails to operate and the reason is not readily apparent, the discharge from the trap should be observed. If the trap is installed with a test outlet, this will be a simple matter—otherwise, it will be necessary to break the discharge connection.

Cold Trap—No Discharge

If the trap fails to discharge condensate, then:

- A. Pressure may be too high.
 - 1. Wrong pressure originally specified.
 - 2. Pressure raised without installing smaller orifice.
 - 3. PRV out of order.
 - 4. Pressure gauge in boiler reads low.
 - 5. Orifice enlarged by normal wear.
 - 6. High vacuum in return line increases pressure differential beyond which trap may operate.
- **B.** No condensate or steam coming to trap.
 - 1. Stopped by plugged strainer ahead of trap.
 - 2. Broken valve in line to trap.
 - 3. Pipe line or elbows plugged.
- **C.** Worn or defective mechanism. Repair or replace as required.
- D. Trap body filled with dirt. Install strainer or remove dirt at source.
- E. For IB, bucket vent filled with dirt. Prevent by:
 - Installing strainer.
 Enlarging vent slightly.
 - 3. Using bucket vent scrubbing wire.
- F. For F&T traps, if air vent is not functioning properly, trap will likely air bind.
- **G.** For thermostatic traps, the bellows element may rupture from hydraulic shock, causing the trap to fail closed.
- H. For disc traps, trap may be installed backward.

Hot Trap—No Discharge

- A. No condensate coming to trap.
 - 1. Trap installed above leaky by-pass valve.
 - 2. Broken or damaged syphon pipe in syphon drained cylinder.
 - 3. Vacuum in water heater coils may prevent drainage. Install a vacuum breaker between the heat exchanger and the trap.

Steam Loss

If the trap blows live steam, the trouble may be due to any of the following causes:

- A. Valve may fail to seat.
 - Piece of scale lodged in orifice.
 Worn parts.
- B. IB trap may lose its prime.
 - 1. If the trap is blowing live steam, close the inlet valve for a few minutes. Then gradually open. If the trap catches its prime, chances are the trap is all right.
 - Prime loss is usually due to sudden or frequent drops in steam pressure. On such jobs, the installation of a check valve is called for—location D or C in Fig. CG-63 (page CG-46). If possible, locate trap well below drip point.
- **C.** For F&T and thermostatic traps, thermostatic elements may fail to close.

Continuous Flow

If an IB or disc trap discharges continuously, or an F&T or thermostatic trap discharges at full capacity, check the following:

- A. Trap too small.
 - 1. A larger trap, or additional traps, should be installed in parallel.
 - 2. High pressure traps may have been used for a low pressure job. Install right size of internal mechanism.
- B. Abnormal water conditions. Boiler may foam or prime, throwing large quantities of water into steam lines. A separator should be installed or else the feed water conditions should be remedied.

Sluggish Heating

When trap operates satisfactorily, but unit fails to heat properly:

- **A.** One or more units may be short-circuiting. The remedy is to install a trap on each unit. See page CG-15.
- **B.** Traps may be too small for job even though they may appear to be handling the condensate efficiently. Try next larger size trap.
- **C.** Trap may have insufficient air-handling capacity, or the air may not be reaching trap. In either case, use auxiliary air vents.

Mysterious Trouble

If trap operates satisfactorily when discharging to atmosphere, but trouble is encountered when connected with return line, check the following:

A. Back pressure may reduce capacity of trap.

- 1. Return line too small—trap hot.
- 2. Other traps may be blowing steam—trap hot.
- 3. Atmospheric vent in condensate receiver may be plugged—trap hot or cold.
- 4. Obstruction in return line-trap hot.
- 5. Excess vacuum in return line-trap cold.

Imaginary Troubles

If it appears that steam escapes every time trap discharges, remember: Hot condensate forms flash steam when released to lower pressure, but it usually condenses quickly in the return line. See Chart CG-4 on page CG-4.

880 Series Inverted Bucket Steam Traps

Cast Iron for Horizontal Installation With Integral Strainer For Pressures to 250 psig (17 bar)...Capacities to 4,400 lb/hr (2,000 kg/hr)

Description

The most reliable steam trap known—the inverted bucket—provides efficient condensate drainage of virtually all types of steam-using equipment. Put the inverted bucket to work in a tough cast iron package with an integral strainer, and you have the best of both worlds. Because they operate efficiently for longer periods of time, Armstrong cast iron inverted buckets add solid energy savings to lower replacement/labor costs. All Armstrong cast iron inverted bucket steam traps are repairable for even bigger maintenance savings.

A unique leverage system multiplies the force provided by the bucket to open the valve against system pressure. The mechanism is free-floating, and has no fixed pivots to create wear or friction.

Because the mechanism is located at the top of the trap, no dirt can collect on the orifice. Small particles of dirt are held in suspension until discharged by the full differential purging action when the bucket sinks, pulling the valve off the seat.

The discharge orifice is surrounded by a water seal, preventing live steam loss. Automatic air venting is provided by a small vent hole in the bucket, which provides continuous automatic air and CO_2 venting at steam temperature.

Inverted bucket traps drain continuously, although discharging intermittently, allowing no condensate backup. They are also resistant to water hammer.

Maximum Operating Conditions

Maximum allowable pressure (vessel design): Maximum operating pressure:

250 psig @ 450°F (17 bar @ 232°C) Model 880: 150 psig (10 bar) Model 881-883: 250 psig (17 bar)

Connections Screwed NPT and BSPT

Materials Body:

Body: Internals: Valve and seat: Test plug: Strainer:

Hardened chrome steel—17-4PH Carbon steel Stainless steel—304

ASTM A48 Class 30

All stainless steel-304

Options

- Stainless steel internal check valve
- Thermic vent bucket
- Scrub wire

Specification

Inverted bucket steam trap, type ... in cast iron with integral strainer, with continuous air venting at steam temperature, with free-floating stainless steel mechanism, and discharge orifice at the top of the trap.

How to Order

- Specify:
- Model number
- Size and type of pipe connection
 Maximum working pressure that will be encountered or orifice size
- Maximum working pressure that
 Any options required

For a fully detailed certified drawing, refer to CD #1000.

880 Series Side Inlet, Side Outlet Traps With Integral Strainers. Add suffix "CV" to model number for internal check valve, "T" for thermic vent bucket.										
Model No.	88	0*	8	81	8	B2	883			
	in	mm	in	mm	in	mm	in	mm		
Pipe Connections	1/2, 3/4	15, 20	1/2, 3/4, 1	15, 20, 25	1/2, 3/4	15, 20	3/4, 1, 1-1/4	20, 25, 32		
Test Plug	1/4	6	1/4	6	1/2	15	3/4	20		
"A" (Flange Diameter)	3-3/4	95.2	3-3/4	95.2	5-5/8	142.9	7	177.8		
"B" (Height)	6-1/16	154	7-1/16	179	9-3/8	244	12-3/8	314		
"C" (Face-to-Face)	5	127	5	127	6-1/2	165	7-7/8	200		
"D" (Bottom to 🕼 Inlet)	3-7/16	87.3	4-7/16	113	5-3/4	146	7-3/8	187		
"E" (Blowdown Connection)	3/8	9	3/8	9	3/8	9	1/2	15		
Number of Bolts	6									
Weight Ib (kg)	5-1/2	5-1/2 (2.5) 6 (2.7) 15-1/2 (7.0) 31 (14.1)						14.1)		

*Cannot be furnished with both thermic vent bucket and check valve.

1

880 Series Inverted Bucket Steam Traps

Cast Iron for Horizontal Installation With Integral Strainer

1000 Series Inverted Bucket Steam Trap

All Stainless Steel for Vertical Installation (Except U-1000 w/Strainer)

For Pressures to 650 psig (45 bar)...Capacities to 4,400 lb/hr (2,000 kg/hr)

Description

Armstrong 1000 Series stainless steel inverted bucket steam traps normally last three to four times longer than conventional traps used in identical services. Heat-treated stainless steel valves and seats are of the same design, material and workmanship as those used in traps for pressures up to 900 psig and temperatures to 900°F. More compact than cast iron or carbon steel equivalents, 1000 Series traps are ideal for trapping applications such as tracer lines, steam mains and heating/process applications.

The 1000 Series are guaranteed for three years.

Maximum Operating Conditions

Maximum allowable pressure (Model 1010, 1011: Model 1022:

400 psig @ 800°F (28 bar @ 427°C)
650 psig @ 600°F (45 bar @ 316°C)
627 psig @ 700°F (43 bar @ 371°C)
604 psig @ 800°F (41.6 bar @ 427°C
450 psig @ 800°F (31 bar @ 427°C)

Model 1013:

Maximum operating pressure: Model 1010: 150 psig (10 bar) Model 1011: Model 1022: Model 1013:

Connections

Screwed NPT and BSPT Socketweld

Materials

Body: Internals: Valve and seat:

ASTM A240 Grade 304L All stainless steel-304 Hardened chrome steel-17-4PH or Titanium

400 psig (28 bar)

650 psig (45 bar)

450 psig (31 bar)

Options

- Stainless steel internal check valve
- Thermic vent bucket 250 psig (17 bar) maximum; for Model 1022 15 psig (1 bar) maximum
- · Wiggle wire

Specification

Inverted bucket steam trap, type ... in all stainless steel, freeze resistant, without gaskets, with continuous air venting at steam temperature, free-floating stainless steel mechanism, and orifice at the top of the trap.

How to Order

- Specify:
- Model number
- Size and type of pipe connection
- · Maximum working pressure that will be encountered or orifice size · Any options required

For a fully detailed certified drawing, refer to:

1010 and 1011 CD #1006 1022 CD #1204

1000 Series Traps										
Model No.	1010		1011		1022		1013*			
Dina Connections	in	mm	in	mm	in	mm	in	mm		
Pipe Connections	1/2, 3/4	15, 20	1/2, 3/4	15, 20	3/4	20	1	25		
"A" (Diameter)	2-3/4	69.9	2-3/4	68.9	3-7/8	100	4-1/2	114		
"B" (Height)	6-1/16	168	7-1/4	184	8-13/16	224	11-3/8	289		
"K" (Ç Inlet to Ç Outlet)	9/16	14.3	9/16	14.3	3/4	18	1-3/16	30.2		
Weight Ib (kg)	1-1/2 (0.7)		1-3/4 (0.8)		4	(2)	7-1/2 (3.4)			

*Model 1013 only available with screwed connections.

Model 1010 Trap

1000 Series Inverted Bucket Steam Trap All Stainless Steel for Vertical Installation (Except U-1000 w/Strainer)

For Pressures to 650 psig (45 bar)...Capacities to 4,400 lb/hr (2,000 kg/hr)

NOTE: #38 orifice in Model U-1022 is limited to 450 psi (31 bar).

1800 Series Inverted Bucket Steam Trap

All Stainless Steel for Horizontal Installation

For Pressures to 650 psig (45 bar)...Capacities to 1,802 lb/hr (817 kg/hr)

Model 1811 Trap

Model 1822 Trap

Description

A quick and easy "in-line" replacement for other types of side inlet/side outlet efficient inverted bucket operation. Side inlet/outlet all-welded construction means an inverted bucket trap that will operate efficiently on applications such as tracer lines, drips, heating, processing and similar applications.

With the 1800 Series you get freeze-resistant, all-stainless steel construction, with a three-year guarantee, plus all the benefits of inverted bucket operation:

Long, trouble-free service life

- · Excellent purging action
- · Continuous air venting
- · Ease and flexibility of in-line installation

Maximum Operating Conditions

maximum allowable pressure	(vessei design).
Model 1810, 1811:	400 psig @ 800°F (28 bar @ 427°C)
Model 1822:	650 psig @ 600°F (45 bar @ 315°C)
	627 psig @ 700°F (43 bar @ 371°C)
	604 psig @ 800°F (41.6 bar @ 427°C)

naximum operating pressure.	
Nodel 1810:	200 psig (14 bar)
Nodel 1811:	400 psig (28 bar)
/lodel 1822:	650 psig (45 bar)

Connections

Screwed NPT and BSPT Socketweld Flanged (consult factory)

Materials

Body: Internals: Valve and seat: ASTM A240 Grade 304L All stainless steel-304 Hardened chrome steel-17-4PH or Titanium

- Options Insu-Pak™ insulation for Models 1810/1811 Stainless steel pop drain for Models 1811/1822
- Probe connection for Models 1811/1822
- · Restricted orifice
- · Wiggle wire

Specification

Inverted bucket steam trap, type ... in all stainless steel, freeze resistant, without gaskets, with continuous air venting at steam temperature, freefloating stainless steel mechanism, and orifice at the top of the trap.

How to Order

- Specify: Model number
- Size and type of pipe connection · Maximum working pressure that will be encountered or orifice size
- · Any options required

For a fully detailed certified drawing, refer to CD #1005.

1800 Series Traps										
Model No.	18	10	1811				1822			
Ding Connections	in	mm	in	mm	in	mm	in	mm	in	mm
	3/8, 1/2	10, 15	1/2	15	3/4	20	1/2, 3/4	15, 20	1	25
"A" am ¢D ir)	2-11/16	68	2-11/16	68	2-11/16	68	3-7/8	99	3-7/8	99
"B" ightthe	5-5/16	135	6-5/16	160	6-9/16	167	8-1/2	218	8-1/2	218
"C" (Face to Face)	4-5/16	110	4-5/16	110	4-5/16	110	5	127	5	127
"D" (Bottom to @ et) InI	4-7/16	113	5-7/16	138	5-9/16	141	7-3/8	187	7-1/8	181
Weight Ib (kg)	1-3/4	(0.8)	2 (0	0.9)	2-3/8	(1.1)		7	(3)	

1800 Series Inverted Bucket Steam Trap

All Stainless Steel for Horizontal Installation

For Pressures to 650 psig (45 bar)...Capacities to 1,802 lb/hr (817 kg/hr)

*NOTE: Because the orifice is located at the top, inverted bucket steam traps handle dirt and scale better than other types of traps. However, in applications where extremely dirty conditions exist, care should be exercised in the use of all types of restricted-orifice, reduced-capacity traps.

*Orifices available only with 3/4" connections.

Options

Pop Drain for Freeze Protection In general, a properly selected and installed Armstrong trap will not freeze as long as steam is coming to the trap. If the steam supply is shut off, a pop drain should be used to automatically drain the trap. Stainless steel pop drain available for Models 1811 and 1822.

Maximum Operating ConditionsPressure:600 psig (41 bar)Temperature:350°F (177°C)

Insu-Pak™

Now you can insulate the in-line traps in your plant without complicating regular trap maintenance. Insu-Pak, a simple reusable insulation package, cuts the time and cost of in-field installation because it goes on in a snap. And it comes off just as easily. Insu-Pak can prevent trap freeze-up when used with a properly designed condensate manifold. Designed for use with Model 1810 and Model 1811 traps.

Probe connections are available for trap monitoring on Models 1811 and 1822.

Float & Thermostatic Steam Trap

The More Your Steam Pressure Varies, the More You Need Armstrong F&T Traps

When steam pressure may vary from maximum steam supply pressure to vacuum, Armstrong F&Ts are your most energy-efficient choice. Our line of F&Ts brings Armstrong performance, dependability and long life to trapping services requiring continuous drainage with high air venting capacity. Thanks to separate orifices for condensate and air, they provide continuous condensate drainage and air venting even under conditions of zero pressure. All the benefits detailed below have been designed into Armstrong F&Ts through long experience in the manufacture of pressure float-type drain traps. They assure you of optimum operating efficiency for long periods with minimum trouble.

No water seal at inlet

Inlet high on body and condensate discharge valve in the bottom of the body prevent formation of a water seal that could block flow of air to vent under very low pressure conditions.

Corrosion resistance

Entire float mechanism is made of stainless steel. The float is Heliarc welded to avoid the introduction of dissimilar metals, which could lead to galvanic corrosion and float failure. **Optional integral vacuum breakers** Provide maximum protection against freezing and water hammer in condensing equipment under modulated control. They also eliminate another fitting being installed in the line.

> High-capacity venting of air and CO₂ Built-in thermostatic air vent

discharges large volumes of air and C0₂ through its separate orifice—even under very low pressure conditions.

Water sealed valve

Steam cannot reach condensate discharge valve because it is always under water. Balanced pressure thermostatic air vent closes on steam at any pressure within the operating range of the trap.

Long life and dependable service Valve is stainless steel in all sizes. Seat is heat treated in 1-1/2" pipe size and larger. Rugged float mechanism is built to resist wear, and the stainless steel float provides exceptionally high collapsing pressure and resistance to hydraulic shock.

Operation against back pressure

Trap operation is governed solely by the condensate level in the trap. Back pressure in the return line will not render the trap inoperative as long as there is any pressure differential to force condensate through the discharge valve.

Continuous drainage

No pressure fluctuations due to intermittent condensate drainage. Condensate is discharged at very close to steam temperature. No priming needed.

Float & Thermostatic Steam Trap

Built as Tough as the Jobs They Do

Armstrong float and thermostatic traps are unique in their super heavy duty construction. Armstrong uses high quality ASTM A48 Class 30 cast iron or ASTM A216 WCB cast steel—normally found in pressure vessels rated to 250 psi or 465 psi. Internal mechanisms are made from stainless steel and are heavily reinforced. No brass cotter pins here. Valves and seats are stainless steel, hardened, ground and lapped to withstand the erosive forces of flashing condensate.

Why go to all this trouble on traps normally recommended for low-pressure, modulating service? The answer is in the word *modulating*. Modulating pressures mean widely varying loads, thermal cycling and high air and non-condensable gas loads.

In other words, tough service. Inferior, lightweight construction is a mistake waiting to happen. Trap failures on modulating pressure may lead to water hammer, corrosion and even heat exchanger damage.

Armstrong's published capacities are based on actual measurements of traps handling hot, flashing condensate. Competitive F&Ts may utilize theoretical calculated capacities. Armstrong uses its own steam lab to give you actual capacity—especially important on high-capacity traps such as those in our ultra-capacity line. Not only does Armstrong offer super heavy duty construction for long life and reliability, but we also supply the data to back up performance. Here's a simple, easy-to-remember summary: The more your pressure varies, the more you need Armstrong F&Ts.

A & AI Series Float & Thermostatic Steam Trap

Cast Iron for Horizontal Installation, With Thermostatic Air Vent For Pressures to 175 psig (12 bar)...Capacities to 8,600 lb/hr (3,900 kg/hr)

Model A Traps

Description

Armstrong A & AI Series F&T traps are for industrial service from 0 to 175 psig and feature a balanced pressure phosphor-bronze type bellows caged in stainless steel. Armstrong A & AI Series F&T traps are designed for service on heat exchange equipment where there is a need to vent air and non-condensable gases guickly.

The AI Series F&T traps feature the convenience of in-line connections with the same rugged internals found in the A Series.

Maximum Operating Conditions

Maximum allowable pressure (vessel design): 175 psig @ 377°F (12 bar @ 191°C)

Maximum operating pressure:

Model 30-A, AI:	30 psig (2 bar) saturated steam
Model 75-A, AI:	75 psig (5 bar) saturated steam
Model 125-A, AI:	125 psig (8.5 bar) saturated steam
Model 175-A, AI:	175 psig (12 bar) saturated steam

NOTE: Cast iron traps should not be used in systems where excessive hydraulic or thermal shock are present.

Connections

Screwed NPT and BSPT

Thermostatic air vent:

Materials

Body and cap: Internals: Valve: Seat: ASTM A48 Class 30 All stainless steel—304 Stainless steel—440 Stainless steel—303 (ASTM A582) Stainless steel—440F in 1-1/2" and 2" Stainless steel and bronze with phosphor bronze bellows, caged in stainless steel

Model Al Traps

Options

Integral vacuum breaker. Add suffix VB to model number.

CAUTION: Do not use a conventional vacuum breaker open to the atmosphere in any system that incorporates a mechanical return system that carries pressure less than atmospheric pressure. This includes all return systems designated as vacuum returns, variable vacuum returns or subatmospheric returns. If a vacuum breaker must be installed in such a system, it should be of the type that is loaded to open only when the vacuum reaches a calibrated level well in excess of the design characteristics of the system.

Specification

Float and thermostatic steam trap, type ... in cast iron, with thermostatic air vent.

For a fully detailed certified drawing, refer to CD #1009.

How to Order

	Model		Option
75	AI	2	VB
30 75 125	A = Standard Connection	$\begin{array}{l} 3 = 3/4"\\ 4 = 1"\\ 5 = 1\text{-}1/4"\\ 6 = 1\text{-}1/2"\\ 8 = 2"\end{array}$	VB = Vacuum Breaker
175	AI = In-line Connection	2 = 1/2" 3 = 3/4" 4 = 1"	

A & Al Series Traps												
Trap Series		Model A										lel Al
Dina Connections	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
Pipe Connections	3/4	20	1	25	1-1/4	32	1-1/2	40	2	50	1/2, 3/4, 1	15, 20, 25
"B" ig(htte)	5-1/8	130	5-1/8	130	5-13/16	148	7-7/16	189	9-3/4	248	5-1/2	140
"C" (Face to Face)	4-7/8	124	4-7/8	124	4-5/8	117	5-3/4	146	7-5/8	194	5	127
"D" (Bottom to €)	1	25.4	1	25.4	1-7/32	31.0	1-13/32	35.7	1-11/16	42.9	2-9/16	65.1
"H" idth()W	6-7/16	164	6-7/8	164	8-1/8	206	8-7/16	214	11-5/8	295	6-1/2	165
"K" (Connection Offset)	3/8	95.2	3/8	95.2	—	—	—	—	—	—	—	—
"M" (@ to @)	3	76.2	3	76.2	3	76.2	4-3/16	106	6	152	-	—
"N" (Top to <u>¢</u>)	3-3/8	85.7	3-3/8	85.7	3-3/4	95.2	3-3/4	95.2	5	127	3-11/16	93.7
Weight Ib (kg)	9-1/2	2 (4.3)	8-1/4	(3.7)	11 ((5.0)	18-3/4	(8.5)	40 (1	8.1)	9-3/4	4 (4.4)

NOTE: Cast iron traps should not be used in systems where excessive hydraulic or thermal shock are present.

A & Al Series Float & Thermostatic Steam Trap

Cast Iron for Horizontal Installation, With Thermostatic Air Vent

For Pressures to 175 psig (12 bar)...Capacities to 8,600 lb/hr (3,900 kg/hr)

Options

Vacuum Breaker—3/8" (10 mm) and 1/2" (15 mm) NPT

Many times, condensate will be retained ahead of steam traps because of the presence of a vacuum. To break a vacuum, air must be introduced into the system by means of a vacuum breaker.

For maximum protection against freezing and water hammer in condensing equipment under modulated control, vacuum breakers are recommended. Armstrong A and AI Series F&T Traps are available with integral vacuum breakers. Maximum service pressure is 150 psig (10 bar).

Vacuum Breaker										
Size	in	mm	in	mm						
5120	1/2 NPT	15	3/8 NPT	10						
"B" Pipe Connections	3/8 NPT	10	1/4 NPT	6						
"C" Height	1-1/4	32	1-3/32	28						
"D" Width	7/8 Hex	22 Hex	11/16 Hex	17 Hex						

FLOAT AND THERMOSTATIC STEAM TRAPS - FLT 17

(DN 1"HC – DN 25HC)

DESCRIPTION

FLT17 float and thermostatic (integral air vent) steam traps series are designed for all types of low and high pressure steam heating and process equipment.

Typical applications include unit heaters, heat exchangers, driers, jacketed vessels and all the applications where continuous drainage is essential.

Connections are female screwed or flanged for horizontal or vertical installation.

MAIN FEATURES

Modulating discharge.

Discharges condensate at steam temperature. Unaffected by sudden or wide load and pressure changes. Excellent air discharge (by thermostatic air vent).

OPTIONS:	SLR – steam lock release
	Equalizing plug or vent connection
	Internal strainer
USE:	Saturated and superheated steam.
AVAILABLE	•
MODELS:	FLT17-4,5 , 10 and 14
SIZES:	DN 1"HC – DN25HC
CONNECTIONS:	Female screwed ISO7/1 Rp (BS21)
	Flanged EN 1092-2 PN16 or ANSI
INSTALLATION:	Standard horizontal installation –
	From left to right FLT17 (L-R)

Upon request:

-horizontal installation with the flow from right to left (R-L) -vertical installation with the flow from top to bottom (V)

MAX. DIFFERENTIAL PRESSURE

4,5 bar
10 bar
14 bar

BODY LIMITING CONDITIONS									
FLANGED PN16*	FLANGED ANSI 150 **	RELATED							
ALLOW. PRES.	ALLOW. PRES.	. 2.00							
16 bar	15,4 bar	100 °C							
15,5 bar	14,6 bar	150 °C							
14,7 bar	13,8 bar	200 °C							
13,9 bar	12,1 bar	250 °C							
PMO - Max operating pre	essure 14 har	•							

PMO - Max. operating pressure 14

TMO - Max. operating temperature 198 °C

* According to EN1092-2:2000 ; ** Acc. to EN1759-1:2004 Body limiting conditions PN16 or below, depending on the type of connection adopted. Rating PN16 for thread.

	FLOW RATE CAPACITY IN Kgs/h													
MODEL	SIZE	DIFFERENTIAL PRESSURE (bar)												
		0,5	1	1,5	2	3	4,5	6	7	8	9	10	12	14
FLT17-4,5	1"-25HC	900	1250	1450	1700	2010	2400							
FLT17-10	1"-25HC	450	620	790	880	1100	1250	1500	1600	1700	1750	1800		
FLT17-14	1"-25HC	340	435	530	600	610	850	990	1100	1190	1240	1300	1350	1380

FLOAT AND THERMOSTATIC STEAM TRAPS - FLT 17

(DN 1"HC – DN 25HC)

	DIMENSIONS (mm)											
Screwed						EN PN	116		ANSI 150			
SIZE DN	A	В	с	D	E	WGT. Kgs	F	G	WGT. Kgs	F	G	WGT. Kgs
25-1"	120	195	80	190	110	9	160	248	11,3	160	248	10,9

On request can be supplied an alternative version DN 32 - 11/4" with	
different lengths: A = 190 and F = 230 mm	

MATERIALS										
POS.Nr.	DESIGNATION	MATERIAL								
1	Body	GJS-400-15 / 0.7040								
2	Cover	GJS-400-15 / 0.7040								
3	*Gasket	Stainless st. / Graphite								
4	*Seat	AISI 410 / 1.4006								
5	*Valve	AISI 440C / 1.4125								
6	*Lever	AISI 304 / 1.4301								
7	*Float	AISI 304 / 1.4301								
8	*Air vent	Stainless st. (Bimetallic)								
9	Bolts	Steel 8.8								
10	**Strainer	AISI 304 / 1.4301								

*Available spare parts ; ** Optional

Vertical Installation (V)

SECTION

1

FLOAT AND THERMOSTATIC STEAM TRAPS - FLT17 (DN 11/2" – 2"; DN 40 – 50)

DESCRIPTION

FLT17 float and thermostatic (integral air vent) steam traps series are designed for all types of low and high pressure steam heating and process equipment.

Typical applications include unit heaters, heat exchangers, driers, jacketed vessels and all the applications where continuous drainage is essential.

Connections are female screwed or flanged for horizontal or vertical installation.

MAIN FEATURES

Modulating discharge. Discharges condensate at steam temperature.

Unaffected by sudden or wide load and pressure changes. Excellent air discharge (by thermostatic air vent).

OPTIONS:	SLR – steam lock release
	Equalizing plug or vent connection
USE:	Saturated and superheated steam.
AVAILABLE	
MODELS:	FLT17-4,5 , 10 and 14
SIZES:	DN11/2" - DN2" ; DN40 – DN50
CONNECTIONS:	Female screwed ISO7/1 Rp (BS21)
	Flanged EN 1092-2 PN16 or ANSI
INSTALLATION:	Standard horizontal installation -
	From right to left FLT17 (R-L)

Upon request:

-horizontal installation with the flow from left to right (L-R) -vertical installation with the flow from top to bottom (V)

MAX. DIFFERENTIAL PRESSURE

FLT17-4,5 :	4,5 bar
FLT17-10 :	10 bar
FLT17-14:	14 bar

BODY LIMITING CONDITIONS									
FLANGED PN16*	FLANGED ANSI 150 **	RELATED TEMP							
ALLOW. PRES.	ALLOW. PRES.	/// .							
16 bar	15,4 bar	100 ºC							
15,5 bar	14,6 bar	150 ºC							
14,7 bar	13,8 bar	200 °C							
13,9 bar	12,1 bar	250 ⁰C							

PMO - Max. operating pressure 14 bar

TMO - Max. operating temperature 198 °C

* According to EN1092-2:2000 ; ** Acc. to EN1759-1:2004 Body limiting conditions PN16 or below, depending on the type of connection adopted. Rating PN16 for thread.

FLOW RATE CAPACITY IN Kgs/h										
MODEL	SIZE		DIFFERENTIAL PRESSURE (bar)							
		0,5	1	1,5	2	4,5	7	10	12	14
FLT17-4,5	40-50	2400	3400	3900	4500	7300				
FLT17-10	40-50	1500	2000	2600	3000	4000	5400	6200		
FLT17-14	40-50	950	1300	1600	1800	2600	3250	3900	4210	4950

1

FLOAT AND THERMOSTATIC STEAM TRAPS - FLT17

(DN 11/2" - 2"; DN 40 - 50)

DIMENSIONS (mm)												
Screwed							EN PN	116		ANSI 150		
SIZE DN	A	В	с	D	E	WGT. Kgs	F	В	WGT. Kgs	F	В	WGT. Kgs
40-11/2"	210	248	79	208	131	16,9	230	248	20,3	230	248	19,1
50-2"	210	248	79	208	131	17,5	230	248	20,7	230	248	20,5

Vertical Installation (V)

	MATERIALS							
POS.Nr.	DESIGNATION	MATERIAL						
1	Body	GJS-400-15 / 0.7040						
2	Cover	GJS-400-15 / 0.7040						
3	*Gasket	Stainless st. / Graphite						
4	"Seat	CF8 / 1,4308						
5	*Valve	AISI 420 / 1.4021						
6	"Lever	AISI 304 / 1.4301						
7	*Float	AISI 304 / 1.4301						
8	*Air vent	Stainless st. (Bimetallic)						
9	Bolts	Steel 8.8						
Augilahla eng	ra nerte	-						

FLOAT AND THERMOSTATIC STEAM TRAPS - FLT17

(DN 2" HC; DN 50 HC)

DESCRIPTION

FLT17 float and thermostatic (integral air vent) steam traps series are designed for all types of low and high pressure steam heating and process equipment.

Typical applications include unit heaters, heat exchangers, driers, jacketed vessels and all the applications where continuous drainage is essential.

Connections are female screwed or flanged for horizontal or vertical installation.

MAIN FEATURES

Modulating discharge.

Discharges condensate at steam temperature. Unaffected by sudden or wide load and pressure changes. Excellent air discharge (by thermostatic air vent).

OPTIONS:	SLR – steam lock release
	Equalizing plug or vent connection
USE:	Saturated and superheated steam.
AVAILABLE	
MODELS:	FLT17-4,5 , 10 and 14
SIZES:	DN2" HC ; DN50 HC
CONNECTIONS:	Female screwed ISO7/1 Rp (BS21)
	Flanged EN 1092-2 PN16 or ANSI
INSTALLATION:	Standard horizontal installation –
	From right to left FLT17 (R-L)

Upon request:

-horizontal installation with the flow from left to right (L-R) -vertical installation with the flow from top to bottom (V)

MAX. DIFFERENTIAL PRESSURE

FLT17HC-4,5 :	4,5 bar
FLT17HC-10 :	10 bar
FLT17HC-14:	14 bar

CEMARKING (PED - European Directive 97/23/EC)					
PN 16 Category					
DN 50 HC	1 (CE Marked)				

BODY LIMITING CONDITIONS								
FLANGED PN16*	FLANGED ANSI 150 **	RELATED						
ALLOW. PRES.	ALLOW. PRES.							
16 bar	15,4 bar	100 ºC						
15,5 bar	14,6 bar	150 ºC						
14,7 bar	13,8 bar	200 °C						
13,9 bar	12,1 bar	250 °C						

PMO - Max. operating pressure 14 bar

TMO - Max. operating temperature 198 °C

* According to EN1092-2:2000 ; ** Acc. to EN1759-1:2004 Body limiting conditions PN16 or below, depending on the type of connection adopted. Rating PN16 for thread.

	FLOW RATE CAPACITY IN Kgs/h												
MODEL	DIFFERENTIAL PRESSURE (bar)												
MODEL	SIZE	0,1	0,3	0,5	0,7	1	1,5	2	4,5	7	10	12	14
FLT17-4,5	50HC	2400	5900	7550	9050	11000	14000	15500	22500	1			
FLT17-10	50HC	1800	3000	3900	4450	5000	6100	7100	10000	13750	16000		
FLT17-14	50HC	900	1500	1900	2300	2700	3100	3600	5000	6900	8100	9000	9800

1

FLOAT AND THERMOSTATIC STEAM TRAPS - FLT17

(DN 2" HC; DN 50 HC)

DIMENSIONS (mm)												
Screwed					EN PN16 ANSI 150			50				
SIZE DN	A	В	с	D	E	WGT. Kgs	F	G	WGT. Kgs	F	G	WGT. Kgs
50-2"	300	250	126	266	140	21,6	230	325	27,8	230	325	27,6

	_
PL-OCH STORE	F

Vertical Installation (V)

	MATERIAL	8
POS.Nr.	DESIGNATION	MATERIAL
1	Body	GJS-400-15 / 0.7040
2	Cover	GJS-400-15 / 0.7040
3	*Gasket	Stainless st. / Graphite
4	"Seat	CF8 / 1,4308
5	*Valve	AISI 420 / 1.4021
6	"Lever	AISI 304 / 1.4301
7	*Float	AISI 304 / 1.4301
8	*Air vent	Stainless st. (Bimetallic)
9	Bolts	Steel 8.8
Nucleable cos	BOILS	Steel 8.8

"Available spare parts.

TVS 800 Series Cast Iron Trap Valve Station

Put the principle of the inverted bucket to work in a tough cast iron package and you have the best of both worlds—energy efficiency and long-lasting reliability. Add the advantages of valves integrated into one compact trap/valve casting, and you extend the benefits into installation, trap testing and maintenance.

All the components are concentrated in a single, accessible package and can be dealt with in-line. And if you have existing Armstrong cast iron traps in-line, identical face-to-face dimensions will make retrofitting with the patented* Armstrong Trap Valve Station (TVS) a snap. You'll also reduce your inventory requirements. So you'll eliminate what you're paying just to keep parts on hand.

TVS 800 Series Cast Iron Trap Valve Station

TVS makes a long story...short.

Typical InstallationTrap Value StationImage: Descent trap with two isolation valuesImage: Descent trap with two isolationImage: Descent trap with two isolationImage: Descent trap with two isolation valuesImage: Descent trap with two isolationImage: Descent trap with two isolationImage: Descent trap with two isolation valuesImage: Descent trap with two isolationImage: Descent trap with two isolationImage: Descent trap with two isolation valuesImage: Descent trap with two isolation valuesImage: Descent trap with two isolationImage: Descent trap with two isolation valuesImage: Descent trap with

The Innovation Is Integration

The Armstrong TVS makes what used to be long, complicated steam installation stories simple and compact. It shortens installations by integrating components—specifically an inverted bucket steam trap with two or more valves.

For example, here's an old description for a typical installation: *valve-nipple-strainer-nipple-trap-nipple-valve*. It's a long tale, even for this simple piping arrangement. The Trap Valve Station rewrites

this steam story: *pipe-TVS-pipe*. In other words, the TVS makes it all one, delivering the functions of multiple components in a dramatically smaller unit. It integrates two high-value products in a package of revolutionary versatility.

Look above to see how the Armstrong cast iron Trap Valve Station has rewritten these typical steam installations.

Average Service Life for Different Trap Types 200 psi (14 bar)

Above data from *ICI Engineer* January 1993 special issue with permission from ICI Engineering.

3⁰°

SECTION

TVS 800 Series Trap Valve Station

Cast Iron for Horizontal Installation, With Integral Piston Valves For Pressures to 250 psig (17 bar)...Capacities to 4,400 lb/hr (2,000 kg/hr)

Series TVS 812/813

Same principle. Different package. Now the energy-saving performance and reliability of the inverted bucket steam trap are available in a versatile new package.

You'll still enjoy all the familiar benefits. And the same efficient condensate drainage from virtually every kind of steam-using equipment. But what you'll find new are all the benefits of a piston valve integrated into the same space-saving package.

Maximum Operating Conditions

Model TVS 811

Maximum allowable pressure (vessel design):

250 psig @ 450°F (17 bar @ 232°C) Maximum operating pressure: 250 psig (17 bar)

Connections

Screwed NPT and BSPT

Materials

Cap and body: Internals: Valve and seat: Handwheel: Internals: Valve sealing rings: Blowdown valve

ASTM A48 Class 30 All stainless steel-304 Hardened chrome steel-17-4PH Ductile iron Stainless steel Graphite and stainless steel Stainless steel

Options

- Stainless steel internal check valve
- · Thermic vent bucket • Stainless steel pop drain
- Integral strainer
- Scrub wire
- · Probe connection
- · Blowdown valve (TVS 811 and TVS 812 only)

Specification

Inverted bucket steam trap, type ... in cast iron, with continuous air venting at steam temperature, free-floating stainless steel mechanism, and discharge orifice at the top of the trap. Integral upstream and downstream shutoff piston style valves in same dimensional space as standard bucket trap.

F

Series TVS 811/812/813 - Top View

How to Order

Specify: Model number

- · Size and type of pipe connection
- · Maximum working pressure that will be encountered or orifice size
- Any options required

For a fully detailed certified drawing, refer to: **TVS 811** CD #1099 TVS 812/813 CD #1100

TVS 800 Series Trap Valve Station						
Model No.	TVS	811	TVS	812	TVS 813	
Dina Connectiona	in	mm	in	mm	in	mm
	1/2, 3/4	15, 20	1/2, 3/4	15, 20	3/4, 1	20, 25
Test Plug	1/4	6	1/2	15	3/4	20
"A" Width Across Handwheels	8-1/4	210	13-3/4	349	15-1/8	384
"B" Outlet Valve Open	10-1/4	260	11-3/4	298	14-1/4	362
"C" Face to Face	5	127	6-1/2	165	7-3/4	197
"D" Connection 🕼 to Bottom	3-11/16	94	4-3/4	121	7-1/4	184
"E"	7-5/8	194	13	330	14-3/8	365
"F"	3	76	4-1/2	114	4-7/8	124
Number of Bolts	6	6	6	6	6	6
Weight Ib (kg)	12 (5.4)	25 (1	1.3)	47	(24)

TVS 800 Series Trap Valve Station

Cast Iron for Horizontal Installation, With Integral Piston Valves For Pressures to 250 psig (17 bar)...Capacities to 4,400 lb/hr (2,000 kg/hr)

Options

Internal Check Valves are spring-loaded stainless steel and screw directly into the trap inlet or into an extended inlet tube having a pipe coupling at the top to save fittings, labor and money.

Thermic Vent Buckets have a bimetal controlled auxiliary air vent for discharging large amounts of air on start-up.

Integral Strainer is made from 20 x 20 stainless steel screen.

Probe Connections are available for trap monitoring.

Blowdown Valve for clearing strainers of dirt and debris.

Check Valve

TVS 4000 Series Stainless Steel Trap Valve Station

The Piston Valve

Armstrong Steam Distribution Manifolds (MSD/SMSD) and TVS 4000 Trap Valve Stations incorporate advanced piston sealing technology for safer, longer lasting steam isolation service.

Open Position

- **Dual sealing action.** The piston valve is a seatless valve that includes two graphite and stainless steel valve sealing rings that seal the stem and function as a seat. This combination provides long-term protection against leaks to the atmosphere and downstream piping.
- Self-cleaning action. Stainless steel piston slides without rotating between the two valve sealing rings, preventing dirt from damaging the surfaces.
- Sealing integrity. Flexible disc springs automatically provide leak tightness by exerting pressure, which keeps the upper and lower valve sealing rings compressed at all times. Sealing tightness is ensured by the compression of the sealing rings against the piston

Closed Position

and valve body. This combination of disc springs and dual valve seal rings protects against expansion and contraction due to heating and cooling. This ensures dependable operation, even after years of service.

- **Protected valve stem.** The valve stem and sealing surfaces are completely protected from dirt and corrosion by the stem cap, whether in an open or closed position.
- In-line repairability. All sealing valve components may be easily replaced in-line.
- Long-term operation. Piston valve design ensures actuation even after many years without operation.

TVS 4000 Series Stainless Steel Trap Valve Station

Description

Same principle. Different package with two piston-style isolation valves, test valve and integral stainless steel strainer with blowdown valve. What you'll find new are all the benefits of a piston valve integrated into the same space-saving package.

Maximum Operating Conditions

Maximum allowable pressure: 650 psig @ 600°F (45 bar @ 315°C)

Materials—TVS 4000 Connector

Connector: Strainer screen: Test valve: Blowdown valve: ASTM A351 Gr. CF8M Stainless steel Stainless steel

Stainless steel

Stainless steel

Isolation Valve Components

All wetted parts: Valve sealing rings: Handwheel:

: Graphite and stainless steel Ductile iron

Features

• Reduced costs. TVS saves on these fronts: reduced leak points, installation and maintenance time.

- A full range of features. TVS has test and strainer blowdown valves. When installed with Armstrong Model 2011 and 2022 steam traps, it will also accommodate the Armstrong pop drain as well as TrapAlert[™] and SteamEye[®]—remote steam trap monitoring and testing devices.
- Reduced design time. Permits combining products with exact face-to-face dimensions.
- Three-year guarantee. The TVS 4000 is guaranteed for three years.
- Easy, in-line repairability with maximum safety. TVS allows isolation at point of service with upstream/downstream depressurization.
- Installation versatility. The connector design makes the TVS adaptable to any manufacturer's 2-bolt steam trap and piping configuration.
- Simplified trap testing. TVS enhances your capability to check trap operation and offers a built-in method to block and bleed traps.

Weight 6-1/2 lb (2.9 kg)

How to Order

Model	Connection	Type of Connection Inlet/Outlet	Flow Direction	Trap Type
TVS 4000	1/2" 3/4"	NPT SW BSPT Flanged*	R = Right to Left L = Left to Right	Inverted Bucket Disc Thermostatic wafer Bimetallic Float and Thermostatic

*Consult factory.

TVS 4000 Series Stainless Steel Trap Valve Station

For Pressures to 650 psig (45 bar)...Capacities to 1,300 lb/hr (590 kg/hr) (Using 2000 Series Inverted Bucket Steam Traps)

Model TVS 4000 With 2000 Series SS Trap Front View Model TVS 4000 With 2000 Series SS Trap Side View

Same principle. Different package with two piston-style isolation valves, test valve and integral stainless steel strainer with blowdown valve. Now the energy-saving performance and reliability of the inverted bucket steam trap are available in a versatile new package. You'll still enjoy all the familiar benefits. And the same efficient condensate drainage from virtually every kind of steam-using equipment. What you'll find new are all the benefits of a piston valve integrated into the same space-saving package.

Materials—TVS 4000 Connector

Connector: Strainer screen: Screen retainer: Gasket: Retainer unit: Test valve: Blowdown valve: ASTM A351 Gr. CF8M Stainless steel Stainless steel Stainless steel Stainless steel Stainless steel Stainless steel

Model TVS 4000 With 2000 Series SS Trap Bottom View

Strainer Blowdown Valve

Isolation Valve Components

Handwheel: Nut: Stem, washers: Bonnet: Bonnet, bolts: Valve plug: Disc springs: Valve sealing rings: Lantern bushing: Valve washers: Ductile iron Stainless steel ASTM A351 Gr. CF8M DIN 933, Gr. 8.8 per DIN 267 Stainless steel Graphite and stainless steel Stainless steel Stainless steel Stainless steel

evaluate trap operation

Materials—Series 2000 Traps

Body: Internals: Valve and seat: ASTM A240 Gr. 304L All stainless steel—304 Hardened chrome steel—17-4PH

For a fully detailed certified drawing, refer to CD #1232.

Model No.	20	10	20	11	2022	
Dine Connections	in	mm	in	mm	in	mm
Pipe Connections	1/2, 3/4	15, 20	1/2, 3/4	15, 20	1/2, 3/4	15, 20
"A" Trap Diameter	2-11/16	68	2-11/16	68	3-7/8	98
"B" Height (Valve Open)	8	203	10-1/2	268	12-1/2	318
"C" Face to Face	4-3/4	120	4-3/4	120	4-3/4	120
"D" Connection © to Bottom	4-3/4	120	6	154	8	203
"E" Connection 🕻 to Outside of Trap	4-1/2	114	4-13/16	122	5-7/8	149
"F" Connection 🕼 to Front of Handwheel (Valve Open)	3-1/2	89	3-7/8	98	3-7/8	98
"G" Connection @ to Top of Handwheel (Valve Open)	3-1/4	83	4-1/2	114	4-1/2	114
"H" Connection @ to Bottom of Connector	1-7/8	47	3-1/4	83	3-1/4	83
"J" Width Across Handwheels (Valve Open)	9-1/4	235	8-3/4	222	8-3/4	222
Test Port Connection	1/4 NPT	6	1/4 NPT	6	1/4 NPT	6
Weight Ib (kg)	9	4	9-1/2	4.3	12	5.4
Maximum Operating Pressure (Trap)	200 psi	(14 bar)	400 psi	(28 bar)	650 psig (45 bar)	
Maximum Allowable Pressure (Trap)	40	10 psi (28 bar)	@ 750°F (399°	C)	650 psig (45 bar (@ 600°F @ 315°C)

U.S. Patent 6,467,503

1

TVS 4000 Series Stainless Steel Trap Valve Station

For Pressures to 650 psig (45 bar)...Capacities to 1,300 lb/hr (590 kg/hr) (Using 2000 Series Inverted Bucket Steam Traps)

*NOTE: Because the orifice is located at the top, inverted bucket steam traps handle dirt and scale better than other types of traps. However, in applications where extremely dirty conditions exist, care should be exercised in the use of all types of restricted-orifice, reduced-capacity traps.

Options

Insu-Pak™ Now you can insulate the in-line traps in your plant without complicating regular trap maintenance. Insu-Pak, a simple reusable insulation package, cuts the time and cost of in-field installation because it goes on in a snap. And it comes off just as easily. The Insu-Pak can prevent trap freeze-up when used with a properly designed condensate manifold. Designed for use with Model 2010 and Model 2011 traps.

Pop Drain

Simple but effective against freeze-up. Properly installed and maintained at low points in your system, the simple, pressure-actuated pop drain opens for condensate drainage at 5 psig (0.35 bar) for Models 2011 and 2022.

Probe Connections are available for trap monitoring on Models 2011 and 2022.

How to Order

🗍 🔶 Pop Drain

Model	Connection	Type of Connection Inlet/Outlet	Flow Direction	Тгар Туре
TVS 4000	1/2" 3/4"	NPT SW BSPT Flanged*	R = Right to Left L = Left to Right	Inverted Bucket Disc Thermostatic wafer Bimetallic Float and Thermostatic

*Consult factory

TVS 5000 Trap Valve Station

Description

Armstrong's TVS 5000 is designed as a one piece body equipped with a piston valve(s) combined with a removable steam trap mounted with a connecting flange.

Maximum Operating Conditions

Maximum allowable pressure: 650 psig @ 600°F (45 bar @ 315°C)

Materials—TVS 5000 Connector

Connector: ASTM A350 LF2 Test valve: ASTM A582 T303 Blowdown valve: ASTM A582 T303

Isolation Valve Components

Graphite and stainless steel ASTM A350 LF2 Valve sealing rings: Bonnet: Bolts: DIN 933 Valve plug: ASTM A564 ASTM A582 T304 Lantern bushings: Valve washer: ASTM A582 T304 Disc springs: AISI T301 Nut: AISI T304 Ductile iron A536 Handwheel:

Weight 11.71 lb (5.3 kg)

Features

- Reduced costs. TVS saves on these fronts: reduced leak points, installation and maintenance time.
- Reduced design time. Permits combining products with exact face-to-face dimensions.
- Easy, in-line repairability with maximum safety. TVS allows isolation at point of service with upstream/downstream depressurization.
- Simplified trap testing. TVS enhances your capability to check trap operation and offers a built-in method to block and bleed traps.

How to Order

Model	Connection	Type of Connection Inlet/Outlet	Flow Direction	Trap Type
TVS 5000	1/2"	NPT	R = Right to Left	Inverted Bucket
	3/4"	SW	L = Left to Right	Disc
		BSPT		Thermostatic wafer
		Flanged*		Bimetallic
				Float and Thermostatic

*Consult factory.

CD-33/CD-33S Disc Trap

Durable

Hardened stainless steel integral seat and disc for long operating life.

Adapts to outdoors

Optional rain guard insulating cap available to prevent excessive radiant heat loss in outside applications.

Extended life Three discharge port design offers stable disc operation to extend trap operating life.

> NPT Available in 1/2", 3/4", 1" NPT only.

Screen included CD-33S includes an integral 30 x 30 mesh T-304 stainless steel screen.

Corrosion resistance Tough electroless nickelplated stainless steel body resists corrosion.

Blowdown choice

32

Blowdown plug standard. Blowdown valve available as an option.

CD-33/CD-33S Disc Trap

The Armstrong CD-33 is a disc style trap designed to control the trap's cycle rate. By reducing the cycle rate, the Armstrong CD-33 will have a longer service life than typical disc traps. This enhanced performance will ensure that maintenance time is minimized and steam costs are greatly reduced.

The CD-33 is designed with three discharge ports, which offer stable disc operation to extend trap operating life. The capacities of the Armstrong CD-33 have been engineered specifically for the following applications: large steam main drips, process equipment, and HVAC heating equipment on constant pressure. The CD-33L (low capacity) trap is designed for the low capacity applications of steam main drips and steam tracing lines. By ensuring that the capacities are designed to suit the application, and are not oversized, the CD-33 Series will last longer than other disc traps with excessive capacity ratings.

Advantages

- Three discharge port design
- · Minimum wear with controlled cycling
- Freeze-resistant
- Hardened seat and disc

Specification

Steam trap shall be stainless steel thermodynamic type, integral seat design with hardened disc and seating surfaces, and electroless nickel plated finish. When required, trap shall be supplied with an integral Y strainer, integral blowdown valve or rain guard insulating cap. Maximum allowable pressure (vessel design) shall be 915 psig @ 752°F (63 bar @ 400°C). Maximum operating pressure shall be 600 psig @ 752°F (42 bar @ 400°C).

CD-33 Series Disc Trap

For Steam Service up to 600 psig (42 bar)...Capacities to 2,500 lb/hr (1,134 kg/hr)

The Armstrong CD-33 is a disc style trap designed to control the trap's cycle rate. By reducing the cycle rate, the Armstrong CD-33 will have a longer service life than typical disc traps. This enhanced performance will ensure that maintenance time is minimized and steam costs are greatly reduced.

The CD-33 is designed with three discharge ports, which offer stable disc operation to extend trap operating life. The capacities of the Armstrong CD-33 have been engineered specifically for the following applications: large steam main drips, process equipment, and HVAC heating equipment on constant pressure. The CD-33L (low capacity 1/2" and 3/4" only) trap is designed for the low capacity applications of steam main drips and steam tracing lines. By ensuring that the capacities are designed to suit the application, and are not oversized, the CD-33 Series will last longer than other disc traps with excessive capacity ratings.

Advantages

- Three discharge port design
- Minimum wear with controlled cycling
- Freeze-resistantHardened seat and disc

Specification

Steam trap shall be stainless steel thermodynamic type, integral seat design with hardened disc and seating surfaces, and electroless nickel plated finish. When required, trap shall be supplied with an integral Y strainer, integral blowdown valve or rain guard insulating cap. Maximum allowable pressure (vessel design) shall be 915 psig @ 752°F (63 bar @ 400°C). Maximum operating pressure shall be 600 psig @ 752°F (41 bar @ 400°C).

For a fully detailed certified drawing, refer to: CD-33/33L CD #1116 CD-33S/33SL CD #1250

CD-33 Series Disc Tran

CD-33		CD-33S (w/strainer)			CD-33L (low capacity)		CD-33SL (w/strainer) (low capacity)				
in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
1/2, 3/4	15, 20	1	25	1/2, 3/4	15, 20	1	25	3/8, 1/2, 3/4	10, 15, 20	1/2, 3/4	15, 20
1-7/16	37	1-3/4	44	1-7/16	37	1-3/4	44	1-7/16	36	1-7/16	36
2-1/2	63	3-1/8	79	4-1/4	108	4-3/4	121	2-1/2	63	4-1/4	108
3-5/16	84	3-15/16	100	3-1/2	89	4-1/8	105	3-5/16	84	3-1/2	89
1-3/4	44	2-1/4	57	1-3/4	44	2-1/4	57	1-3/4	44	1-3/4	44
-	-	-	-	3	76	3	76	-	-	3	76
-	-	-	-	1/4 NPT	6	1/4 NPT	6	-	-	1/4 NPT	6
-	-	-	-	3-1/2	89	3-1/2	89	-	-	3-1/2	89
1.4 (0).64)	2.5 (1	.1)	2.2 (*	1.0)	3.25 (1	.5)	1.41 ((0.64)	2.2 (*	1.0)
915 psig @ 752°F (63 bar @ 400°C)											
3.5 psig (0.24 bar)											
600 psig @ 486°F (41 bar @ 252°C)											
	in 1/2, 3/4 1-7/16 2-1/2 3-5/16 1-3/4 - - - 1.4 (0	in mm 1/2, 3/4 15, 20 1-7/16 37 2-1/2 63 3-5/16 84 1-3/4 44 - - - - - - 1.4 (0.64) -	in mm in 1/2, 3/4 15, 20 1 1-7/16 37 1-3/4 2-1/2 63 3-1/8 3-5/16 84 3-15/16 1-3/4 44 2-1/4 - - - - - - - - - 1.4 (0.64) 2.5 (1	in mm in mm 1/2, 3/4 15, 20 1 25 1-7/16 37 1-3/4 44 2-1/2 63 3-1/8 79 3-5/16 84 3-15/16 100 1-3/4 44 2-1/4 57 - - - - - - - - - - - - - - - - - - - - 1.4 (0.64) 2.5 (1.1) -	cD-33 cD-33 in mm in mm 1/2, 3/4 15, 20 1 25 1/2, 3/4 1-7/16 37 1-3/4 44 1-7/16 2-1/2 63 3-1/8 79 4-1/4 3-5/16 84 3-15/16 100 3-1/2 1-3/4 44 2-1/4 57 1-3/4 - - - 3 3 - - - 3 3 - - - 3 3 - - - 3 3 - - - 3 3 - - - 3 3 - - - 3 3 - - - 3 3 - - - 3 3 - - - 3 3 - - - 3	CD-33 CD-33S (w in mm in mm 1/2, 3/4 15, 20 1 25 1/2, 3/4 15, 20 1-7/16 37 1-3/4 44 1-7/16 37 2-1/2 63 3-1/8 79 4-1/4 108 3-5/16 84 3-15/16 100 3-1/2 89 1-3/4 44 2-1/4 57 1-3/4 44 - - - 3 76 - - - 1/4 NPT 6 - - - 3-1/2 89 1.4 (0.64) 2.5 (1.1) 2.2 (1.0) 915 psig @ 1.4 (0.64) 2.5 (1.1) 2.5 (50 psig @ 3.5	CD-33 CD-33S (w/strainer) in mm in mm in 1/2, 3/4 15, 20 1 25 1/2, 3/4 15, 20 1 1-7/16 37 1-3/4 44 1-7/16 37 1-3/4 2-1/2 63 3-1/8 79 4-1/4 108 4-3/4 3-5/16 84 3-15/16 100 3-1/2 89 4-1/8 1-3/4 44 2-1/4 57 1-3/4 44 2-1/4 - - - 3 76 3 - - - 3-1/2 89 3-1/2 - - - 3 76 3 - - - 3-1/2 89 3-1/2 - - - 3-1/2 89 3-1/2 - - - 3-1/2 89 3-1/2 1.4 (0.64) 2.5 (1.1) 2.2 (1.0) 3.25 (1.2) 3.5 psig (0	CD-33 CD-33S (w/strainer) in mm in mm in mm 1/2, 3/4 15, 20 1 25 1/2, 3/4 15, 20 1 25 1-7/16 37 1-3/4 44 1-7/16 37 1-3/4 44 2-1/2 63 3-1/8 79 4-1/4 108 4-3/4 121 3-5/16 84 3-15/16 100 3-1/2 89 4-1/8 105 1-3/4 44 2-1/4 57 1-3/4 44 2-1/4 57 - - - 3 76 3 76 1-3/4 44 2-1/4 57 1-3/4 44 2-1/4 57 - - - - 3 76 3 76 - - - - 3 1/4 NPT 6 - - - 3 1/2 89 3-1/2 89	CD-33 CD-33S (w/strainer) CD-33L (low in mm in in	CD-33 CD-33S (w/strainer) CD-33L (low capacity) in mm in mm in mm in mm in mm 1/2, 3/4 15, 20 1 25 1/2, 3/4 15, 20 1 25 3/8, 1/2, 3/4 10, 15, 20 1-7/16 37 1-3/4 44 1-7/16 37 1-3/4 44 1-7/16 36 2-1/2 63 3-1/8 79 4-1/4 108 4-3/4 121 2-1/2 63 3-5/16 84 3-15/16 100 3-1/2 89 4-1/8 105 3-5/16 84 1-3/4 44 2-1/4 57 1-3/4 44 2-1/4 57 1-3/4 44 - - - 3 76 3 76 - - - - - 1/4 NPT 6 1/4 NPT 6 - - - - -	CD-33 CD-33S (w/strainer) CD-33L (low capacity) for strainer in the inequality of the inequality o

Maximum Back Pressure as Percent of Inlet Pressure, 80%

List of Materials	
Name of Part	Material
Body	ASTM A743 Gr. CA40
Сар	ASTM A743 Gr. CA40
Disc	ASTM A276 Gr. 420
Strainer Screen	30 x 30 Mesh T-304 Stainless Steel
Screen Retainer	ASTM A743 Gr. CA40
Blowdown Plug (CD-33S only)	Carbon Steel
Options	
Blowdown Valve	Stainless Steel
Rain Guard Insulating Cap (1/2'', 3/4'' Sizes Only)	Stainless Steel

CD-3300 Series Disc Steam Traps

All Stainless With 360° Connector

For Steam Pressures to 450 psig (31 bar)...Capacities to 800 lb/hr (363 kg/hr)

CD-3300 With TVS 4000 Trap Valve Station

CD-3300 With IS-2 Connector With Integral Strainer and Blowdown Valve

CD-3300 With Standard Connector

The Armstrong CD-3300 is a three discharge port design, which provides stable disc operation to extend operating life.

The CD-3300 is piped in-line by a 360° universal connector, which allows you to install the trap in virtually any piping configuration. Armstrong's unique standard connector or its IS-2 connector with integral strainer makes the CD-3300 easy to install, easy to renew. You save on labor time and cost because the connector simplifies piping and remains in-line.

Materials

rap cap:
rap disc:
rap body:
Standard connector:
S-2 connector with
ntegral strainer:

ASTM A743 CA40 ASTM A276 Gr. 420 ASTM A276 Gr. 420 Stainless steel—304

ASTM A351 Gr. CF8 20 x 20 mesh 304 SS Screen

Options

Rain guard insulating cap Blowdown valve—IS-2 connector only

For a fully detailed certified drawing, refer to CD #1164.

CD-3300 Series Disc Traps

	CD-3300								
Model	Standard	Connector	IS-2	Connector Wi	TVS 4000 Connector				
	in	mm	in	mm	in	mm	in	mm	
Pipe Connections	1/2, 3/4	15, 20	1/2, 3/4	15, 20	1	25	1/2, 3/4	15, 20	
"A" Trap Diameter	1-1/2	38	1-1/2	38	1-1/2	38	1-1/2	38	
"B" Total Height	2-7/8	73	3-3/4	94	3-3/4	94	7-13/16	198	
"C" Face-to-Face	2-3/8	60	3-1/2	89	4	101	4-3/4	120	
"D" Connection 🕻 to Bottom	1-3/8	35	2-5/8	67	2-5/8	67	3-1/4	83	
"E" Connection @ to Outside of Trap	3-3/8	86	3-3/8	86	3-9/16	90	3-9/16	90	
"F" Connection 🕻 to Front of Connector	13/16	20	7/8	22	7/8	22	3-7/8	98	
"G" Connection 🕻 to Top	1-3/8	46	1	25	1	25	4-1/2	114	
"H" Connection 🕻 to Bottom of Connector	1-3/8	46	2-1/2	64	2-1/2	64	3-1/4	83	
"J" Width Across Handwheels (Valve Open)	—	—	—	—	_	_	8-11/16	221	
Test Port Connection	—	—	—	—	_	_	1/4 NPT	6	
Trap Only Weight, Ib (kg)	2 (0.91)								
Trap and Connector Weight, lb (kg)	3.6	1.6	3.9	1.8	4.2	2	8-1/2	3.8	
Maximum Operating Pressure	450 psig @ 456°F (31 bar @ 236°C)								
Maximum Allowable Pressure (Vessel Design)			72	20 psig @ 750°	°F (50 bar @ 4	(0°C)			

G

н

Condensate Management

SECTION

2

Pumping Traps

Inside Advantages

Mechanical condensate pumps operate with a spring-assisted float mechanism, which means the springs themselves are a major wear point. Armstrong pumping traps have large-diameter Inconel X-750 springs, which provide superior corrosion resistance and longer service life than those in competitive models. For other inside advantages, see below. Notice the difference in spring design from the industry standard spring set (left) and the Armstrong Inconel spring set.

Non-electric

Utilizes inexpensive steam, air or gas for operation and has no seals, motors, impellers or electric components, which frequently fail. Externally replaceable valve and seat assembly Maintenance is a "snap" with hardened stainless steel valves that can be cleaned or replaced without cap removal.

> Intrinsically safe due to all-stainless steel construction of mechanism.

Long life and dependable service

Simple float/ spring operation and rugged all-stainless steel construction allow for long, trouble-free service life.

Compact, low-profile design

Low-profile design allows for maximum pump capacity with minimal fill head and floor space requirements. PT-300 Series horizontal tank design provides the highest capacity with the lowest profile on the market.

Wear and corrosion resistance

Mechanism frame assembly is constructed of rugged investment-cast stainless steel components.

Stress chloride corrosion resistance

Inconel X-750 springs have higher resistance to the stress that causes lower-grade stainless steel springs to fail.

Corrosion resistance

Entire float mechanism is stainless steel. Float is Heliarc welded to avoid the introduction of dissimilar metals, which could lead to galvanic corrosion and float failure.

Effective Condensate Management = Energy Savings

The most basic part of energy management is utilizing all valuable Btu within the steam system. Depending on the pressure, condensate exiting a trap contains approximately 20% of the heat energy transferred at the boiler in the form of sensible heat. Effective recovery of condensate reduces three tangible costs of producing steam:

These savings can be calculated using the attached savings form. Returning condensate saves money, energy and the environment. Pour money and energy savings back into your plant-not down the drain.

- · Fuel/energy costs associated with producing steam
- · Boiler water make-up and sewage treatment
- · Boiler water chemical treatment

Condensate Recovery Savings Analysis Location

Energy costs will vary from plant to plant and regions of the world. Values shown are conservative. Complete this form using your facilities' numbers to determine annual savings in your plant by returning condensate. If some costs are not known, use the figures below for conservative estimates. F) Annual Water Savings..... = \$ 34,532.00 A) Condensate Load= 8,000 lb/hr

- B) Annual Hours of Operation= 7,200 hrs per year
- C) Total Water and Sewage Cost.....= \$.005 per gal
- c1) Untreated water and sewage= \$.002 per gal
- c2) Water treatment chemicals.....= \$.003 per gal
- D) Make-Up Water Preheating Requirements = 140 Btu/lb
- d1) Condensate Return Temperature.....= 200°F
- d2) Make-Up Water Temperature = 60°F
- E) Steam Cost= \$ 5.00/1,000 lb

(A)8000 x (B)7200 x (C).005 8.34 lb/gal

Bldg

G) Savings for Preheating Make-Up Water = \$ 40,320.00 (A)8000 x (B)7200 x (D)140 x (E)5.00 *1000 x 1000

H) Cost of Steam to Operate+ Armstrong Pump Trap = \$ 864.00 3 x (A)8000 x (B)7200 x (E)5.00 1000 x 1000

I) Total Dollars Saved Annually (F + G - H) = \$ 73,988.00

- J) Payback Period in Years = .27 Years ** (cost of equipment/installation) \$20,000 (I) 73,988
- Btu/lb from direct steam injection
- Estimated equipment and installation cost
- Cost to operate in example assumes an "open" vented system. If pump trap is † used in "closed loop" application, steam operation cost is negligible

Pumping Trap Operation

Filling

1. During filling, the steam, air or inert gas inlet and check valve on pumping trap outlet are closed. The vent and check valve on the inlet are open.

Begin Pumping 2. Float rises with level of condensate until it passes trip point, and then snap action reverses the internal valve positions shown in step one.

End Pumping 3. Float is lowered as level of condensate falls until snap action again reverses the internal valve positions.

Repeat Filling 4. Steam, air or inert gas inlet and trap outlet are again closed while vent and condensate inlet are open. Cycle begins anew.

Pumping Trap ID Charts

Illustration	Туре	Connection Type	Max. Allow. Press.	TMA °F	Body Material	Mechanism Material	Model	Max. Oper. Press.	Capacity Range		Connect	tion	Size	Located on Page		
	-		psig					psig	ib/nr	1"	1-1/2"	2"	3" x 2"			
	Series PT-100	Screwed	150	450	ASTM A48 Class 30 Cast Iron	Stainless Steel with Inconel X-750 Spring	PT-104	100	1,800	•				204		
	Series PT-200	Screwed	150	450	ASTM A48 Class 30 Cast Iron	Stainless Steel with Inconel X-750 Spring	PT-204 PT-206	125	2,400 3,700	•	•			206		
•	Series PT-400	**Screwed	150	*650	**Fabricated Steel 150 psi	Stainless Steel with	PT-404 PT-406	105	3,600 5,500	•	•			208		
	Series PT-400LL	**150# ANSI Flanged	150	000	VIII Design "U" Stamped	d Spring	PT-408 PT-412	125	7,400 12,200			•	•	219		
	Series PT-3500	Screwed	150	450	ASTM A48 Class 30 Cast Iron	Stainless Steel with Inconel X-750 Spring	PT-3508 PT-3512	125	9,900			•	•	210		
	Series	Scrowod		*650					,					010		
ر کے	PT-300	Screweu		000	**Fabricated	Stainless	PT-308		11,600			•		212		
	Series PT-300LL	**150# ANSI Flanged **300# ANSI Flanged	150	550	Steel 150 psi ASME Sec. VIII Design "U" Stamped	Steel with Inconel X-750 Spring	PT-312	125	16,600				•	219		
	Series PT-500	**150# ANSI Flanged	150	500	**Fabricated Steel 150 psi ASME Sec. VIII Design "U" Stamped	Stainless Steel with Inconel X-750 Spring	PT-516	150	80,000		4" :	x 4"		216		
	Double Duty® 4	Screwed	72	320	Ductile Iron	Stainless Steel	Simplex Duplex	72	up to 350		1":	x 1"		220		
	Double Duty® 6	**150# ANSI	200	400	Carbon Steel	Carbon Steel	Carbon Steel	Stainless Steel with	Simplex Duplex	200	up to 4,800		1-1/2	2" x 1	II	222
	Double Duty® 12	Flanged				X-750 Spring	Triplex Quadplex		up to 19,900		3" :	x 3"		224		
	Series 100, 200, 300, 3500 Low Boy™ Packages	Fo	For detailed information, regarding Armstrong pre-piped pump packages, please contact the factory or visit our website at armstrong international.com													

**Other connection type, receiver pressure vessel ratings and material type available upon request—consult factory.

*Standard mechanism: Maximim motive 125 psi; maximum allowable pressure 150 psi (vessel rating); maximum temperature 480°F (vessel rating).

Pumping Trap ID Charts

Electric Centrifugal Co	ndensate Pum	p ID Chart								
Illustration	Туре	Sq. Ft. EDR	Pump Capacity GPM	Pump Disch. Press.	Motor HP	RPM	Disch. Size Inches	Inlet Size Inches	Receiver Cap. Gallons	Locate Page for Sizing
	FHS Series									
	FHC Series	8,000 thru	12 thru 30	Max. 20	Simplex 1/3, 1/2, 3/4	3,500 RPM Only	3/4"	2" thru	FHS Series 8 - 30 (Steel)	234
	Simplex or Duplex	20,000		psig	Duplex 1/2 or 3/4	Single Phase Only		3"	FHC Series 15 - 36 (Cast Iron)	
	AFH-4100 4200 4300 3500 Simplex or Duplex	2,000 thru 50,000	*3 thru 75	*20 thru 50	*1/3 thru 5	1,750 and 3,500 Single or Three Phase	3/4" thru 1-1/2"	2" thru 4"	AFH-4100/4300 8 - 120 (Steel/SS) AFH-4200 6 - 120 (Cast Iron)	237 thru 246
	AFH-4400 Simplex or Duplex	4,000 thru 60,000	6 thru 90	*10 thru 50	1/3 thru 1-1/2"	3500 RPM	3/4" thru 1-1/2"	2" thru 2-1/2"	12 - 100	247
Boiler Feed Condensat	e Pump ID Cha	art				1				
Illustration	Туре	Boiler HP BHP	Pump Capacity GPM	Pump Disch. Press.	Motor HP	RPM	Disch. Size Inches	Inlet Size Inches	Receiver Cap. Gallons	Locate Page for Sizing
	AFH-4100 4200 4300 **3500 5000	15 to 700	*3 to 140	*20 to 50	1/3 to 7-1/2	1,750 and 3,500 Single or Three Phase	Consult	Factory	30 to 714	242
Rescue Cap® Non-Elect	tric Steam/Air	Powered Pum	p Retrofit As	sembly ll	D Chart					
Illustration			Fits Com	petitors'	Mechanical Pu	mps Listed Be	elow			Page
s s	Spirax Sarco Models PPC & PPF PTC & PTF	Watson McDa Models PMPC & PN	niel Spend Nicho IP Conde Comma	ce & Ison nsate anders	KADANT- Johnson Corporation	ITT Hoffmar PCS	n Yarway 65 St	Series teel Clark Reliance		232
Flash Tank ID Chart				1						
	Туре	Con	nections	Size	Pressure	Rating	Sparge	Pipe	Body Material	Page
	VAFI Vertical Flash Tanks	F	NPT anged	6" 8" 12" 16"			N/A		Outbox Ot 1	253
	HAFT Horizontal Flash Tanks	FI	NPT anged	4" thru 30"	150	n hzið			Garbon Steel	255

*Other capacities, discharge pressures and HP available - consult factory. **3500 Series has elevated tank as standard. ***Other pressure ratings available upon request.

PT-104 Series Mini Pump Trap

PT-104 Mini Pump Trap Physical Data

Symbol	in	mm			
"A"	12	305			
"B"	18-1/2	470			
"C"	13-1/2	343			
"D"	10-3/4	272			
"F"	5-1/2	140			
"G"	1-5/16	33			
"H"	12-1/2	317			
"U"	1-1/4	32			
"V"	3/8	9			
"Т"	10-1/16	256			
Weight Ib (kg)	140 (64)				
Bronze Check Valves Ib (kg)	4 (2)				
Stainless Steel Check Valve Ib (kg)					
Maximum Operating Pressure	100 psig (7 bar)				
Maximum Allowable Pressure (vessel design)	150 psig @ 450°F	(10 bar @ 232°C)			

PT-104 Mini Pump Trap Connection Sizes								
Connection	Туре	in	mm					
Inlet		1	25					
Outlet		1	25					
Vent	NDT	1/2	15					
Motive Pressure	INPI	1/2	15					
Optional Gauge Glass		1	25					
Optional Cycle Counter/Pressure Gauge]	1	25					

The patented Armstrong PT-104 Mini Pump Trap is the smallest non-electric solution that can move condensate or other liquids from lower to higher points and from lower to higher pressures. Condensate can be returned at temperatures well above the 200°F (93°C) limit of conventional electric centrifugal pumps without the headaches of leaking seals or cavitation problems. The PT-104 Mini Pump Trap is the small solution for a big problem.

Features

- Economical non-electric operation. Uses inexpensive steam, air or inert gas.
- Low-maintenance operation. No leaking seals, impeller or motor problems means lower maintenance. No NPSH issues.
- Space-saving size. Low-profile body fits in tight spaces while allowing minimal fill head.
- Lower installation costs. Single trade required for installation and maintenance.
- · Peace of mind. Standard unit is intrinsically safe.
- Cast iron durability. Rugged construction material means long service life.
- Corrosion resistance. Internals are all stainless steel for corrosion resistance and long life.
- Heavy-duty springs. Springs are made from long-lasting Inconel X-750.
- Efficiency. A closed loop means no motive or flash steam is lost. All valuable Btu's are captured and returned to the system.
- Safety. The pump can be used in flooded pits without fear of electrocution or circuit breaker defaults.

For a fully detailed certified drawing, refer to CDF #1028.

PT-104 Mini Pump Trap Materials			
Name of Part	Material		
Body and Cap	Cast iron ASTM A48 CI.30		
Vent/Inlet Valves	Stainless steel		
Mechanism Assembly	Stainless steel		
Spring	Inconel X-750		
Gasket	Graphoil		
Bolts	SA 449		
Nuts	ASTM A194 Gr.2H		
Plug	Cast iron		

PT-104 Series Mini Pump Trap

Options

Use of external check valves required for operation of pumping trap.

- Inlet Swing Check Valve NPT Bronze ASTM B 62 Teflon[®] Disc Class 150 (Minimum)
- Outlet
- Stainless Steel Check Valve Class 150 (Minimum)
- In-line Check Valves
 Check Valves
- Stainless Steel Non-Slam Check Valves

 Bronze Gauge Glass Assembly
- · Bronze Gauge Glass Assemb
- Steel Gauge Glass Assembly
- Removable Insulation Jacket
- Digital Cycle Counter

Capacity Conversion Factors for Other Filling Heads									
Filling Head									
in	* 24 or greater								
mm	0	150	305	* 620 or greater					
PT-104 Mini Pump Trap	0.7	1.0	1.2	* Consult factory					

NOTE: Fill head measured from drain to top of cap. See figures on page 228.

PT-104 Mini Pump Trap Capacities									
Motive Pressure		Total Lift or		Filling Head 6" (152 mm) Liquid Specific Gravity .09 - 1.0					
		DACK FI	essure	Ste	am	Air			
psig	bar	psig	bar	lb/hr	kg/hr	lb/hr	kg/hr		
15	1.0			1,125	510	2,100	952		
25	1.7			1,300	590	2,200	998		
50	3.5	5	0.34	1,550	703	2,275	1,032		
75	5.0]		1,650	748	2,300	1,043		
100	7.0]		1,400	635	2,350	1,066		
25	1.7			650	295	1,900	862		
50	3.5	15	10	700	363	2,050	930		
75	5.0	10	1.0	750	317	2,100	952		
100	7.0]		800	340	2,150	975		
35	2.5			400	181	1,800	816		
50	3.5	0.5	15	450	204	1,935	878		
75	5.0	25	1.5	500	227	2,050	930		
100	7.0]		550	249	2,075	941		
50	3.5			250	113	1,620	735		
75	5.0	40	3.0	300	136	1,850	823		
100	7.0			350	159	1,950	884		

NOTE: Published capacities are based on the use of external check valves supplied by Armstrong. Fill head measured from drain point to top of pump case. See figures on page 228.

PT-200 Series Low Profile Cast Iron Pump Trap

The Armstrong PT-200 Series Low Profile Pump Trap is a low maintenance, non-electric solution to move condensate or other liquids from low points, low pressures or vacuum spaces to an area of higher elevation or pressure. Condensate can be returned well above the 200°F (93°C) limit of conventional electric condensate pumps without the headaches of leaking seals or cavitation problems.

Features

- Economical non-electric operation. Uses inexpensive steam, air or inert gas.
- Low-maintenance operation. No leaking seals, impeller or motor problems means lower maintenance. No NPSH issues.
- Space-saving size. Low-profile body fits in tight spaces while allowing minimal fill head.
- Lower installation costs. Single trade required for installation and maintenance.
- · Peace of mind. Standard unit is intrinsically safe.
- Cast iron durability. Rugged construction material means long service life.
- Corrosion resistance. Internals are all stainless steel for corrosion resistance and long life.
- Heavy-duty springs. Springs are made from long-lasting Inconel X-750.
- Efficiency. A closed loop means no motive or flash steam is lost. All valuable Btu's are captured and returned to the system.
- Safety. The pump can be used in flooded pits without fear of electrocution or circuit breaker defaults.
- Externally removable/replaceable seats. Seats can be replaced or cleaned without removing the mechanism assembly.

Options

Use of external check valves required for operation of pumping trap.

- Inlet Swing Check Valve
 NPT Bronze ASTM B 62
 - Teflon[®] Disc Class 150 (Minimum)
- Outlet
 - Stainless Steel Check Valve Class 150 (Minimum)
- In-line Check Valves
 Stainless Steel Non-Slam Check Valves
- Bronze Gauge Glass Assembly
- · Steel Gauge Glass Assembly
- Removable Insulation Jacket
- Digital Cycle Counter

For a fully detailed certified drawing, refer to CDF #1000.

PT-200 Pumping Trap Materials							
Name of Part	Series PT-200						
Body and Cap	Cast iron ASTM A48 CI. 30						
Cap Gasket	Graphoil						
Bolts	SA-449 Steel						
Nuts	Alloy steel ASTM A194 Gr. 2H						
Inlet Valve Assembly	Stainless steel						
Vent Valve Assembly	Stainless steel						
Valve Assembly Washers	Zinc plated steel						
Plug	Steel						
Mechanism Assembly	Stainless steel						
Springs	Inconel X-750						

PT-200 Pumping Trap Connection Sizes

	Cast Iron						
Model	PT-	204	PT-206				
	in	mm	in	mm			
Inlet Connection	1	25	1-1/2	40			
Outlet Connection	1	25	1-1/2	40			
Optional Low Inlet or Same Side Outlet Connection	1	25	1-1/2	40			
Motive Pressure Connection	1/2	15	1/2	15			
Vent Connection	1/2	15	1/2	15			
Gauge Glass Connection	1/2	15	1/2	15			

PT-200 Series Low Profile Cast Iron Pump Trap

1" or 1-1/2" NPT Optional Low Inlet or Same Side Outlet

PT-200 Pumping Trap Physical Data								
	PT-204 PT-206							
	in	mm						
"B"	20-7/16	519						
"C"	13-1/2	342						
"D"	12-15/16	328						
"H"	19	482						
"M"	11-35/64	293						
"P"	23/32	18						
"R"	2-1/32	51						
"S"	4-3/8	111						
"Т"	12	305						
"U"	2-1/4	57						
"V"	4-1/8	104						
"W"	1-1/8	28						
Weight Ib (kg)	210 (96)							
Number of Body/Cap Bolts	12							
Check Valve Conn. in (mm)	1 (25)	1-1/2 (40)						
Bronze Check Valves Ib (kg)	4 (2)	9 (4)						
Stainless Steel Check Valves Ib (kg)	4 (2)	9 (4)						

Maximum Allowable Pressure (Vessel Design) 150 psig @ 450°F (10 bar @ 232°C) Maximum Operating Pressure 125 psig (9 bar)

PT-200	PT-200 Capacity Conversion Factors for Other Fill Heads										
EIII	Lood	in	mm	in	mm	in	mm	in	mm	in	mm
	пеаи	0	0	6	152	12	305	24	610	36	914
Madal	PT-204		0.7		1		1.1		.3	1	.4
PT-206		0	.7		1	1	.1	1	.3	1.4	

NOTE: Fill head is measured from drain point to top of cap. See figures on page 228.

PI-200 PI	imping iraj	i Gahacii	ies									
Motive	Motive Pressure Pr		t or Back sure		PT-204 (6" Fil	l Head) 1" x 1"		PT-206 (6" Fill Head) 1-1/2" x 1-1/2"				
				Steam Motive		Air Motive		Steam	Motive	Air M	Air Motive	
psig	bar	psig	bar	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr	
15 25 50 75 100 125	1.0 1.7 3.5 5 7 8 5	5	0.34	1,800 2,025 2,100 2,200 2,300 2,400	816 919 953 998 1,043 1.089	2,100 2,300 2,500 2,700 *	953 1,043 1,134 1,225 *	2,700 3,200 3,400 3,500 3,600 3,700	1,225 1,451 1,542 1,588 1,633 1,678	3,000 3,500 3,600 3,700 *	1,361 1,588 1,633 1,678 *	
25 50 75 100 125	1.7 3.5 5 7 8.5	15	1	1,500 2,000 2,100 2,110 2,125	680 907 953 957 964	2,000 2,250 2,500 *	907 1,021 1,134 *	2,400 3,200 3,300 3,350 3,400	1,088 1,451 1,497 1,520 1,542	2,700 3,400 3,500 *	1,225 1,542 1,588 *	
35 50 75 100 125	2.5 3.5 5 7 8.5	25	1.5	1,500 1,700 1,900 2,000 2,100	680 771 862 907 953	1,700 2,000 2,300 *	771 907 1,043 *	2,100 2,400 2,700 2,800 2,900	953 1,089 1,225 1,270 1,315	2,300 2,600 2,900 *	1,043 1,179 1,315 *	
50 60 75 100 125	3.5 4 5 7 8.5	40	3	1,400 1,500 1,700 1,800 1,920	635 680 771 816 871	1,700 2,000 2,200 *	771 907 998 *	1,500 2,000 2,300 2,400 2,500	680 907 1,043 1,089 1,134	2,000 2,300 2,500 *	907 1,043 1,134 *	
70 75 100 125	4.5 5 7 8.5	60	4	1,100 1,300 1,600 1,720	499 590 726 780	2,000 2,300 *	907 1,043 *	1,150 1,325 1,900 2,000	522 601 862 907	2,000 2,300 *	907 1,043 *	

NOTES: Published capacities are based on the use of external check valves supplied by Armstrong. Fill head measured from drain point to top of pump cap. See figures on page 228. Although motive pressures are shown at high pressure differentials (difference between motive inlet pressure and total lift or back pressure), it is preferable to use a motive pressure of 10-15 psig (0.55 - 1.0 bar) above discharge (outlet) pressure. This ensures longevity of economical (bronze) check valves and reduces both venting time and temperature differential (on steam). If a higher differential is used, stainless steel check valves are recommended. *Consult factory.

PT-400 Series Vertical Steel Pump Trap

The Armstrong PT-400 Series Vertical Pump Trap is the low maintenance, non-electric solution to move condensate or other liquids from low points, low pressures or vacuum spaces to an area of higher elevation or pressure. Condensate can be returned at temperatures well above the 200°F (93°C) limit of conventional electric condensate pumps without the headaches of leaking seals or cavitation problems.

Features

- Economical non-electric operation. Uses inexpensive steam, air or inert gas.
- Low-maintenance operation. No leaking seals, impeller or motor problems means lower maintenance. No NPSH issues.
- Lower installation costs. Single trade required for installation and maintenance.
- · Peace of mind. Standard unit is intrinsically safe.
- Durable construction. ASME code-stamped carbon steel body vessel.
- Corrosion resistance. Internals are all stainless steel for corrosion resistance and long life.
- Heavy-duty springs. Springs are made from long-lasting Inconel X-750.
- Efficiency. A closed loop means no motive or flash steam is lost. All valuable Btu's are captured and returned to the system.
- Safety. The pump can be used in flooded pits without fear of electrocution or circuit breaker defaults.
- Externally removable/replaceable seats. Seats can be replaced or cleaned without removing the mechanism assembly.

Options

- Use of external check valves required for operation of pumping trap.
- Inlet Swing Check Valve NPT Bronze ASTM B 62 Teflon[®] Disc Class 150 (Minimum)

Outlet

- Stainless Steel Check Valve
- Class 150 (Minimum)
- In-line Check Valves
 Stainless Steel Non-Slam Check Valves
- · Bronze Gauge Glass Assembly
- · Steel Gauge Glass Assembly
- Removable Insulation Jacket
- · Digital Cycle Counter

For a fully detailed certified drawing, refer to CDF #1004.

PT-400 Pumping Trap Physical Data

Medel Number	Р	T-404, PT-40	6, PT-408 and	PT-412		
Model Number		in	mm			
"В"	17	7-1/2	445			
"C"		16	4	06		
"D"	14	1-1/2	3	68		
"G"		10	2	54		
"H"		28	7	11		
"P"	1	-5/8	41			
"R"	9	-1/4	2	35		
"Т"		12	3	05		
"U"	2	-1/4	57			
Weight, Ib (kg)		1	66 (75)			
Number of Body/Cap Bolts			8			
Model Number	PT-404	PT-406	PT-408	PT-412		
Check Valve Conn., in (mm)	1 (25)	1-1/2 (40)	2 (50)	3 (75)		
Bronze Check Valves, lb (kg)	4 (2)	9 (4)	16 (7)	29 (13)		
Stainless Steel Check Valves, Ib (kg)	4 (2)	9 (4)	15 (7)	38 (17)		

PT-400 Series Vertical Steel Pump Trap

PT-400 Pumping Trap Connection Siz	es												
		Vertical Steel											
Model	PT	-404	PT	-406	PT	-408	PT-412						
	in	mm	in	mm	in	mm	in	mm					
Inlet ction Conne	1	25	1-1/2	40	2	50	3	80					
Outlet ction Conne	1	25	1-1/2	40	2	50	2	50					
Motive Pressure Connection	1/2	15	1/2	15	1/2	15	1/2	15					
Vent ction Conne	1	25	1	25	1	25	1	25					
Gauge Glass Connection	1/2	15	1/2	15	1/2	15	1/2	15					

NOTES: Optional flanged connections available. Consult factory. Inlet/outlet socketweld connections available. Consult factory.

PT-4	00 Pu	Impin	g Trap	Capacit	ties														
Mot	ive	Tota or B	l Lift lack	PT-404	4 (12" Fi	ll Head)	1" x 1"	PT	-406 (12 1-1/2" :	" Fill He x 1-1/2"	ad)	PT-408 (12" Fill Head) 2" x 2"				PT-412	(12" Fil	l Head)	3" x 2"
FIES	Pressure		sure	Steam Motive		Air Motive		Steam Motive		Air M	Air Motive		Steam Motive		lotive	Steam Motive		Air Motive	
psig	bar	psig	bar	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr
15	1.0			1,900	862	2,250	1,021	3,100	1,406	3,350	1,520	4,500	2,041	4,850	2,200	7,500	3,402	8,100	3,674
25	1.7			2,500	1,134	2,650	1,202	4,600	2,086	4,875	2,211	6,600	2,994	7,000	3,175	11,000	4,990	11,650	5,284
50	3.5	F	0.04	3,100	1,406	3,225	1,463	4,900	2,222	5,100	2,313	7,100	3,220	7,375	3,345	11,700	5,307	12,150	5,511
75	5	5	0.34	3,400	1,542	3,500	1,588	5,200	2,359	5,300	2,404	7,200	3,266	7,400	3,357	12,000	5,443	12,350	5,602
100	7			3,500	1,588	*	*	5,400	2,449	*	*	7,300	3,311	*	*	12,100	5,488	*	*
125	8.5			3,600	1,633	*	*	5,500	2,495	*	*	7,400	3,357	*	*	12,200	5,534	*	*
25	1.7			2,200	999	2,525	1,145	3,500	1,588	4,025	1,826	5,400	2,449	6,200	2,812	7,200	3,266	8,275	3,753
50	3.5			2,600	1,179	2,800	1,270	4,100	1,860	4,425	2,007	6,300	2,857	6,800	3,084	10,400	4,717	11,250	5,103
75	5	15	1	2,800	1,270	2,950	1,338	4,400	1,996	4,750	2,155	6,500	2,948	6,900	3,130	10,800	4,899	11,450	5,194
100	7			3,100	1,406	*	*	4,800	2,177	*	*	6,700	3,039	*	*	11,000	4,990	*	*
125	8.5			3,200	1,451	*	*	4,900	2,222	*	*	6,800	3,084	*	*	11,200	5,080	*	*
35	2.5			2,000	907	2,350	1,066	2,900	1,315	3,425	1,554	4,200	1,905	4,950	2,245	6,900	3,130	8,150	3,697
50	3.5			2,400	1,088	2,675	1,213	4,000	1,814	4,500	2,041	5,800	2,631	6,400	2,903	9,700	4,400	10,850	4,921
75	5	25	1.5	2,600	1,179	2,800	1,270	4,300	1,950	4,550	2,064	6,000	2,721	6,500	2,948	10,000	4,536	10,900	4,944
100	7			2,800	1,270	*	*	4,700	2,132	*	*	6,100	2,767	*	*	10,200	4,626	*	*
125	8.5			2,900	1,315	*	*	4,800	2,711	*	*	6,400	2,903	*	*	10,400	4,717	*	*
50	3.5			1,900	862	2,350	1,066	3,300	1,451	4,050	1,837	4,350	1,973	5,350	2,427	5,800	2,631	7,125	3,232
60	4			2,200	999	2,600	1,179	3,600	1,633	4,250	1,927	5,100	2,313	6,000	2,722	6,900	3,130	8,150	3,697
75	5	40	3	2,400	1,088	2,675	1,213	4,000	1,814	4,475	2,030	5,700	2,585	6,375	2,892	7,600	3,447	8,500	3,856
100	7			2,500	1,135	*	*	4,200	1,905	*	*	6,000	2,721	*	*	8,100	3,674	*	*
125	8.5			2,700	1,225	*	*	4,500	2,041	*	*	6,200	2,612	*	*	8,500	3,856	*	*
70	4.5			1,800	816	2,400	1,088	3,200	1,451	4,300	1,950	3,800	1,724	5,050	2,291	5,000	2,268	6,650	3,016
75	5	60	1	2,000	907	2,450	1,111	3,500	1,588	4,650	2,109	4,100	1,859	5,175	2,347	5,400	2,450	6,900	3,130
100	7	00	4	2,300	1,233	*	*	3,700	1,678	*	*	4,500	2,041	*	*	6,000	2,722	*	*
125	8.5			2.400	1.088	*	*	3.800	1.724	*	*	4.800	2.177	*	*	6.400	2.903	*	*

NOTES: Published capacities are based on the use of external check valves supplied by Armstrong. Fill head measured from drain point to top of pump cap. See figures on page 228. Although motive pressures are shown at high pressure differentials (difference between motive inlet pressure and total lift or back pressure), it is preferable to use a motive pressure of 10 - 15 psig (0.65 - 1 bar) above discharge (outlet) pressure. This ensures longevity of economical (bronze) check valves and reduces both venting time and temperature differential (on steam). If a higher differential is used, stainless steel check valves are recommended. *Consult factory.

PT-400 Series Pumping Trap Materials								
Name of Part	Series PT-400*							
Body and Cap	Fabricated steel 150 psi ASME Sec. VIII design "U" stamped							
Cap Gasket	Graphoil							
Bolts	SA-449 steel							
Nuts	None							
Inlet Valve Assembly	Stainless steel							
Vent Valve Assembly	Stainless steel							
Valve Assembly Washers	Zinc-plated steel							
Plug	Steel							
Mechanism Assembly	Stainless steel							
Springs	Inconel X-750							

PT-400 Capacity Conversion Factors for Other Fill Heads in mm in mm in mm in mm in mm Fill Head 0 0 6 152 12 305 24 610 36 914 PT-404 0.85 07 10 13 14 PT-406 0.7 0.85 1.2 1.35 1.0 Model PT-408 0.7 0.85 1.0 1.2 1.35 PT-412 0.7 0.85 1.0 1.08 1.2

NOTES: Fill head is measured from drain point to top of cap. See figures on page 228.

*Series PT-400 is available in all stainless steel. Consult factory.

PT-3500 Series Low Profile Pump Trap

The Armstrong PT-3500 Series Low Profile Pump Trap is the low maintenance, non-electric solution to move condensate or other liquids from low points, low pressures or vacuum spaces to an area of higher elevation or pressure. Condensate can be returned at temperatures well above the 200°F (93°C) limit of conventional electric pumps without the headaches of leaking seals or cavitation problems.

Features

- Economical non-electric operation. Uses inexpensive steam, air or inert gas.
- Low-maintenance operation. No leaking seals, impeller or motor problems means lower maintenance. No NPSH issues.
- Space-saving size. Low-profile body fits in tight spaces while allowing minimal fill head.
- Lower installation costs. Single trade required for installation and maintenance.
- · Peace of mind. Standard unit is intrinsically safe.
- Cast iron durability. Rugged construction material means long service life.
- Corrosion resistance. Internals are all stainless steel for corrosion resistance and long life.
- Heavy-duty springs. Springs are made from long-lasting Inconel X-750.
- Efficiency. A closed loop means no motive or flash steam is lost. All valuable Btu's are captured and returned to the system.
- Safety. The pump can be used in flooded pits without fear of electrocution or circuit breaker defaults.
- Externally removable/replaceable seats. Seats can be replaced or cleaned without removing the mechanism assembly.

Options

Use of external check valves required for operation of pumping trap.

- Inlet Swing Check Valve NPT Bronze ASTM B 62 Teflon[®] Disc Class 150 (Minimum)
- Outlet
- Stainless Steel Check Valve Class 150 (Minimum)
- In-line Check Valves
- Stainless Steel Non-Slam Check Valves
- Bronze Gauge Glass Assembly
- Steel Gauge Glass Assembly
- Removable Insulation Jacket
- Digital Cycle Counter

For a fully detailed certified drawing, refer to CDF #1041.

.69" Holes (4 Places) PT-3500 Series Pump Trap Physical Data

		PT-3508 a	nd PT-3512	
		in	mm	
"B"		20-1/4	514	
"C"		17-3/4	451	
"D"		10-9/16	268	
"F"		4-3/4	120	
"G"		4-5/16	110	
"H"		21-11/16	550	
"P"		1-5/8	41	
"R"		4-5/16	110	
"Т"		12	305	
"U"		2-1/4	27	
"V"		7/8	22	
"W"		1-1/4	32	
"Х"		1-1/16	27	
Weight		PT-3508	PT-3512	
Pump Trap Weight		244 (111)	243 (110)	
Bronze Check Valve	lb (kg)	16 (7)	29 (13)	
Stainless Check Valve	1	15 (7)	38 (17)	

Maximum Operating Pressure: 125 psig (9 bar)

Maximum Allowable Pressure: Cast iron 150 psig @ 450°F (10 bar @ 232°C)

PT-3500 Series Low Profile Pump Trap

PT-3500 Se	ries Low Prof	ile Pump Tra	p Capacities											
					Filling Head 12" (305 mm) Liquid Specific Gravity 0.09 - 1.0									
Operati Pres	ng Inlet ssure	Total Back P	Lift or ressure		PT-3 2" 2	3508 x 2"	uiu specific (PT-3512 3" x 2"					
				Ste	am	A	lir	Ste	am	A	ir			
psig	bar	psig	bar	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr			
15	1.0			6,100	2,767	8,100	3,674	8,300	3,765	10,300	4,627			
25	1.7			8,700	3,946	9,300	4,818	12,100	5,489	12,950	5,874			
50	3.5	5	0.24	8,900	4,037	9,675	4,389	13,400	6,078	14,000	6,350			
75	5	5	0.34	9,200	4,173	9,800	4,452	13,700	6,214	14,300	6,486			
100	7			9,400	4,264	*	*	14,000	6,350	*	*			
125	8.5			9,900	4,491	*	*	14,400	6,532	*	*			
25	1.7			6,300	2,858	8,200	3,719	8,100	3,674	9,800	4,445			
50	3.5		1	8,200	3,719	10,400	4,717	11,600	5,262	12,600	5,715			
75	5	15		9,200	4,173	11,100	5,035	12,500	5,670	13,300	6,033			
100	7			9,600	4,354	*	*	12,600	5,715	*	*			
125	8.5			9,800	4,445	*	*	13,400	6,078	*	*			
35	2.5			6,100	2,767	7,900	3,583	7,600	3,447	9,900	4,491			
50	3.5			7,100	3,221	9,600	4,355	10,000	4,536	10,650	4,831			
75	5	25	15	8,600	3,901	10,800	4,899	11,200	5,080	12,200	5,534			
100	7			8,700	3,946	*	*	11,450	5,194	*	*			
125	8.5			9,100	4,128	*	*	11,600	5,262	*	*			
50	3.5			5,000	2,268	6,500	2,948	6,200	2,812	8,500	3,856			
60	4			5,900	2,676	7,400	3,357	7,700	3,493	9,400	4,264			
75	5	40	3	6,650	3,016	8,300	3,765	8,700	3,946	10,600	4,800			
100	7			7,200	3,266	*	*	9,100	4,128	*	*			
125	8.5			7,800	3,538	*	*	9,400	4,264	*	*			
75	5			4,500	2,042	6,300	2,858	5,900	2,676	8,700	3,946			
100	7	60	4	5,500	2,495	*	*	6,500	2,948	*	*			
125	8.5			5,700	2,586	*	*	6,900	3,130	*	*			

NOTES: Published capacities based on use of external check valves supplied by Armstrong. Although motive pressures are shown at high pressure differential (difference between motive inlet pressure and total lift or back pressure), it is preferable to use a motive pressure of 10 - 15 psig (0.65 - 1.0 bar) above discharge (outlet) pressure. This ensures longevity of economical (brass) check valves and reduces both venting time and temperature differential (on steam). Shading indicates sizing example shown on page 214. *Consult factory.

PT-3500 Capacity Conversion Factors for Other Fill Heads													
C:11 L	load	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
	ieau	0	0	6	152	12	305	18	457	24	610	36	914
PT-3508		0.7		0.85		1.0		1.1		1.2		1.	35
Wouer	PT-3512	0	.7	0.	85	1	1.0		1.04		1.08		.2

NOTE: Fill head measured from drain point to top of cap. See figures on page 228.

PT-3500 Series Low Profile Pump Trap Materials							
Name of Part	Material						
Body	Cast iron - ASTM A48 class 30						
Сар	Carbon steel SA-516-70						
Cap Gasket	Graphoil						
Inlet Valve Assembly	Stainless steel						
Vent Valve Assembly	Stainless steel						
Valve Assembly Washers	Zinc-plated steel						
Plug	Steel						
Mechanism Assembly and Float	Stainless steel						
Springs	Inconel X-750						

PT-3500 Series Low Profile Pump Trap Connection Sizes								
Model Number	PT-3	508	PT-3512					
Model Nulliber	in	mm	in	mm				
Inlet Choome	2	50	3	75				
Outlet Ctoome	2	50	2	50				
Motive Pressure Connection	1/2	15	1/2	15				
Vent Choome	1	25	1	25				
Gauge Glass Connection	1/2	15	1/2	15				

PT-300 Series Horizontal Steel, Low Profile Pump Trap

The Armstrong PT-300 Series Horizontal, Low Profile Pump Trap is the low maintenance non-electric solution to move condensate or other liquids from low points, low pressures or vacuum spaces to an area of higher elevation or pressure. Condensate can be returned at temperatures well above the 200°F (93°C) limit of conventional electric condensate pumps without the headaches of leaking seals or cavitation problems.

Features

- Economical non-electric operation. Uses inexpensive steam, air or inert gas.
- Low-maintenance operation. No leaking seals, impeller or motor problems means lower maintenance. No NPSH issues.
- Space-saving size. Low-profile body fits in tight spaces while allowing minimal fill head.
- Lower installation costs. Single trade required for installation and maintenance.
- · Peace of mind. Standard unit is intrinsically safe.
- Durable construction. ASME code-stamped carbon steel body vessel.
- Corrosion resistance. Internals are all stainless steel for corrosion resistance and long life.
- Heavy-duty springs. Springs are made from long-lasting Inconel X-750.
- Efficiency. A closed loop means no motive or flash steam is lost. All valuable Btu's are captured and returned to the system.
- Safety. The pump can be used in flooded pits without fear of electrocution or circuit breaker defaults.
- Externally removable/replaceable seats. Seats can be replaced or cleaned without removing the mechanism assembly.

PT-300 Pumping Trap Physical Data					
Model Number	PT- PT-	308 312			
	in	mm			
"В"	27	686			
"C"	16 406				
"D"	15	381			
"E"	10	254			
"F"	11	279			
"G"	5-7/16	138			
"H"	21-3/16	538			
"P"	1-5/8	41			
"R"	4-13/16	122			
"S"	5-1/32	128			
"T"	12	305			
"U"	2-1/4	57			
"V"	7/8	22			
"W"	1-1/4	32			
"X"	1-1/16	27			
Face to Face	27-1/2*	698			
Weight Ib (kg)	154	(70)			
Number of Body/Cap Bolts	8	3			
Check Valve Conn. in (mm)	2 (50)	3 (75)			
Bronze Check Valves Ib (kg)	16 (7) 29 (13)				
Stainless Steel Check Valves lb (kg)	b (kg) 15 (7) 38 (17)				

Maximum Allowable Pressure (Vessel Design): 150 psig @ 650°F (10 bar @ 343°C) Maximum Operating Pressure: 125 psig (9 bar) *Tolerance +/- 1/2*

For a fully detailed certified drawing, refer to CDF #1001.

SECTION

2

PT-300 Series Horizontal Steel, Low Profile Pump Trap

PT-300 Pumping Trap Materials									
Name of Part	Series PT-300*								
Body and Cap	Fabricated steel 150 psi ASME Sec. VIII design "U" stamped								
Cap Gasket	Graphoil								
Bolts	SA-449 steel								
Nuts	None								
Inlet Valve Assembly	Stainless steel								
Vent Valve Assembly	Stainless steel								
Valve Assembly Washers	Zinc plated steel								
Plug	Steel								
Mechanism Assembly	Stainless steel								
Springs	Inconel X-750								

PT-300 Pumping Trap Connection Sizes

		Horizontal Steel					
Model	PT-308		PT-312				
	in	mm	in	mm			
Inlet Connection	2	50	3	80			
Outlet Connection	2	50	2	50			
Motive Pressure Connection	1/2	15	1/2	15			
Vent Connection	1	25	1	25			
Optional Gauge ass GI Cotione	1/2	15	1/2	15			

NOTES: Optional flanged or socketweld connections available. Consult factory.

*Series PT-300 is available in all stainless steel. Consult factory.

PT-300 Pi	umping Tra	p Capacit	ies								i i	
Motive	Pressure	Total Lif	t or Back		PT-308 (12" Fi	ll Head) 2" x 2"			PT-312 (12" Fill Head) 3" x 2"			
		Pressure		Steam	Steam Motive		Air Motive		Steam Motive		lotive	
psig	bar	psig	bar	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr	
15 25 50 75 100 125	1.0 1.7 3.5 5 7 8.5	5 0.	34	6,900 10,200 10,600 10,800 11,200 11,600	3,130 4,622 4,808 4,898 5,080 5,261	9,200 10,900 11,100 11,300 *	4,173 4,944 5,035 5,126 *	9,000 13,200 15,100 15,300 15,500 16,600	4,082 5,987 6,849 6,940 7,031 7,530	12,300 14,200 15,800 16,100 *	5,579 6,441 7,167 7,303 *	
25 50 75 100 125	1.7 3.5 5 7 8.5	15	1	7,000 9,600 10,750 10,900 11,300	3,175 4,354 4,876 4,944 5,125	10,100 10,900 11,100 *	4,581 4,944 5,035 *	9,000 12,800 14,200 14,300 15,100	4,082 5,806 6,441 6,486 6,849	11,200 13,800 15,000 *	5,080 6,260 6,804 *	
35 50 75 100 125	2.5 3.5 5 7 8.5	25	1.5	7,100 8,300 10,100 10,200 10,300	3,221 3,765 4,581 4,627 4,672	9,200 10,200 11,000 *	4,173 4,627 4,989 *	8,100 10,200 12,500 12,700 13,000	3,674 4,627 5,670 5,761 5,897	11,500 12,750 13,500 *	5,216 5,783 6,123 *	
50 60 75 100 125	3.5 4 5 7 8.5	40	3	5,700 6,600 7,600 8,400 9,400	2,585 2,994 3,447 3,810 4,264	7,600 8,800 10,100 *	3,447 3,992 4,581 *	6,600 8,400 9,800 10,100 10,300	2,994 3,810 4,445 4,581 4,672	9,800 10,500 12,700 *	4,445 4,763 5,761 *	
70 75 100 125	4.5 5 7 8.5	60	4	4,500 4,700 6,400 6,600	2,041 2,132 2,903 2,994	7,000 7,100 *	3,175 3,221 *	6,000 6,400 7,100 7,400	2,722 2,903 3,221 3,357	10,200 10,400 *	4,627 4,717 *	

NOTES: Published capacities are based on the use of external check valves supplied by Armstrong. Fill head measured from drain point to top of pump cap. See figures on page 228. Although motive pressures are shown at high pressure differentials (difference between motive inlet pressure and total lift or back pressure), it is preferable to use a motive pressure of 10 - 15 psig (0.65 - 1 bar) above discharge (outlet) pressure. This ensures longevity of economical (brass) check valves and reduces both venting time and temperature differential (on steam). If a higher differential is used, stainless steel check valves are recommended. *Consult factory.

PT-300 Capacity Conversion Factors for Other Fill Heads											
Fill Head		in	mm	in	mm	in	mm	in	mm	in	mm
ГШ	0	0	6	152	12	305	24	610	36	914	
Madal	PT-308	0	.7	0.85		1.0		1.2		1.3	
woder	PT-312	0	.7	0.8	85	1.0		1.08		1.2	

NOTES: Fill head is measured from drain point to top of cap. See figures on page 228.

Options

Use of external check valves required for operation of pumping trap.

- Inlet Swing Check Valve
 - NPT Bronze ASTM B 62 Teflon[®] Disc

Class 150 (Minimum)

- Outlet
 - Stainless Steel Check Valve
 - Class 150 (Minimum)
- In-line Check Valves
 Stainless Steel Non-Slam Check Valves
- Bronze Gauge Glass Assembly
- Steel Gauge Glass Assembly
- Removable Insulation Jacket
- Digital Cycle Counter

Sizing and Selection— PT-100/200/300/3500/400/DD-4/DD-6 Series

The Armstrong non-electric pump trap is sized based on actual condensate load (lb/hr or kg/hr) being pumped. The following steps are used to size the pump.

- 1. Determine the total condensate load to be pumped in lb/hr or kg/hr. See table on page 211 for conversion factors.
- 2. Determine the total back pressure the pump will operate against. Total back pressure is the sum of the following:
 - Vertical lift expressed in psig. See conversion formula below to convert lift to psig
 - · Existing pressure in condensate return line or D.A. tank
 - Frictional loss from pipe, valves and fittings
- 3. Determine type of motive gas to be used (steam, air or other inert gas) and pressure available.

Example:

- · Condensate load = 7,100 lb/hr (3,221 kg/hr).
- Total back pressure = 25 psig (1.5 bar)
- (25 foot vertical lift = 10.8 psig, 14 psig in condensate return line). • Motive pressure is steam at 50 psig (3.5 bar).

Solution: Model PT-3508

Find 25 psig total lift or back pressure in column two of Low Profile Pump Trap Capacities table on page 211. Then find 50 psig motive pressure in column one. Move across the capacity table until you reach a model number with the correct capacity. A PT-3508 has been highlighted on page 211 for this example.

Either a closed reservoir pipe or a vented receiver is required for proper condensate storage during the pump-down cycle of the pumping trap.

For vented/open system receiver sizing:

- Determine the pressure from where the condensate is being discharged.
- Determine condensate load.

Reference Percentage of Flash Steam chart on page 215 to find the pressure that corresponds with the discharge condensate pressure. For this example, use 15 psig.

Follow 15 psig on the horizontal axis where it intersects the curve. Move left from the intersecting lines to the vertical axis for the percentage of flash steam that is created. For this example it will be 3% (see shaded area on Percentage of Flash Steam chart).

Multiply 3% by the condensate load. Using example above 7,100 lb/hr. 7,100 x .03 = 213 lb/hr flash steam.

Using the Vented Receiver Sizing table on page 215, find the amount of flash steam in column one. Follow the table across to determine the size of the vented receiver. (See shaded area on Inlet Reservoir Pipe Sizing table—page 215 for this example.)

For closed reservoir piping:

1. Determine condensate load (using example above 7,100 lb/hr).

Reference the inlet reservoir pipe sizing for closed systems on page 215. Find 7,100 lb/hr in column one. Move horizontally across to find proper pipe size. (Note length or diameter may be slightly enlarged when capacity falls between given condensate loads in column one.) Selection is shaded.

Metric Conversion Formulas

Convert Ib/hr to kg/hr-By dividing by 2.2046 Example: 1,800 lb/hr ÷ 2.2046 = 816 kg/hr

Convert psig to bar-By dividing by 14.5 Example: 15 psi ÷ 14.5 = 1.03 bar

Convert psig to kg/cm²—By dividing by 14.22 Example: 15 psi ÷ 14.22 = 1.05 kg/cm²

Reservoir Sizing— PT-100/200/300/3500/400/DD-4/DD-6 Series

let Reservoir	Pipe Sizing for	Closed Sys	tems											
Condens	sate Load		Reservoir Pipe Diameter											
Condone		in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	
lb/hr	kg/hr	2	50	3	75	4	100	6	150	8	200	10	250	
up to			Length of Pipe											
		ft	m	ft	m	ft	m	ft	m	ft	m	ft	m	
500	227	4	1.2	2-1/2	0.7	1-1/2	0.4							
1,000	453	4-1/2	1.4	2	0.6	1-1/2	0.4							
1,500	680	7	2.1	3	0.9	2	0.6							
2,000	907	9	2.7	4	1.2	2-1/2	0.7							
2,500	1,134	11	3.4	5	1.5	3	0.9	1-3/4	0.5					
3,000	1,360	13-1/2	4.1	6	1.8	3-1/2	1.1	2	0.6					
4,000	1,814	18	5.5	8-1/2	2.6	5	1.5	2-1/2	0.7					
5,000	2,268			10	3.0	6	1.8	3	0.9	1-1/2	0.4			
6,000	2,722			12	3.7	7	2.1	3-1/2	1.1	2	0.6			
7,000	3,175			14-1/2	4.4	8-1/2	2.6	4	1.2	2	0.6			
8,000	3,629			16-1/2	5.0	9-1/2	2.9	4-1/2	1.4	2-1/2	0.7	1-1/2	0.4	
9,000	4,082					11	3.4	5	1.5	3	0.9	2	0.6	
10,000	4,536					12	3.7	5-1/2	1.7	3	0.9	2	0.6	
11,000	4,990					13	4.0	6	1.8	3-1/2	1.1	2	0.6	
12.000	5.443					14	4.3	6-1/2	2.0	4	1.2	2-1/2	0.7	

NOTE: When draining condensate from a single piece of equipment in a **closed system**, to achieve maximum energy efficiency a reservoir should be installed horizontally above and ahead of the pump trap. Sufficient reservoir volume is required above the filling head level to hold condensate during the pump trap discharge cycle. The chart above shows the minimum reservoir sizing, based on the condensate load, to prevent equipment flooding during the pump trap discharge cycle.

Vented Receiver Sizing for Open Systems												
Flash Steam		Rec Diar	eiver neter	Rec Le	eiver ngth	Vent Line Diameter						
lb/hr	kg/hr	in	mm	in	mm	in	mm					
up to												
75	34	4	102			1-1/2	40					
150	68	6	152			2	50					
300	136	9	229	20	014	2-1/2	65					
600	272	10	254	30	914	3	75					
900	408	12	300			4	100					
1,200	544	16	405			6	150					
2,000	907	20	508			8	200					

NOTE: When draining from single or multiple pieces of equipment in an **open system**, a vented receiver should be installed horizontally above and ahead of the pump trap. In addition to sufficient holding volume of the condensate above the fill head of the pump trap to hold the condensate during the pump trap cycle, the receiver **must** also be sized to allow enough area for flash steam and condensate separation. An overflow could also be added when required. The minimum recommended water seal is 12" (300 mm). This table shows proper receiver tank sizing based on flash steam present. See the chart at right to calculate the percentage of flash steam at given pressure drop.

Percentage of Flash Steam Formed When Discharging Condensate to Reduce Pressure

PT-516 High Capacity Pump Trap

B Places

PT-516 Capacity Conversion Factors for Other Fill Heads												
Fill Haad	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
FIII HEAU	0	0	6	152	12	305	16	406	24	610	36	914
PT-516	0	.7	0.	75	0	.8	0.	85	1.	.0	1.	08

Effective recovery and return of hot condensate are essential to overall plant efficiency while conserving energy. Large amounts of condensate provide the best opportunities to save energy.

The Armstrong PT-516 High Capacity Pump Trap is the low maintenance, non-electric solution to moving large amounts of condensate and other liquids from low points, low pressures or vacuum spaces to an area of higher elevation or pressure. Condensate can be returned at temperatures well above the $200^{\circ}F$ (93°C) limit of conventional electric pumps without the headaches of leaking seals or cavitation.

Features

- Economical non-electric operation. Uses inexpensive steam air or inert gas.
- Low-maintenance operation. No leaking seals, impeller or motor problems means lower maintenance. No NPSH issues.
- Lower installation costs. Single trade required for installation and maintenance.
- Peace of mind. Standard unit is intrinsically safe—explosion-proof.
- Durable construction. ASME code-stamped carbon steel body vessel.
- Corrosion resistance. Internals are all stainless steel for corrosion resistance and long life.
- Heavy-duty springs. Springs are made from long-lasting Inconel X-750.
- Efficiency. A closed loop means no motive or flash steam is lost. All valuable Btu's are captured and returned to the system.
- Safety. The pump can be used in flooded pits without fear of electrocution or circuit breaker defaults.
- Externally removable/replaceable seats. Seats can be replaced or cleaned without removing the mechanism assembly.

For a fully detailed certified drawing, refer to CDF #1017.

PT-516 High Capacity P	ump Trap Physical Data	
	in	mm
Inlet Connection	4 150# ANSI Flg.	100 150# ANSI Flg.
Outlet Connection	4 150# ANSI Flg.	100 150# ANSI Flg.
Motive Connection	2 NPT	50 NPT
Vent Connection	2 NPT	50 NPT
Gauge Glass Conn.	1/2 NPT	15 NPT
"В"	62	1,574
"C"	36	914
"D"	19-1/16	484
"E"	20	508
"F"	22	559
"H"	48	1,219
"P"	1-3/4	44
"R"	8-3/4	222
"T"	28	711
"U"	4	100
Weight	807	366
Number of Bolts	12	12

Maximum Operating Pressure on standard unit: 150 psig (10 bar).

For higher pressure, consult factory.

Maximum Állowable Pressure (standard vessel deisgn): 150 psig @ 500°F (10 bar @ 277°C). 300 psi (21 bar) vessel available upon request.

PT-516 High Capacity Pump Trap

Typical Applications

- · Low pressure heating systems
- · Process heat exchanger or coils with modulating steam control
- Remote installations (tracing, tank farms or remote coils)
- · Systems under vacuum
- Hazardous (explosion proof) areas
- Caustic environments
- · Sumps or submersed areas

PT-516 High-Capacity Pump Trap Materials									
Name of Part	Description								
Cap, Body, Bolting	Fabricated steel 150 psi ASME Sec. VIII design "U" stamp coded								
Cap Gasket	Stainless steel spiral wound								
Inlet Valve Assembly	Stainless steel								
Vent Valve Assembly	Stainless steel								
Mechanism Assembly: Frame, Float and Spring	Stainless steel								

NOTES: 300 psi ASME vessel available upon request. PT-516 available in all stainless steel. Consult factory.

Armstrong PT-516 Pump Trap Sizing and Selection

PT-516 Pi	PT-516 Pump Trap Capacities											
Mating	2*****	Total Lif	t or Back	4" x 4" Connections 24" Fill Head								
Wollve P	ressure	Pres	sure	Steam	Motive	Air N	lotive					
psig	bar	psig	bar	lb/hr	kg/hr	lb/hr	kg/hr					
15	1.0			28,962	13,137	57,619	26,136					
25	1.7			37,162	16,857	61,911	28,083					
35	2.5			42,563	19,307	64,738	29,365					
50	3.5		34	48,288	21,903	67,735	30,725					
60	4	5.0		51,214	23,231	69,267	31,420					
70	4.5	50.	34	53,688	24,138	70,562	32,007					
75	5			54,796	24,855	71,142	32,270					
100	7			59,414	26,950	73,559	33,366					
125	8.5			62,995	28,575	*	*					
150	10.34			65,922	29,902	*	*					
25	1.7			36,720	16,656	50,783	23,035					
35	2.5			40,611	18,421	54,293	24,627					
50	3.5			45,196	20,501	58,013	26,315					
60	4			47,740	21,655	59,915	27,177					
70	4.5	15	1	50,005	22,682	61,523	27,907					
75	5			51,054	23,159	62,243	28,233					
100	7			55,675	25,254	65,243	29,594					
125	8.5			59,552	27,013	*	*					
150	10.34			62,923	28,542	*	*					

NOTES: Published capacities above are based on actual steam testing using a minimum 200°F condensate. Published capacities are based on the use of external check valves supplied by Armstrong. *Consult factory.

		Total Life	er Deek	/" v /	" Connectiv	ne 24" Fill	Head
Motive I	Pressure	Pres	SUIR	r a F	Motivo	Air M	Intive
neia	har	neia	har	lh/hr	ka/hr	lh/hr	ka/hr
25 25	2.5	porg	Dai	20.212	12 051	16 229	20.072
50	2.5			29,212	15,251	40,230 50.062	20,973
60	0.0			25,413	16 101	50,90Z	23,110
70	4			33,072	17,070	55,570	24,211
70	4.5	25	1.7	37,646	17,076	55,418	25,138
/5	5			38,548	17,485	56,313	25,544
100	1			42,454	19,257	60,141	27,280
125	8.5			45,649	20,706	*	*
150	10.34			*	*	*	*
50	3.5			26,210	11,889	41,244	18,708
60	4			27,353	12,407	44,028	19,971
70	4.5			28,319	12,846	46,382	21,039
75	5	40	3	28,752	13,042	47,435	21,517
100	7			30,555	13,860	51,828	24,022
125	8.5			31,954	14,494	*	*
150	10.34			33,097	15,013	*	*
70	4.5			25.973	11.781	32.026	14.527
75	5			26,373	11,963	33,514	15,202
100	7	60	4	28.042	12,720	40.951	18.575
125	8.5			29.336	13,307	*	*
150	10.34			30.394	13,787	*	*
100	7			23.892	10.837	34.893	15.827
125	8.5	80	55	24 231	10,991	*	*
150	10.34			24.570	11.145	*	*

Options

External check valves required for use of pumping trap. • Inlet/Outlet Check Valve

CS/SS Wafer Style or All Stainless Steel Wafer Style

- Bronze Gauge Glass Assembly
- Removable Insulation Jacket
- Digital Cycle Counter

Reservoir Sizing — DD-12/PT-516 Series High Capacity

Either a closed reservoir pipe or a vented receiver is required for proper condensate storage during the pump-down cycle of the pumping trap. Refer to the tables for sizing.

For Closed Reservoir Piping

- 1. Determine condensate load.
 - Example 30,000 lb/hr: • Reference the Inlet Reservoir Pipe table top right. Find the 30,000 lb/hr condensate load in column one. Move across the columns to find the proper pipe sizing.

For Vented Receiver Sizing

- 1. Determine the pressure from where the condensate is being discharged.
- 2. Determine condensate load.
 - Reference the chart below to find the pressure that corresponds with the discharge condensate pressure. For this example, use 15 psig.
 - Follow 15 psig to where it intersects the "0" psig curve. Move to the left from intersecting lines for the percentage of flash that will be created. For this example, it will be 3%.
 - Multiply the 3% by the condensate load. For this example, it is 30,000 lb/hr. Thus, 30,000 x .03 = 900 lb/hr of flash steam.

Using the Vented Receiver table bottom right, find the amount of flash steam in column one. Follow the table across to determine the sizing of the vented receiver.

 PT-516 Inlet Reservoir Pipe Sizing for Closed Systems

 Condensate
 Reservoir Pipe Diameter (in)

 Load lb/hr
 8
 10
 12
 16
 20
 24

 up to
 Length of Pipe (feet)
 10,000
 6-1/2
 6
 5
 3
 2

սիւս										
10,000	6-1/2	6	5	3	2					
20,000	12	11-1/2	10	7	4					
30,000		12	10-1/2	9	6	4				
40,000		17	14	12	8	6				
50,000			16	13	9	6				
60,000				15	11	8				
70.000					15	10				

NOTE: When BP/MP is less than 50%, the reservoir diameters above can be reduced by 1/2" (15 mm). When draining condensate from a single piece of equipment in a closed system, to achieve maximum energy efficiency (see Closed System figure on page 228) a reservoir should be installed horizontally above and ahead of the pump trap. Sufficient reservoir volume is required above the filling head level to hold condensate during the pump trap discharge cycle. The table above shows the minimum reservoir sizing, based on the condensate load, to prevent equipment flooding during the pump trap discharge cycle.

PT-516 Vented Receiver for an Open System					
Flash Steam lb/hr	Receiver Diameter (in)	Receiver Diameter Receiver Length (in) (in)			
up to					
1,000	16	60	6		
2,000	20	60	8		
3,000	24	60	8		
4,000	26	60	10		
5,000	28	60	10		
6,000	30	72	12		
7,000	32	72	12		
8,000	36	72	14		

NOTE: When draining from single or multiple pieces of equipment in an **open system**, a vented receiver should be installed horizontally above and ahead of the pump trap (see Open System figure on page 228). In addition to sufficient holding volume of the condensate above the fill head of the pump trap to hold the condensate during the pump trap cycle, the receiver must also be sized to allow enough area for flash steam and condensate separation. An overflow could also be added when required. The minimum recommended water seal is 12° (305 mm). The table above shows proper receiver tank sizing based on flash steam present. See chart left to calculate the percentage (%) of flash steam at a given pressure drop.

PT-300LL/PT-400LL Light Liquid Pump Traps

Features

- Economical non-electric operation. Uses inexpensive steam or inert gas.
- Low-maintenance operation. No leaking seals, impeller or motor problems means lower maintenance. No NPSH issues.
- Lower installation costs. Single trade required for installation and maintenance.
- · Peace of mind. Standard unit is intrinsically safe.
- Durable construction. ASME code-stamped carbon steel body vessel.
- Corrosion resistance. Internals are all stainless steel for corrosion resistance and long life.
- Heavy-duty springs. Springs are made from long-lasting Inconel X-750.
- Efficiency. A closed loop means no motive or flash steam is lost. All valuable Btu's are captured and returned to the system.
- Safety. The pump can be used in flooded pits without fear of electrocution or circuit breaker defaults.
- Externally removable/replaceable seats. Seats can be replaced or cleaned without removing the mechanism assembly.
- Specific gravity range. Pumps can accommodate specific gravity down to 0.65.

Typical Applications

- Hydrocarbon knockout drum/separator
- · Flare header drain
- \bullet Applications where the specific gravity of the liquid could be as low as 0.65
- · Applications where hydrocarbons may be present

Technical Data

- Back Pressure
- Maximum back pressure for the PT-300LL or PT-400LL is 60 psig (4.1 bar)
- Motive Pressure
- Maximum motive pressure (Nitrogen or Inert Gas) is 100 psig (6.9 bar)

NOTE: To determine the lb/hr of liquid being pumped, use the following formula:

lb/hr of liquid = capacities x specific gravity of liquid

To size the Light Liquid Pumps, use the sizing charts on pages 209 and 213.

Consult Armstrong for engineered pre-piped receiver packages.

PT-300LL Light Liquid Pump Trap

PT-400LL Light Liquid Pump Trap

Hydrocarbon Knockout Drum Separator

Double Duty® 4

Steam Trap/Pump Combination

Description

Armstrong's Double Duty[®] Series steam trap/pump combination offers a low profile solution to draining heat exchangers in various applications.

The Double Duty[®] 4 is a low profile pump that offers you the versatility of combining a pump within a steam trap to aide in condensate drainage from a heat exchanger under all operating conditions.

Features

- Economical. non-electric operation
- Low-maintenance operation. No leaking seals, impeller or motor problems. No NPSH issues.
- Space-saving size. Low-profile body fits in tight spaces while allowing minimal fill head.
- · Lower installation costs. Single trade installation.
- Peace of mind. Intrinsically safe.
- Ductile iron durability. Rugged construction material means long service life.
- Efficiency. A closed loop means no motive or flash steam is lost. All valuable Btu's are captured and returned to the system.
- Safety. The trap/pump can be used in pits or sumps without fear of electrocution or circuit breaker defaults.

Maximum Operating Conditions

Maximum allowable pressure DD-4 72 psig @ 320°F (5 bar @ 160°C)

Maximum operating pressure: DD-4 72 psig @ 320°F (5 bar @ 160°C)

Materials

Body:	Ductile iron
Mechanism:	All stainless steel
Springs:	304 Stainless steel
Float:	All stainless steel

For a fully detailed certified drawing, refer to CD-2030.

Double Duly 4 Physical Data			
	in	mm	
"A"	11-3/16	284	
"B"	10-13/16	274	
"C"	1	25	
"D"	8	203	
"E"	2-7/16	61	
"F"	1	25	
"G"	3	76	
"H"	6-1/8	155	
"၂"	1-5/8	41	
"K"	5-1/2	140	
"L"	9-15/16	251	
Weight Ib (kg)	37 (17)		

Double Duty® 4

Double Duty® 4 Steam Trap/Pump Combination

Double Duty	Double Duty [®] 4 Pump Capacities						
Mo	tive	Back P	ressure	Ca	pacity		
psi	bar	psi	bar	lb/hr	kg/hr		
15	1			220	100		
25	1.7	5	0.24	300	136		
50	3.5	5	0.34	348	158		
70	4.5			350	159		
25	1.7			220	100		
50	3.5	15	15 1	345	156		
70	4.5			348	158		
35	2.5			220	100		
50	3.5	25	1.7	325	147		
70	4.5			348	158		
50	3.5			220	100		
60	4	40	3	300	136		
70	4.5			335	152		
70	4.5	60	4	220	100		

NOTE: Published capacities are based on the use of external check valves supplied by Armstrong. Fill head measured from drain point to top of pump case.

Capacity Conversion Factors for Other Filling Heads					
Filling Head					
in 0 2 6					
mm 0 50 152					
Double Duty DD-4	.65	1.0	1.10		

NOTE: Fill head measured from drain to top of cap.

Double Duty® 4 Trap Capacities					
Differentia	I Pressure	Capa	acity		
psi	bar	lb/hr	kg/hr		
5	0.34	1,342	610		
10	0.7	1,980	900		
20	1.4	2,860	1300		
30	2.1	3,410	1550		
40	3	3,795	1725		
50	3.4	4,070	1850		
60	4.1	4,235	1925		
70	4.8	4,400	2000		

Double Duty® 6

Steam Trap/Pump Combination

Description

Armstrong's Double Duty[®] Series steam trap/pump combination offers a low profile solution to draining heat exchangers in various applications.

The Double Duty[®] 6 is an ASME code stamped carbon steel vessel. The Double Duty[®] 6 offers you the versatility of combining a pump within a steam trap to aide in condensate drainage under all operating conditions.

Features

- · Economical. non-electric operation
- Low-maintenance operation. No leaking seals, impeller or motor problems. No NPSH issues.
- Space-saving size. Low-profile body fits in tight spaces while allowing minimal fill head.
- · Lower installation costs. Single trade installation.
- · Peace of mind. Intrinsically safe.
- ASME Carbon Steel durability. Rugged construction material means long service life.
- Efficiency. A closed loop means no motive or flash steam is lost. All valuable Btu's are captured and returned to the system.
- Safety. The trap/pump can be used in pits or sumps without fear of electrocution or circuit breaker defaults.

Maximum Operating Conditions

Maximum allowable pressure DD-6 200 psig @ 400°F (14 bar @ 204°C)

Maximum operating pressure: DD-6 200 psig @ 400°F (14 bar @ 204°C)

Materials

Body: Springs: Internals: ASME Code Stamped Carbon Steel Inconel X-750 All stainless steel

For a fully detailed certified drawing, refer to CD2035.

Double Duty® 6 Physical Data				
	in	mm		
"A"	29	737		
"В"	16-11/16	424		
"C"	1-1/2	38		
"D"	1	25		
"E"	7/8	22		
"F"	1-1/8	28		
"G"	2-1/4	57		
"H"	24	610		
"၂"	14	356		
"K"	10-13/16	275		
"L"	10	254		
"M"	2-13/16	71		
"N"	8	203		
"0"	3-3/16	81		
Weight Ib (kg)	14	0 (64)		

Double Duty® 6

Double Duty® 6 Steam Trap/Pump Combination

Double Duty® 6 Pump Capacities						
Motive		Back P	ressure	Capacity		
psi	bar	psi	bar	lb/hr	kg/hr	
15	1			2,400	1,089	
25	1.7			3,000	1,361	
50	3.5			4,000	1,814	
75	5			4,500	2,041	
100	7	5	0.34	4,600	2,087	
125	8.5			4,700	2,132	
150	10.34			4,800	2,177	
175	12			4,800	2,177	
200	14			4,600	2,087	
25	1.7			2,000	907	
50	3.5			2,800	1,270	
75	5			3,400	1,542	
100	7	15	1	3,600	1,633	
125	8.5	10		3,700	1,678	
150	10.34			3,800	1,724	
175	12			3,600	1,633	
200	14			3,500	1,588	
35	2.5			1,800	816	
50	3.5	25		2,300	1,043	
75	5			2,900	1,315	
100	7		25	17	3,000	1,361
125	8.5		25 1.7	3,000	1,361	
150	10.34			2,900	1,315	
175	12			2,500	1,134	
200	14			2,300	1,043	
50	3.5			1,400	635	
75	5			2,000	907	
100	7			2,400	1,089	
125	8.5	40	3	2,500	1,134	
150	10.34			2,500	1,134	
175	12			1,800	816	
200	14			1,700	771	
75	5			1,500	680	
100	7			1,800	816	
125	8.5	60	4	2,000	907	
150	10.34			1,700	771	
175	12			1,500	680	
200	14			1,400	635	

NOTE: Published capacities are based on the use of external check valves supplied by Armstrong. Fill head measured from drain point to top of pump case.

Double Duty® 6 Trap Capacities						
Differential	Pressure	Capac	city			
psi	bar	lb/hr	kg/hr			
2	0.14	9,500	4,309			
5	0.34	12,400	5,625			
10	0.7	15,000	6,804			
25	1.7	20,400	9,253			
50	3.5	22,500	10,206			
75	5.2	22,500	10,206			
100	6.9	22,500	10,206			
150	10.3	22,500	10,206			
200	13.8	22,500	10,206			

Capacity Conversion Factors for Other Filling Heads						
Filling Head						
in 0 6 12 * 24 or greater						
mm	0	150	305	* 620 or greater		
Double Duty DD-6	0.7	1.0	1.08	* Consult factory		

NOTE: Fill head measured from drain to top of cap.

Double Duty® 12

Steam Trap/Pump Combination

Description

Armstrong's Double Duty-12 steam trap/pump combination offers a unique solution for draining condensate from heat exchangers and coils in various applications.

The Double Duty-12 is an ASME code stamped carbon steel vessel which offers you the versatility of combining a pump mechanism within a steam trap to assist in condensate drainage under all operating conditions.

Features

- ASME Section VIII "U" stamped vessel
- Inconel X-750 springs for long service life
- All stainless steel internals
- Easy access to the steam trap mechanism without removing cap assembly
- Externally removable vent and motive seats
- Separate pump and trap mechanisms

Maximum Operating Conditions

Maximum allowable pressure: 200 psig @ 400°F (14 bar @ 204°C) Maximum operating pressure: 200 psig @ 400°F (14 bar @ 204°C)

(Consult factory for different pressure/temperature ratings)

Materials

Body: Springs: Internals: ASME code carbon steel Inconel X-750 Stainless steel

For a fully detailed certified drawing, refer to CD-2472.

Double Duty® 12

Steam Trap/Pump Combination

Double Duty [®] 12 Pump Capacities					
Мо	tive	Back P	Back Pressure		acity
psi	bar	psi	bar	lb/hr	kg/hr
15 25 50 75 100 125 150 175 200	1 1.7 3.5 5 7 8.5 10.34 12 14	5	0.34	9,800 12,900 16,500 18,200 18,900 19,300 19,800 19,900 19,900	4,445 5,581 7,484 8,255 8,573 8,754 8,981 9,026 9,026
25 50 75 100 125 150 175 200	1.7 3.5 5 7 8.5 10.34 12 14	15	1	8,500 12,900 14,800 16,000 16,400 17,200 17,300 17,300	3,856 5,851 6,713 7,257 7,439 7,802 7,847 7,847
35 50 75 100 125 150 175 200	2.5 3.5 5 7 8.5 10.34 12 14	25	1.7	7,200 10,300 12,300 13,700 13,700 14,700 14,800 15,000	3,266 4,672 5,579 6,214 6,214 6,668 6,713 6,804
50 75 100 125 150 175 200	3.5 5 7 8.5 10.34 12 14	40	3	6,700 9,500 10,600 10,900 11,300 11,300 11,400	3,039 4,309 4,808 4,944 5,126 5,126 5,126 5,171
75 100 125 150 175 200	5 7 8.5 10.34 12 14	60	4	6,900 8,300 8,300 8,400 8,400 8,600	3,130 3,765 3,765 3,810 3,810 3,901
100 125 150 175 200	7 8.5 10.34 12 14	80	5.5	6,400 6,400 7,200 7,200 7,300	2,903 2,903 3,266 3,266 3,311

NOTE: Published capacities are based on the use of external check valves supplied by Armstrong.

Capacity Conversion Factors for Other Filling Heads					
Filling Head					
in 0 6 12 24 * 24 or greater					
mm	0	150	305	610	* 620 or greater
Double Duty DD-12	.7	.85	1	1.08	* Consult Factory

Double Duty [®] 12 Trap Capacities							
Differentia	I Pressure	Capactiy					
psi	bar	lb/hr	kg/hr				
2	.14	21,500	9,752				
5	.34	28,700	13,018				
10	.7	35,900	16,284				
25	1.7	52,100	23,632				
50	3.5	59,600	27,034				
75	5.2	72,000	32,659				
100	6.9	81,000	36,741				
150	10.3	93,000	42,184				

NOTE: Fill head measured from drain to top of cap. Weight in Ib/kg: 348 (158)

Armstrong Packaged Solutions

Armstrong can design and fabricate custom packages to fit your application needs.

Armstrong can design and fabricate all ASME packages to meet your plant piping requirements.

Standard

Armstrong's standard simplex (shown), duplex, triplex or quadraplex packages are unparalleled in quality and craftsmanship.

Accessories

Horizontal ASME Reservoirs/Horizontal Flash Tanks ASME stamped vessels designed for condensate collection or use as horizontal flash tanks. (Horizontal flash tanks with sparge tubes and drop legs are also available - consult factory)

Pre-Piped PRV Station PRV/Drip trap stations, pre-piped to single pumps or packages.

Eliminate water carryover in atmospheric vent pipe.

Digital Cycle Counters

- Open- or closed-loop designs
- Optional external dry contacts
- Intrinsically safe models available (consult factory)

- Stainless steel in-line non-slam check valves
- Bronze/stainless steel (standard)
- Cast steel/stainless steel
- wafer-style (flanged pumps) • Stainless steel/stainless steel
- wafer-style (flanged pumps) • Bronze (standard)
- Diolize (Standard)

Level Gauges

- Bronze glass gauge (standard)
- Carbon steel glass gauge
- Reflex gauge (HPI Service) consult factory

- Insulation Blankets

 Pumps
- Receivers
- (consult factory for models)

Options

Use of external check valves required for operation of pumping trap. • Inlet Swing Check Valve

- NPT Bronze ASTM B 62 Teflon[®] Disc Class 150 (Minimum)
- Outlet
- Stainless Steel Check Valve Class 150 (Minimum)
- In-line Check Valves Stainless Steel Non-Slam Check Valves
- Bronze Gauge Glass Assembly
- Steel Gauge Glass Assembly
- · Removable Insulation Jacket
- · Digital Cycle Counter

Pump/Package Accessories

Low Boy[™] packages enable you to utilize mechanical pump technology in limited height applications.

General Applications

Multiple or single traps discharging to vented receiver.

OPEN SYSTEMS

For the majority of applications, a steam trap is recommended on each piece of heat exchange equipment. The steam trap, or traps, discharge to a vented receiver where flash steam will be vented to the atmosphere. The pump trap is located downstream and below the vented receiver, allowing for proper fill head height. See tables on page 215 and 218 for vented receiver and vent sizing for an open system.

Note 1: Drip trap may be discharged into the receiver, the return line or to the drain.

Draining steam coil or heat exchanger when steam pressure may exceed the return line pressure, a steam trap is required on the discharge side of the pump trap. Request installation and operation manual IB-100.

CLOSED SYSTEMS

Applications exist where it is desirable to tie the vent line back into the heat exchange space, equalizing the pressure in the heat exchanger, reservoir/piping and the pump trap. This allows water to flow by gravity down to the pump where it can be returned. Valuable Btu's remain within the system due to no flash steam loss to the atmosphere through the vent. Closed system applications can also be used to drain liquid from the equipment under a vacuum. See installation and operation manual IB-100. See tables on pages 215 and 218 for reservoir pipe sizing.

Note 1: If steam motive is used, the drip trap may be discharged into the return line or to the drain.

Note 2: Vent piping from the pump trap can be connected to the inlet side of the equipment being drained if the pressure drop across the equipment is less than .5 psi (0.03 bar) and there is a minimum of 24" (609 mm) of fill head present.

Note 3: A vacuum breaker must be installed if the vent piping from the pump trap is connected to the receiver. If the equipment modulated down to a sub-atmospheric condition, the vacuum breaker will open to equalize the system and provide adequate drainage.

Double Duty® Typical Application

Common Applications for Condensate Armstrong Pump Traps

- Air Heating Coils
- Plate and Frame Heaters
- Jacketed Kettles
- Vacuum Space
- Flash Tanks
- Shell and Tube Heat Exchangers
- Absorption Chillers
- Low Pressure Applications

Any application using modulated control.

Condensate Drainage From Modulated Steam/Temperature Controlled Equipment

Problem: "Stall" Condition on Modulated Steam Control Modulated steam controls are required to change steam pressure in the heat exchanger to control accurate product output temperature. Due to these varying steam pressure changes, a stall condition exists in all heat exchangers where condensate cannot flow through the steam trap due to insufficient pressure differential. Under the stall condition, partial or complete flooding will occur. Reference figure above noting the stall conditions and problems that can occur.

Problems

- 1. Stall condition—no condensate drainage due to insufficient pressure to move condensate through the steam trap
- 2. Heat exchange equipment floods causing equipment
- damage from:
 - Water hammer due to steam and condensate occupying the same space
 - Corrosion due to carbonic acid forming from sub-cooled condensate reabsorbing trapped carbon dioxide and non-condensable gases

3. Inaccurate temperature control

Stall Chart

Use of the stall chart on right will determine the point where flooding will occur.

Application information required:	Example
DP = design pressure to heat exchanger	15 psig
BP = back pressure	5 psig
T1 = incoming temperature	60°F
T2 = exit temperature	140°F
MT = mean temperature	100°F
Stall Information: SL = stall load % ST = stall load temperature	85% 72°F

Armstrong Solution

The Armstrong pump trap and steam trap combination is the total solution to the stall condition by removing condensate under all system conditions. When the steam system pressure is sufficient to overcome the back pressure, the steam trap operates normally. When the system pressure falls to the stall condition, the pump trap operates and pumps condensate through the steam trap. Temperature control and condensate drainage are assured under all system conditions.

NOTE: The pump trap is sized for the stall conditions. **NOTE:** Closed-loop solution shown. See page 228 for vented system arrangement.

Pressure & Temperature Control

SECTION

3

Pressure Reducing Valves

Armstrong pressure reducing valves (PRVs) and temperature regulators help you manage steam, air and liquid systems safely and efficiently. And assure uninterrupted productivity—by maintaining constant pressure or temperature for process control. In short, Armstrong products make using resources safe and productive...as well as environmentally sound.

For decades, Armstrong has devoted itself to learning—and sharing—all it can about energy conservation as it relates to steam equipment. As part of our product/service network, PRVs and temperature regulators represent expanded options for a reliable Armstrong solution.

PRV Types

Steam, liquids and gases usually flow at high pressures to the points of final use. At these points, a pressure reducing valve lowers the pressure for safety and efficiency and to match the requirements of the application. There are three types of pressure reducing valves.

Direct Acting. The simplest of PRVs, the direct acting type operates with either a flat diaphragm or convoluted bellows. Since it is self-contained, it does not need an external sensing line downstream to operate. It is the smallest and most economical of the three types and designed for low to moderate flows. Accuracy of direct acting PRVs is typically +/-10% of the downstream set point.

Internally Piloted Piston-Operated. This type of PRV incorporates two valves—a pilot and main valve—in one unit. The pilot valve has a design similar to the direct acting valve. The discharge from the pilot valve acts on top of a piston, which opens the main valve. This design makes use of inlet pressure in opening a larger main valve than could otherwise be opened directly. As a result, there is a greater capacity per line size and greater accuracy (+/-5%) than with the direct acting valve. As with direct acting valves the pressure is sensed internally, eliminating the need for an external sensing line.

Externally Piloted. In this type, double diaphragms replace the piston operator of the internally piloted design. This increased diaphragm area can open a larger main valve, allowing a greater capacity per line size than the internally piloted valve. In addition, the diaphragms are more sensitive to pressure changes, and that means accuracy of +/-1%. This greater accuracy is due to the location, external of the valve, of the sensing line where there is less turbulence. This valve also offers the flexibility to use different types of pilot valves (i.e., pressure, temperature, air loaded, solenoid or combinations).

Selector Guide

Pressure Reducing Valve Selection										
If Fluid Io	If Inlet Pressure Is		If Outlet Pressure Is		If Maximum Cap	acity Is Less Than	Look for Model	Find on Dono		
	psig	bar	psig	bar	lb/hr	kg/hr	LOOK IOF WOURT	rillu oli raye		
	15 to 150	1 to 10	3 to 60	.21 to 4	425	193	GD-6N	276		
	5 to 15	.3 to 1	2 to 12	.14 to .8	5,643	2,565	GP-2000L	291		
Pressure Reducise Valve Selection If Inlet Pressure Is If Maximum Capity Is Less Than If Fluid Is If lot Price If Outlet Pressure Is If Maximum Capity Is Less Than 15 to 150 1 to 10 3 to 60 .21 to 4 425 193	GP-1000	285								
	15 to 300	1 to 20	1.5 to 200	.10 to 14	134,534	134,534 61,024 GP-2000 Se		290		
	15 to 300	1 to 20	3 to 140	.21 to 9.6	1,038	471	GD-30S/GD-45	272/274		
	15 to 250	1 to 17	3 to 140	.21 to 9.6	3,471	1,575	GD-30	272		
	15 to 425	1 to 30	1.5 to 248	.10 to 17	25,706	11,660	GP-2000CS	292		
	15 to 150	1 to 10	5 to 125	.34 to 8.6	4,505	2,048	GP-1000 SS/AS	285		
lf Fluid Is	If Inlet Pressure Is		If Outlet Pressure Is		If Maximum Capacity Is Less Than		Look for Model	Find on Page		
11 1 1010 13	psig	bar	psig	bar	gpm	l/min	LOOK IOI MOUCI	i nu on i age		
If Fluid Is Water and Non-corrosive Liquids If Fluid Is	20 to 230	1.4 to 16	7 to 80	.48 to 5.5	141	534	GD-24	279		
	15 to 150	1 to 10	3 to 60	.21 to 4.1	18	68	GD-6	276		
	15 to 150	1 to 10	7 to 100	.48 to 6.9	1,323	5,007	GD-200	280		
	15 to 300	1 to 20	7 to 130	.48 to 9.0	1,323	5,007	GD-200H	280		
lf Fluid Is	If Inlet Pressure Is If Outlet Pressure		ressure Is	If Maximum Cap	acity Is Less Than	Look for Model	Find on Page			
	psig	bar	psig	bar	scfm	m3/min	LOOK IOI MOUCI	i niu on i age		
	15 to 150	1 to 10	5 to 125	.34 to 8.6	413	702	GD-10F	277		
	15 to 300	1 to 20	5 to 125	.34 to 8.6	8,329	14,153	GD-10	277		
	15 to 150	1 to 10	3 to 60	.21 to 4.1	153	260	GD-6	276		
Air and	15 to 150	1 to 10	5 to 125	.34 to 8.6	6,488	11,024	GP-1000A	285		
Non-Corrosive Gases	15 to 150	1 to 10	7 to 100	.48 to 6.9	20,614	35,028	GD-200	280		
	15 to 300	1 to 20	7 to 130	.48 to 9.0	20,614	35,028	GD-200H	280		
	15 to 300	1 to 20	3 to 140	.21 to 9.6	374	764	GD-45	274		
	15 to 250	1 to 17	3 to 150	.21 to 9.6	1,249	2,122	GD-30	272		

NOTE: GD models are direct acting; GP models are pilot controlled.

Pressure and Temperature Control ID Charts

Illustration	Туре	Fluid	Conn. Type	Max. Allow. Press. psig	TMA °F	Body Material	Model	Max. Oper. Press. psig	Connection Size	Located on Page
	GD-30 Direct Acting Valves	Acting Steam, Air, Non-Corrosive Gases	NPT	250	410	Cast Bronze ASTM B584	GD-30	250	1/2", 3/4", 1", 1-1/2", 2"	070
				300	430	Stainless Steel AISI 316	GD-30S	300	1/2", 3/4", 1"	212
	GD-45 Direct Acting Valves	Steam, Air, Non-Corrosive Gases	NPT	300	450	Ductile Iron ASTM A536	GD-45	300	1/2", 3/4", 1"	274
	GD-6 Direct Acting Valves	Steam	NPT	150	450	Cast Iron ASTM A278	GD-6N	- 150	3/8", 1/2", 3/4", 1"	276
		Liquid, Gas			175		GD-6			
	GD-10 Direct Acting Valves	Air, Non-Corrosive Gases	NPT	300		Zinc and Aluminum	GD-10	300	1/4", 3/8", 1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	
				250	175		GD-10F	250	1/4", 3/8", 1/2", 3/4"	277
							AF-10		1/4", 3/8", 1/2", 3/4", 1"	

Pressure and Temperature Control ID Charts

Illustration	Туре	Fluid	Conn. Type	Max. Allow. Press. psig	TMA °F	Body Material	Model	Max. Oper. Press. psig	Connection Size	Located on Page
	GD-24 Direct Acting Valves	Water	NPT	230	175 210 (Viton)	Cast Bronze ASTM B584	GD-24	230	1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	279
Ä	GD-200 Direct Acting	Air, Water, Non-Corrosive	Flanged ANSI 150#	150	175	Dustila Iran	GD-200	150		
	Valves	and Non-Viscous Liquids	Flanged ANSI 300#	300	210 (Viton)	ASTM A536	GD-200H	300	2", 2-1/2", 3", 4", 5", 6"	280
	GD-20R Direct Acting Valves	Water, Non-Corrosive Gases	Flanged ANSI 150#	150	175	Ductile Iron ASTM A536	GD-20R	150	1/2", 3/4", 1", 1-1/4", 1-1/2", 2", 2-1/2", 3", 4", 5", 6"	282
	GP-1000 Internal		NPT	250		Ductile Iron		250	1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	
	Pilot Piston Operated	Steam	Flanged ANSI 150#	150	450	ASTM A536	GP-1000	150	2", 2-1/2", 3", 4"	285
	GP-1000 A Internal	Air,	NPT			Ductile Iron			1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	
	Pilot Piston Operated	Non-Corrosive Gases	Flanged ANSI 150#	150	175	ASTM A536	GP-1000A	150	2", 2-1/2", 3", 4"	285
	GP-1000 SS Internal Pilot Piston Operated	Steam	NPT	150	450	Stainless Steel AISI 304	GP-1000SS	150	1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	285
	GP-1000 AS Internal Pilot Piston Operated	Steam	NPT	150	450	Stainless Steel AISI 304	GP-1000AS	150	1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	285
	GP-2000 External Pilot		NPT	300			GP-2000	300	1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	
<u></u>	Operated	Steam	Flanged ANSI 150	185	450	Ductile Iron ASTM A536	Integral or Remote	185	0" 0-1/0" 3" 4" 6"	290
			Flanged ANSI 300	300			Pilot	300	2,2-1/2,3,4,0	
,	GP-2000 L External Pilot		NPT						1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	
	Diaphragm Operated (low pressure)	Steam	Flanged ANSI 150#	150	450	ASTM A536	GP-2000 L	15	2", 2-1/2", 3", 4", 6"	291
Ļ	GP-2000CS External Pilot		NPT	450				450		
r an	Diaphragm Operated	Steam	Flanged ANSI 150	140	600	Carbon Steel Grade WCB	GP-2000CS	140	1/2", 3/4", 1", 1-1/4", 1-1/2", 2", 2-1/2", 3" 4"	292
			Flanged ANSI 300	450				450	U, H	
	GP-2000K-1, GP-2000K-3,		NPT	300			GP- 2000K-1	300	1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	
	GP-2000K-6 External Pilot	Steam	Flanged ANSI 150#	185	450	Ductile Iron ASTM A536	GP- 2000K-3	185	2" 2-1/2" 3" <i>1</i> " 6"	293
	Operated		NPT	300			GP- 2000K-6	300	2,2112,3,4,0	

Pressure and Temperature Control ID Charts

Illustration	Туре	Fluid	Conn. Type	Max. Allow. Press. psig	TMA °F	Body Material	Model	Max. Oper. Press. psig	Connection Size	Located on Page
	GD-2000K Direct Acting		NPT	300				300	1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	
	Diaphragm Operated	Steam	Flanged ANSI 150	185	450	Ductile Iron ASTM A536	GD-2000K	185	0	294
			Flanged ANSI 300	300				300	2", 2-1/2", 3", 4"	
	OBK-2000 Pneumatic Temperature Pilot	Air	NPT	250 (Process) 25 (Air)	400	Brass	OBK-2000	250 (Process) 25 (Air)	1/2" Process 1/8" Air	297
L L	GP-2000R External Pilot		NPT	200				200	1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	
	Diaphragm Operated	Steam	Flanged ANSI 150	185	450	Ductile Iron ASTM A536	GP-2000R	185	0" 0 1/0" 2" 4" 6"	298
			Flanged ANSI 300	200				200	2,2-1/2,3,4,6	
, , , , , , , , , , , , , , , , , , ,	GP-2000 On/Off		NPT						1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	
	External Pilot Solenoid Operated Valve	Steam	Flanged ANSI 150 Flanged	150	366	Ductile Iron ASTM A536	GP-2000	150	2", 2-1/2", 3", 4", 6"	301
	OB-30/31	Water,	ANSI 300	150		Ductile Iron ASTM A536 Bronze ASTM B584	OB-30	150		
	Temperature Regulators	Steam and Non-Corrosive Liquids	NPT	250	366	Bronze ASTM B584	(Heating) OB-31 (Cooling)	250	1/2", 3/4", 1"	304
	OB-2000 Piloted		NPT	300		Pilot		300	1/2", 3/4", 1", 1-1/4", 1-1/2" 2"	
	Diaphragm Operated	Steam	Flanged ANSI 150	185	450	ASTM B584	OB-2000	185	,_	306
	Temperature Regulator		Flanged ANSI 300	300		Ductile Iron A536		300	2", 2-1/2", 3", 4", 6"	
	OB-2000 L Piloted		NPT			Pilot Bronze			1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	
	Diaphragm Operated Temperature Regulator (low pressure)	Steam	Flanged ANSI 150	150	450	ASTM B584 Valve Ductile Iron A536	0B-2000 L	15	2", 2-1/2", 3", 4"	308
<u>ñ</u> i	OB-2000PT Pressure/		NPT	300		Temp. Pilot Bronze		300	1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	
	Piloted Diaphragm	Steam	Flanged ANSI 150	185	450	ASTM B584 Valve and	0B-2000PT	185		310
	Temperated Regulator		Flanged ANSI 300	300		50 Valve and UB Pressure Pilot Ductile Iron A536		300	2", 2-1/2", 3", 4", 6"	
	Control Valve		NPT	300				300	1/2", 3/4", 1", 1-1/2", 2"	
	Pnuematic Actuated	Steam, Liquid	Flanged ANSI 150	185	450	Carbon Steel A216 Gr. WCB	1100	185	1/2", 3/4", 1", 1-1/2".	314
	Control Valve		Flanged ANSI 300	300				300	2", 2-1/2", 3, 4, 6, 8	

3

Application Data—Pressure Reducing Valves

Direct Acting Single Stage Reduction

Typical Direct Acting PRV Installation

External Pressure Pilot Single Stage Reduction

Typical External Pressure Pilot PRV Installation

Application Data—Pressure Reducing Valves

External Pressure Pilot Two Stage Reduction

This piping application is used when the pressure turndown ratio is greater than that of a single valve. Pressure reduction is accomplished by using two valves in series to reduce the pressure in stages. Depending on the volume of fluid required and pressure reduction, the second stage valve typically will be larger in size than the first stage valve. Unless a specific intermediate pressure of the fluid is required, this intermediate pressure is typically selected so as to keep the pressure turndown ratios of both valves as similar as possible. This will help equalize and maximize the service life of both valves.

External Pressure Pilot One-Third to Two-Thirds Reduction Station

This piping application is used when the flow rangeability is greater than that of a single valve. Better control is achieved by piping two valves in parallel and sizing one to handle 1/3 the maximum load and the other 2/3 the maximum load. These two valves are staged by offsetting their pressure set points by 2-3 psig. The smaller valve is usually the lead valve and would have a pressure set point at the desired pressure. The larger valve is usually the lag valve and would have a pressure set point of 2-3 psig below the lead valve. This offset of set points will stage the valves so that the lag valve will remain closed until the lead valve can no longer pass the required flow and is wide open. This lack of flow will cause the set pressure to drop slightly until the lag valve opens and regulates at the higher demands of flow.

3

Application Data—Pressure Reducing Valves

Air Loaded External Pilot Single Stage Reduction

Typical Air Loaded External Pilot Reduction Station. Complete with remote located air loading control panel.

External Back Pressure Pilot Installation

Typical External Pilot Back Pressure Installation. Used to maintain a constant upstream pressure in the piping system.

Sizing Data

Selection Formulas

 $C_{\rm V}$ Value and Calculations

1. For Steam:

P ₁		W
when $P_2 > \frac{1}{2}$	$C_v =$	$2.1\sqrt{\Delta P (P_1 + P_2)}$
*When $P_{1} \leq \frac{P_{1}}{P_{1}}$	с –	W
2 vinen F2	$\mathbf{U}_{\mathbf{V}} =$	1.71 (P ₁)
2. For Gas:		
P ₁		Q √G (T+460)
When $P_2 > \frac{1}{2}$	$C_v =$	963 $\sqrt{\Delta P (P_1 + P_2)}$
When $P_{1} \leq \frac{P_{1}}{2}$	C -	Q
2 2	υ _ν –	36.39 (P ₁)
3. For Liquid:		
•	с –	(GPM) $\sqrt{{\sf G}}$
	$O_{V} =$	$\sqrt{\Delta P}$
Formula Key		·

- W = Maximum flow capacity of steam, lbs/hr
- P_1 = Inlet pressure, psia (psig + 14.7)
- P₂ = Outlet pressure, psia (psig + 14.7)
- ΔP = Pressure drop (P₁ P₂) psi
- Q = Maximum flow capacity of gas SCFH
- G = Specific gravity
- T = Fluid temperature °F
- GPM = Maximum flow capacity of liquid GPM

 C_v = Valve flow coefficient

* Formula applies only to piloted valves. With direct acting valves, at critical flow or sonic flow, capacities diminish with greater differential pressure.

Ordering Information

C_{ν} Values for Each Product																										
												Co	nnectio	on Size	9											
Model	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
	1/4	8	3/8	10	1/2	15	3/4	20	1	25	1-1/4	32	1-1/2	40	2	50	2-1/2	65	3	80	4	100	5	125	6	150
GD-10	1	.4	1	.4	1	.4	2	.6	5	.8	5.	8	5.	8	4	13	_	-	-	_	-	_	-	_	-	_
GD-10F	1	.4	1	.4	1	.4	2	.6	5	.8	-	-	-	-	-	_	-	_	-	_	-	_	-	-	-	-
GD-6/6N	-	_		35		5	1	.0	1	.5	-	-	-	-	-	_	-	_	-	_	-	_	-	-	-	_]
GD-200/200H	-	_	-	_	-	_	-	_	-	_	-	-	-	-	1	6	2	8		36	6	68	1	75	1	08
GD-20R	-	_	-	_	1	.5	2	.7		4	8	;	1	1	1	4	2	3		32	2	18	1	75	1	08
GD-24	-	_	-	_	1	.5	1	.9		3	4		7	7	1	0	-	_	-	_	-	_	-	_	-	_]
GD-30/GD-45	-	_	-	_	1	.3	1	.5	2	.5	-	-	5.0	6*	8.	5*	-	_	-	_	-	_	-	_	-	_]
GP-2000 Series	-	_	-	_		5	7	.2	1(0.9	14	.3	18	.8	3	32	6	0		78	1	20	-	_	2	50
GP-1000	-	_	-	_		1	2	.3		4	6.	5	9)	1	6	2	5		36	6	64	-	_	-	_
OB-30/OB-31	-	_	-	_	3	.7	4	.6	5	.8	-	-	-	-	-	_	-	_	-	_	-	_	-	_	-	_
0B-2000/0B-2000PT	-	_	-	_		5	7	.2	10	0.9	14	.3	18	.8	3	32	6	0		78	1	20	-	_	_	_

NOTE: 50% reduced ports are available for all 2000 Series valves. Capacities and Cv are reduced by 1/2. GD-6/6N and GD-30/45 capacities cannot be determined with a formula consult capacity tables. Reference note under formula key above.

*GD-30 only.

When ordering please specify:

- 1. Model number
- 2. Connection size and type
- 3. Quantity
- 4. Service fluid
- 5. Specific gravity (if other than steam, air, water)
- 6. Fluid temperature
- 7. Maximum inlet pressure
- 8. Desired delivered pressure (reduced pressure)
- 9. Flow rate
- 10. Special conditions (if any)

Pressure & Temperature Control Pressure Reducing Valves

Direct Acting

For Steam, Air and Non-Corrosive Gas Service

The simplest of pressure reducing valves, the direct acting type operates with either a flat diaphragm or convoluted bellows. Since it is self-contained, it does not need an external sensing line downstream to operate. It is the smallest and most economical of the three types and is designed for low to moderate flows. Accuracy of direct acting PRVs is typically +/-10%.

GD-30/30S

For Steam, Air and Non-Corrosive Gases

The GD-30 is a compact, high performance direct acting valve. Economical to buy and use, it's ideal for those low to moderate flow applications where accuracy of +/-10% is acceptable. The GD-30 is well suited for laundry and dry cleaning equipment, hospital equipment, tire molds, humidifiers, small heaters and applications in food processing. It provides tight shutoff for dead-end service on steam. Turndown ratio is 10:1 and ANSI Class IV Shutoff.

For a fully detailed certified drawing, refer to: GD-30 (bronze only) CDY #1038 GD-30S (stainless steel) CDY #1089

GD-30/305	S Specificati	ons							
Model	Inlet	Reduced Pressure	Snring	Minimum		Maximum		Materials	
Number	Pressure psig (bar)	psig (bar)	Color	Differential psig (bar)	Application	Temp. °F (°C)	Body	Valve/Seat	Bellows
GD-30	15 - 250 (1 - 17)	3 - 15 (.21 - 1.0)	Yellow	7 (49)	Steam, Air, Non-Corrosive Gases	410 (210)	Cast Bronze ASTM B584	Stainless Steel	Phosphor Bronze ASTM B103*
GD-30S	15 - 300 (1 - 20)	50 - 140 (3.4 - 9.6)	Green	7 (.40)	Steam	430 (220)	Stainless Steel AISI 316	AISI 440/304	Stainless Steel AISI 316L

*Stainless steel optional

GD-30/30S Dimens	ions and Weig	ghts								
					Connect	ion Size				
Symbol	in	mm	in	mm	in	mm	in	mm	in	mm
	1/2	15	3/4	20	1	25	1-1/2*	40	2*	50
L	3-1/8	80	3-3/8	85	3-3/4	95	5-1/2	140	5-7/8	150
H ₁	2	47	2	47	2	47	3	77	3	77
Н	7-1/2	191	7-1/2	191	7-1/2	191	12-1/8	307	12-1/8	307
Weight Ib (kg)	4-1/4	(1.9)	4-1/4	(1.9)	4-1/2	(2.0)	21-3/8	8 (9.7)	22 (10)
Cv	1	.3	1	.5	2	.5	5	.6	8.	5

NOTE: GD-30 capacities cannot be determined with a formula—consult capacity tables. Reference note under formula key on page 269. *GD-30S available in 1/2", 3/4", and 1" only.

GD-30/30S

GD-30 Ca	apacities–	-Steam												
			lb/hr								kg/hr			
Inlot	Outlat		Co	nnection S	ize]	Inlat	Outlet		Co	nnection S	ize	
IIIIei	Outlet			in				Inter	Uutiet			mm		
ps ps	sig	1/2	3/4	1	1-1/2	2		ba	ar	15	20	25	40	50
C _v F	actor	1.3	1.5	2.5	5.6	8.5		C _v Fa	actor	1.3	1.5	2.5	5.6	8.5
15	7	49	56	92	198	297		1.0	.5	22	25	42	90	135
20	13	53	61	105	216	331		1.4	.9	24	28	48	98	150
	7	42	55	63	180	264			.5	19	25	35	82	120
	23	62	71	112	242	408			1.6	28	32	51	110	185
30	15	53	60	101	209	309		2.0	1.0	24	27	46	95	140
	3	33	40	60	139	216			.2	15	18	27	63	98
40	32	99	121	187	407	61/			2.2	45	55	85	185	280
40	20	/9	97	159	330	517		2.8	1.4	30	44	12	150	235
	4	40	142	040	109	204			.3	10	20	30	045	120
50	40	130	143	242	539	837		24	2.8	59	65		245	380
50	20	99	C0	10/	407	020		3.4	1.4	40	52	80	100	200
	2	40	154	00	193	297			.3	22	28	40	00	130
	48	157	104	200	004	899			3.3	02	70	120	200	408
60	40	100	100	209	01/	504		4.0	2.0 1.0	00 /1	10	131	200	440
	10	90	104	170	374	204			1.2	41	47		1/0	200
	0	170	13	99	220	331			.4	20	33	40	100	100
	04 E4	1/0	205	342	730	1,100			4.4	80	93	100	330	530
80	04	101	220	303	102	740		5.5	3.7	80 55		100	300	240
	23	121	137	220	489	749			1.0	07	02	100	105	340
	0	00	040	108	231	303			.0	27	30	49	202	615
	80	203	242	397	003	1,300			0.0	92	110	100	392	010
100	40	100	202	437	900	1,400		6.9	4.0	102	105	190	430	500
	40	198	231	3/0	007	1,270			2.8	90	105		380	015
	10	00	79	132	297	4/3			./	31	105	00	130	215
	90	231	2/0	402	991	1,520			0.0	105		205	400	090
120	10	2/0	311	210	1,100	1,010		8.3	4.0	120	141	230	530	020 005
	40	240	207	400	900	705			0.1	109 E0		204	440	200
	12	007	121	190	402	1 060			0.	120	151	90	210	320
	120	207	401	705	1,212	1,002			0.3	165	101	200	550 605	040
150	55	204	952	505	1,001	2,309		10.3	2.9	105	160	270	590	010
	15	290	303	090	1,270	2,005			3.0	60		2/0	000	910
	140	102	100	204	1 710	040			0.7	105	70	260	200	1 015
	140	400	40J 507	794 960	1,719	2,077			9.7	105	220	200	00	1,215
180	70	430	420	720	1,029	2,032		12.4	0.0	175	105	225	725	1,200
	18	165	187	200	683	1 035			4.0	75	85	1/0	210	470
	1/10	/61	518	871	1 083	3 063			9.7	209	235	305	900	1 300
	140	401	5/0	0/1 Q0/1	2 005	3,005			8.0	205	2/5	/10	Q10	1,00
200	80	/130	/06	827	1 818	2 810		13.8	5.5	105	295	375	825	1,400
	20	200	2/2	386	8/18	1 300			1 /	95	110	175	385	590
	1/0	/85	573	9/18	2 060	3 105			9.7	220	260	/130	035	1 / 50
	140	405	58/	940	2,000	3,135			8.0	220	265	430	933	1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /
225	85	463	5/0	901 901	1 083	3 063		15.5	5.0	210	2/15	/10	940	1 300
	23	254	298	496	1,000	1 675			1.6	115	135	225	490	760
	140	525	606	1 014	2 2 2 2 6	3 438			9.7	238	275	460	1 010	1 560
	120	551	584	1,014	2 248	3 471			8.3	250	265	471	1 020	1,000
250	70	463	529	893	1 939	2 997		17.2	4.8	210	240	405	880	1.360
	25	276	320	529	1 1 1 4 6	1 796			17	125	145	240	520	815
	140	529	613	1 023					97	240	278	464		_
	120	520	613	1 023	_	_			83	2/10	278	464	_	_
275	70	470	5/12	9020	_			18.9	4.8	212	2/6	409		
	20	205	342	562	_				1.0	12/	156	255	_	_
	1/0	520	612	1 022					0.7	2/0	279	161	-	_
	100	529	612	1,023	_				60	240	270	404	_	
300	70	179	551	020	_			20.0	1.9	240	210	404		
1	20	200	250	520	_	_			9.0	140	160	920	-	_

NOTE: For air capacities scfm, multiply steam capacities (lb/hr) by 0.36. For air capacities m3/hr, multiply steam capacities (kg/hr) by 1.35. Maximum pressure reduction ratio 10:1.

Externally Piloted

For Steam Service

This type is similar to the internally piloted piston-operated valve in that a pilot and main valve are utilized. However, double diaphragms replace the piston. This increased diaphragm area can open a larger main valve, allowing a greater capacity per line size than the internally piloted piston-operated valve. In addition, the diaphragms are more

sensitive to pressure changes, which results in accuracy of \pm 1%. This greater accuracy is due to the positioning of the sensing line downstream, where there is less turbulence. This valve also offers the flexibility to use different types of pilot valves (i.e., pressure, temperature, air loaded, solenoid or combination).

GP-2000

For Steam Service

The GP-2000 is a high performance, externally piloted reducing valve for large capacity requirements. Typical use is on intermittent service, including applications such as heat exchangers, steam coils, rotating dryers, process equipment and heating systems. With a 20:1 rangeability and high C_{v} , the GP-2000 is reliable and accurate (+/-1% of pressure set point from 5% to 100% of flow) over a long, trouble-free service life. Hardened stainless steel working parts

are renewable in-line. Single seated for dead-end service. Available with both NPT (1/2" - 2") and flanged connections in 1/2" - 6" sizes. ANSI Class IV Shutoff.

For a fully detailed certified drawing, refer to:GP-2000CDY #1008GP-2000 FlangedCDY #1007

GP-2000 Spe	cifications								l i	
		Doducod		Movimum	Minimum			Materials		
Application	Inlet Pressure psig (bar)	Pressure psig (bar)	Spring Color	Temperature °F (°C)	Differential psig (bar)	Body	Main Valve/Seat	Pilot Valve/Seat	Diaphragm	Color
Steam	NPT 15 - 300 (1 - 20) 15 - 185 (1 - 13) 150 lb. Flanged 15 - 300 (1 - 20) 300 lb. Flanged	*1.5 - 3 (.1021) 3 - 21 (.21 - 1.4) 15 - 200 (1 - 13.8)	Yellow Yellow Green	450 (232)	7 (.48)	Ductile Iron ASTM A536	Stainless St	eel AISI 420	Stainless Steel AISI 301	Dark Gray

*NOTE: When using this spring range, remove one (1) pilot diaphragm. Capacities are reduced by 1/2 of capacity chart when this spring is being used.

GP-2	000	Dimensi	ons	and Weig	ghts																					
			Fa	ace-to-Fa	ace "	L"		٨		E		L Into		LI Dom	o+0	ц		ц				We	eight	1		
01	26	NP	Г	150	#	300	#	A		г		n mei	jrai		ULE	п ₁		п ₂	2	Ν	PT	15	0#	30	0#	Cv*
in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	lb	kg	lb	kg	lb	kg	
1/2	15	5-15/16	150	5-9/16	141	5-3/4	147	7-15/16	200	6-7/8	176	15-3/4	398	14-1/4	362	6-3/4	170	9-5/8	244	34	14	36	15	42	19	5.0
3/4	20	5-15/16	150	5-1/2	140	5-3/4	147	7-15/16	200	6-7/8	176	15-3/4	398	14-1/4	362	6-3/4	170	9-5/8	244	34	14	36	15	42	19	7.2
1	1 25 6-5/16 160 5-3/4 147 6-1/4 159 8-15/16 226 7-1/16 179 15-15/16 404 14-7/16 367 6-15/16 175 10 254 44 19 48 20 54 23 10.9 1-1/4 32 7-1/8 180 6-1/2 166 7-1/16 179 8-15/16 226 7-7/16 188 17-1/8 434 15-1/8 384 7-5/8 192 11-1/8 283 51 22 53 22 59 25 14.3																									
1-1/4	32	7-1/8	180	6-1/2	166	7-1/16	179	8-15/16	226	7-7/16	188	17-1/8	434	15-1/8	384	7-5/8	192	11-1/8	283	51	22	53	22	59	25	14.3
1-1/2	40	7-1/8	180	7-7/16	189	7-15/16	202	8-15/16	226	7-7/16	188	17-1/8	434	15-1/8	384	7-5/8	192	11-1/8	283	51	22	55	23	61	26	18.8
2	50	9-1/8	230	8-9/16	217	9-1/8	232	10-15/16	276	7-11/16	195	19-5/8	498	16	406	8-1/2	216	12-5/8	321	75	33	81	36	84	36	32
2-1/2	65	-	-	10-15/16	278	11-1/2	292	13-13/16	352	8-5/16	211	21-3/4	552	17-5/16	440	9-13/16	251	14-3/4	375	-	-	142	65	150	65	60
3	80	-	-	11-3/4	298	12-7/16	315	13-13/16	352	8-3/4	222	22-5/8	575	17-15/16	456	10-7/16	264	15-3/4	400	-	-	155	69	166	72	78
4	100	-	-	13-1/2	343	14-1/8	359	15-13/16	401	9-7/16	239	25-15/16	658	20-1/8	511	12-5/8	321	19-1/4	489	-	-	247	112	264	119	120
6	150	-	-	18-1/8	460	19	483	19-3/4	502	-	-	31-3/4	806	-	-	16-1/4	414	26-1/2	673	-	-	507	230	553	252	250
* = 0.0/	rodu	and nor	0.10	ilabla for	01700	1/0"	л" ті		o obc	uld bo c	livida	d by 0 to	a ant	raduad	nort	<u></u>										

 t 50% reduced port available for sizes 1/2" - 4". The C_v value should be divided by 2 to get reduced port C_v.

For capacities see page 299.

GP-2000L

For Steam Service

The GP-2000L is a high performance, externally piloted reducing valve for large capacity and low inlet pressure requirements. The GP-2000L is reliable and accurate (+/-1% of pressure set point from 5% to 100% of flow) over a long, trouble-free service life. Hardened stainless steel working

parts are renewable in-line. Single seated for dead-end service. Available with both NPT (1/2" - 2") and flanged connections in 1/2" - 4" sizes. ANSI Class IV Shutoff.

GP-2000L Sp	ecifications									
	Inlet	Reduced		Maximum	Minimum			Materials		
Application	Pressure psig (bar)	Pressure psig (bar)	Spring Color	Temperature °F (C)	Differential psig (bar)	Body	Main Valve/ Seat	Pilot Valve/ Seat	Diaphragm	Color
Steam	5 - 15 (.3 - 1)	2 - 12 (.138)	Yellow	450 (232)	3 (.21)	Ductile Iron ASTM A536	Stainless St	eel AISI 420	Stainless Steel AISI 301	Dark Gray

GP-2	000L	Dimen	sions	and We	ights																					
e:-			Fa	ace-to-Fa	ice "	L"		٨		E		Li Intor	Invel	LI Dom	a ła	ш		ш				We	eight	t		
31/	26	NP1	Г	150	#	300	#	A 1		г		пшеі	jrai		ULE	ⁿ 1		<u>п</u> 2	2	Ν	РТ	15	0#	30	0#	C_V^{*}
in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	lb	kg	lb	kg	lb	kg	
1/2	15	5-15/16	150	5-9/16	141	5-3/4	147	7-15/16	200	6-7/8	176	15-3/4	398	14-1/4	362	6-3/4	170	9-5/8	244	34	14	36	15	42	19	5.0
3/4	20	5-15/16	150	5-1/2	140	5-3/4	147	7-15/16	200	6-7/8	176	15-3/4	398	14-1/4	362	6-3/4	170	9-5/8	244	34	14	36	15	42	19	7.2
1	25	6-5/16	160	5-3/4	147	6-1/4	159	8-15/16	226	7-1/16	179	15-15/16	404	14-7/16	367	6-15/16	175	10	254	44	19	48	20	54	23	10.9
1-1/4	32	7-1/8	180	6-1/2	166	7-1/16	179	8-15/16	226	7-7/16	188	17-1/8	434	15-1/8	384	7-5/8	192	11-1/8	283	51	22	53	22	59	25	14.3
1-1/2	40	7-1/8	180	7-7/16	189	7-15/16	202	8-15/16	226	7-7/16	188	17-1/8	434	15-1/8	384	7-5/8	192	11-1/8	283	51	22	55	23	61	26	18.8
2	50	9-1/8	230	8-9/16	217	9-1/8	232	10-15/16	276	7-11/16	195	19-5/8	498	16	406	8-1/2	216	12-5/8	321	75	33	81	36	84	36	32
2-1/2	65	-	-	10-15/16	278	11-1/2	292	13-13/16	352	8-5/16	211	21-3/4	552	17-5/16	440	9-13/16	251	14-3/4	375	-	-	142	65	150	65	60
3	80	-	-	11-3/4	298	12-7/16	315	13-13/16	352	8-3/4	222	22-5/8	575	17-15/16	456	10-7/16	264	15-3/4	400	-	-	155	69	166	72	78
4	100	-	-	13-1/2	343	14-1/8	359	15-13/16	401	9-7/16	239	25-15/16	658	20-1/8	511	12-5/8	321	19-1/4	489	-	-	247	112	264	119	120

*50% reduced port available for sizes 1/2" - 4". The C_{ν} value should be divided by 2 to get reduced port C_{ν}

For capacities see page 309.

GP-2000CS Carbon Steel Body

For Steam Service

The GP-2000CS is a high performance, externally piloted reducing valve for large capacity requirements. Typical use is on intermittent service, including applications such as heat exchangers, steam coils, rotating dryers, process equipment and heating systems. With a 20:1 rangeability and high C_V , the GP-2000CS is reliable and accurate (+/-1% of pressure set point from 5% to 100% of flow) over a long, trouble-free service life. Stellited stainless steel working

parts are renewable in-line. Single seated for dead-end service. Available with both NPT (1/2" - 2") and flanged connections in 2" - 4" sizes.

For a fully detailed certified drawing, refer to: GP-2000 CDY #1008 GP-2000 Flanged CDY #1007

GP-2000GP-20	000CS Specificatio	ons								
	Inlat Prossura	Reduced	Spring	Maximum	Minimum			Materials		
Application	psig (bar)	Pressure psig (bar)	Color	Temperature °F (°C)	Differential psig (bar)	Body	Main Valve/Seat	Pilot Valve/Seat	Diaphragm	Color
	NPT 15 - 450 (1 - 31)	3 - 21 (.21 - 1.4)	Yellow			Carbon	Stainless			
Steam	150 lb Flanged 15 - 140 (1 - 9.6)	15 - 200 (1 - 13.6)	Green	600°F (315°C)	7 (.48)	Steel WCB ASTM216	Steel 304 Stainless Steel	420 Stainless Steel	Stainless Steel AISI 301	Silver
	300 lb Flanged 15 - 450 (1 - 31)	190 - 300 (13.1 - 20.6)	Brown			A216M-08	Stellite			

GP-20	P-2000CS Dimensions and Weights																							
Si	78			L				Δ		F		Н		н		На				W	eight			
	20	NP1	Γ	150#		300	#					Integra	al	ריי		12		N	РТ	15	0#	30	0#	C _v
in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	lb	kg	lb	kg	lb	kg	
1/2	15	5-15/16	150	-	-	-	-	7-15/16	200	6-7/8	176	15-3/4	398	6-3/4	170	9-5/8	244	35	16	-	-	-	-	5.0
3/4	20	5-15/16	150	-	-	-	-	7-15/16	200	6-7/8	176	15-3/4	398	6-3/4	170	9-5/8	244	35	16	-	-	-	-	7.2
1	25	6-5/16	160	-	-	-	-	8-15/16	226	7-1/16	179	15-15/16	404	6-15/16	175	10	254	49	22	-	-	-	-	10.9
1-1/4	32	7-1/8	180	-	_	-	-	8-15/16	226	7-7/16	188	17-1/8	434	7-5/8	192	11-1/8	283	53	24	-	-	_	-	14.3
1-1/2	40	7-1/8	180	-	-	-	-	8-15/16	226	7-7/16	188	17-1/8	434	7-5/8	192	11-1/8	283	53	24	-	-	-	-	18.8
2	50	9-1/8	230	8-9/16	217	9-1/8	232	10-15/16	276	7-11/16	195	19-5/8	498	8-1/2	216	12-5/8	321	62	37	88	40	92	42	32
2-1/2	65	-	-	10-15/16	278	11-1/2	292	13-13/16	352	8-5/16	211	21-3/4	552	9-13/16	251	14-3/4	375	-	-	159	72	168	76	60
3	80	-	-	11-3/4	298	12-7/16	315	13-13/16	352	8-3/4	222	22-5/8	575	10-7/16	264	15-3/4	400	_	-	174	79	185	84	78
4	100	-	-	13-1/2	343	14-1/8	359	15-13/16	401	9-7/16	239	25-15/16	658	12-5/8	321	19-1/4	489	-	-	276	125	293	133	120

For capacities see page 299.

GP-2000, 2000K-1, 3 & 6, GD-2000K, GP-2000R, GP-11S

Capacities for Steam

GP-2000, G	P-2000K-1, G	P-2000K-3, G	P-2000K-6, (GD-2000K, GF	P-2000R Capa	icities—Stea	m lb/hr				
					ID/I	1r Connect	ion Size				
Inlet	Outlet					i	1				
p	sig	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3	4	6
C _V I	-actor	201	200	10.9	14.3 575	18.8 756	1 287	0U 2 /13	/8 3 137	120	10.055
15	3	250	361	546	716	942	1,207	3 005	3,137	6,010	12 521
	13	219	316	478	628	825	1,404	2,633	3,423	5,267	10,972
20	3	313	451	683	896	1,178	2,006	3,761	4,889	7,521	15,669
25	18	236	340	515	676	889	1,513	2,837	3,688	5,673	11,819
20	3 - 5	339	489	740	971	1,276	2,172	4,073	5,295	8,146	16,972
30	23	252	363	550	721	948	1,614	3,026	3,934	6,052	12,609
	3 - 7	382	550	833	1,093	1,437	2,446	4,586	5,962	9,172	19,109
40	33	281	405	613	804	1,057	1,799	3,3/3	4,385	6,747	14,056
40	20	395	509	1 020	1,130	1,400	2,529	4,741	0,104	9,463	19,700
	42	327	471	713	936	1,730	2,993	3 927	5 105	7 853	16.361
50	30	491	707	1.071	1,405	1,847	3.143	5.894	7.662	11.788	24,557
	3 - 17	553	797	1,206	1,582	2,080	3,540	6,638	8,630	13,276	27,659
	51	373	537	814	1,067	1,403	2,389	4,479	5,823	8,958	18,662
60	45	471	679	1,028	1,348	1,773	3,017	5,657	7,355	11,315	23,572
00	35	586	843	1,277	1,675	2,202	3,748	7,027	9,135	14,053	29,278
	3 - 22	639	920	1,392	1,827	2,401	4,088	7,664	9,963	15,328	31,934
	63	4/1	678	1,026	1,346	1,769	3,012	5,647	7,341	11,295	23,530
75	55	593	854	1,292	1,696	2,229	3,794	7,114	9,249	14,229	29,643
	45	703	1 104	1,552	2,010	2,043	4,499	9 203	11 964	18 406	38 347
	85	595	857	1 298	1 703	2 239	3 811	7 145	9 289	14 291	29 773
	75	751	1.081	1.636	2.147	2.822	4.804	9.007	11.709	18.014	37.529
100	60	914	1,316	1,992	2,614	3,436	5,849	10,967	14,257	21,934	45,696
	5 - 42	981	1,412	2,138	2,805	3,687	6,276	11,768	15,299	23,536	49,034
	106	739	1,064	1,610	2,112	2,777	4,727	8,863	11,522	17,725	36,928
125	100	837	1,206	1,825	2,395	3,149	5,359	10,048	13,063	20,097	41,869
	/5	1,125	1,619	2,451	3,216	4,228	7,197	13,494	17,543	26,989	56,226
	/ - 55	1,194	1,720	2,604	3,410	4,491	7,644	14,333	12 751	28,666	59,722
150	100	1 241	1 787	2 705	3 549	4 666	7 943	14 893	19,360	29,785	62 052
100	8 - 67	1.408	2.028	3.070	4.027	5.295	9.012	16.898	21.968	33.796	70.409
	148	1,024	1,475	2,233	2,929	3,851	6,555	12,291	15,978	24,581	51,211
175	125	1,348	1,940	2,938	3,854	5,067	8,624	16,170	21,021	32,341	67,376
175	100	1,587	2,285	3,459	4,537	5,965	10,154	19,038	24,750	38,076	79,325
	9 - 80	1,622	2,336	3,536	4,639	6,098	10,380	19,463	25,302	38,926	81,097
	170	1,149	1,655	2,506	3,287	4,322	7,356	13,792	17,930	27,585	57,468
200	150	1,446	2,083	3,153	4,130	5,438	9,256	17,354	22,560	34,708	72,309
	10 - 92	1,712	2,405	3,732	4,090	6 902	11 7/8	20,042	28,705	41,065	01 784
	191	1 292	1 861	2 817	3 695	4 858	8 270	15 505	20,007	31 011	64 606
005	175	1,539	2,215	3,354	4,400	5,785	9,847	18,462	24,001	36,925	76,926
225	150	1,829	2,633	3,986	5,230	6,876	11,703	21,944	28,527	43,887	91,431
	12 - 105	2,049	2,951	4,468	5,861	7,706	13,116	24,593	31,971	49,186	102,472
	200	1,626	2,341	3,544	4,649	6,112	10,404	19,508	25,360	39,015	81,282
250	175	1,938	2,791	4,226	5,544	7,288	12,406	23,261	30,239	46,521	96,919
	150	2,176	3,133	4,743	6,223	8,181	13,925	26,110	33,943	52,219	108,790
	200	2,203	2 941	4,534	5 841	7 679	13 070	24 507	31,859	49 014	102 112
275	175	2,299	3.311	5.012	6.575	8.644	14,714	27.588	35.864	55.176	114,950
	14 - 130	2,477	3,567	5,400	7,084	9,313	15,852	29,723	38,640	59,446	123,847
	200	2,416	3,479	5,267	6,910	9,084	15,462	28,991	37,688	57,982	120,796
300	175	2,637	3,797	5,748	7,540	9,913	16,874	31,638	41,130	63,277	131,826
	15 - 142	2,691	3,875	5,866	7,695	10,117	17,220	32,288	41,975	64,576	134,534
	248	2,656	3,825	5,791	7,597	9,987	17,000	31,864	41,423	63,728	-
350	225	2,886	4,156	6,292	8,254	10,852	18,4/1	34,629	45,017	69,258	_
	200 18 - 160	3,090	4,407	6 798	0,000	11 794	19,011	39 890	40,270	79,770	
	248	3,702	5,331	8,071	10,588	13,921	23,695	44,415	57,740	88,830	
425	225	3,870	5,574	8,438	11,070	14,553	24,771	46,439	60,370	92,877	_
	22 - 195	4.000	5.578	8,719	11,439	15.038	25,595	48,096	62,525	96,192	

NOTE: Maximum pressure reduction 20:1, except for GD-2000K 10:1. Minimum pressure reduction is 85% of inlet pressure.

For 50% reduced port capacities, divide the capacity by 2.

50% reduced port available for sizes 1/2" - 4".

GP-2000, 2000K-1, 3 & 6, GD-2000K, GP-2000R

Capacities for Steam continued

GP-2000, (GP-2000K-1, G	P-2000K-3, (GP-2000K-6,	GD-2000K, G	P-2000R Cap	acities—Stea	am (kg/hr)				
					kg	/hr Connect	ion Size				
Inlet	Outlet					m	m				
	bar	15	20	25	32	40	50	65	80	100	150
C _V	Factor	5	7.2	10.9	14.3	18.8	32	60	78	120	250
1.03	0.55	91	131	248	325	343 427	284 727	1,095	1,423	2,189	4,001
	0.90	100	143	217	285	374	637	1,194	1.553	2,389	4.977
1.38	0.21	142	205	310	407	534	910	1,706	2,218	3,412	7,108
1 72	1.24	107	154	234	307	403	686	1,287	1,673	2,573	5,361
1.72	.2134	154	222	336	440	579	985	1,848	2,402	3,695	7,698
2.07	1.59	114	165	249	327	430	732	1,373	1,784	2,745	5,719
	.2148	1/3	250	3/8	496	652	916	2,080	2,704	4,101	6,008
2 76	1 72	114	165	249	303	430	732	1,330	1,505	2 745	5 719
20	.2183	173	250	378	496	652	1,109	2,080	2,704	4,161	8,668
	2.90	128	184	278	365	479	816	1,530	1,989	3,060	6,376
3.45	2.07	179	258	391	513	674	1,147	2,151	2,796	4,301	8,961
	.21 - 1.17	212	305	462	607	798	1,358	2,546	3,309	5,091	10,607
	3.52	148	214	324	425	558	950	1,781	2,315	3,562	7,421
4.14	3.10	148	214	324	425	558	950	1,/81	2,315	3,562	7,421
	2.41	223	361	400 547	718	030	1,420	2,073	3,475	6 022	12 546
	4.34	213	307	465	611	803	1,366	2.562	3.330	5.123	10.673
E 47	3.79	269	387	586	769	1,011	1,721	3,227	4,195	6,454	13,446
5.17	3.10	319	459	695	912	1,199	2,041	3,826	4,974	7,653	15,943
	.27 - 2.1	348	501	758	995	1,308	2,226	4,175	5,427	8,349	17,394
	5.86	270	389	589	772	1,016	1,729	3,241	4,213	6,482	13,505
6.89	5.17	340	490	742	974	1,280	2,179	4,086	5,311	8,171	17,023
	4.14	415	597 641	904	1,100	1,009	2,003	4,970	6 030	9,949	20,728
	7 31	335	482	730	958	1,073	2 144	4 020	5 226	8 040	16 750
0.00	6.89	380	547	828	1,086	1,428	2,431	4,558	5,925	9,116	18,991
8.62	5.17	510	735	1,112	1,459	1,918	3,265	6,121	7,957	12,242	25,504
	.48 - 3.7	542	780	1,181	1,550	2,037	3,467	6,502	8,452	13,003	27,090
	8.76	400	576	872	1,143	1,503	2,559	4,798	6,237	9,596	19,991
10.34	6.89	563	811	1,227	1,610	2,117	3,603	6,755	8,782	13,510	28,147
	.55 - 4.6	639	920	1,392	1,827	2,402	4,088	7,000	9,964	15,330	31,937
	8.62	611	880	1,013	1,329	2 298	3 912	7 335	9 535	14 670	30 562
12.07	6.89	720	1.036	1,569	2.058	2,706	4.606	8.636	11.226	17.271	35,982
	.62 - 5.5	736	1,059	1,604	2,104	2,766	4,709	8,828	11,477	17,657	36,785
	11.72	521	751	1,137	1,491	1,960	3,337	6,256	8,133	12,512	26,067
13 79	10.34	656	945	1,430	1,876	2,466	4,198	7,872	10,233	15,744	32,799
10.10	8.62	776	1,118	1,693	2,221	2,920	4,970	9,318	12,113	18,636	38,825
	.68 - 6.3	833	1,199	1,815	2,381	3,131	5,329	9,992	12,990	19,984	41,633
	12.17	698	1 005	1,270	1,070	2,204	4 466	8 374	9,143	16 749	29,305
15.51	10.34	829	1 194	1 808	2 372	3 119	5 309	9 954	12 940	19 907	41 473
	.82 - 7.24	930	1,339	2,027	2,659	3,495	5,950	11,155	14,502	22,311	46,481
	13.79	737	1,062	1,607	2,109	2,773	4,719	8,849	11,503	17,697	36,869
17 24	12.07	879	1,266	1,917	2,515	3,306	5,627	10,551	13,716	21,102	43,962
11.24	10.34	987	1,421	2,152	2,823	3,711	6,316	11,843	15,396	23,687	49,347
	.89 - 8.06	1,027	1,478	2,238	2,936	3,860	6,570	12,319	16,015	24,638	51,329
19.06	13.79	926	1,334	2,019	2,649	3,483	5,929	11,116	14,451	22,233	46,318
10.90	96 - 8 96	1,043	1,502	2,273	2,902	4 224	7 1 9 1	13 482	17 527	25,020	56 177
	13.79	1,096	1,578	2,389	3,134	4,120	7,013	13,150	17,095	26,300	54,793
20.00	12.07	1,196	1,722	2,607	3,420	4,497	7,654	14,351	18,656	28,702	59,796
	1.03 - 9.79	1,220	1,758	2,661	3,491	4,589	7,811	14,646	19,040	29,292	61,024
	17.10	1,205	1,735	2,627	3,446	4,530	7,711	14,453	18,789	28,907	-
24 13	15.51	1,309	1,885	2,854	3,744	4,922	8,379	14,668	20,419	31,415	-
	13.79	1,404	2,022	3,061	4,016	5,279	8,986	16,844	21,898	33,689	-
	1.24 - 11.02	1,414	2,037	3,083	4,045	5,318	9,052	18,094	23,521	36,187	
29 30	17.10	1,0/9	2,418	3,001	4,803	0,314 6,601	11,748	20,140	20,190	40,293	
20.00	1.52 - 13.4	1,814	2,530	3,955	5,189	6,821	11,610	21,816	28,361	43.632	_

NOTE: Maximum pressure reduction 20:1, except for GD-2000K 10:1. Minimum pressure reduction is 85% of inlet pressure.

For 50% reduced port capacities, divide the capacity by 2.

50% reduced port available for sizes 15 - 100 mm.

3

Temperature Regulators

For Steam, Water and Non-Corrosive Liquid Service

Armstrong self-actuated temperature regulators are compact, high performance units that are simple in design and operation—and suitable for a wide variety of applications. Features including flexible mounting positions of the sensor, interchangeable capillaries and varied temperature ranges make installation, adjustment and maintenance quick and easy.

Temperature F	Regulator Valve Sel	ection					
If the Service Is	If Inlet Pressure is psig (bar)	Type of Control	Temperature Ratings °F (°C)	Temperature Accuracy °F (°C)	If Maximum Capacity Is Less Than	Look for Model	Find on Page
	5 to 150 (.34 to 10)	Self Contained Direct Acting	From 32 to 302 (0 to 150) 5 Ranges	±7 (±3) From set point	1,745 (792)	OB-30	304
Heating	5 to 15 (.34 to 1)	Self Contained	From 18 to 361	+2 (+1)	5,643 (2,565)	0B-2000L	308
	10 to 300	Pilot Operated	(-7 to 183) 6 Banges	From set point	50,000 (00,000)	OB-2000	306
	(.69 to 20		e nangoo		58,032 (20,323)	0B-2000PT	310
Cooling	5 to 250 (.34 to 17)	Self Contained Reverse Acting	From 32 to 302 (0 to 150) 5 Ranges	±7 (±3) From set point	70 gpm (308 m3/hr)	0B-31	304

OB-30/31

For Steam, Air and Non-Corrosive Liquids

The Armstrong OB-30/31 is a direct acting temperature regulator that requires no external source for operation. Simple and compact, the unit is suitable for a wide variety of heating/cooling applications. Installing, adjusting or maintaining the OB-30/31 is quick and easy because interchangeable capillaries mount in any position and disconnect by simply loosening the union nut. No stem

packing so there's no leakage. Single composition seat for tight shutoff. The OB-30/31 comes in 1/2", 3/4" or 1" sizes and is available with a choice of five temperature ranges and three capillary lengths.

For a fully detailed certified drawing, refer to CDY #1036.

OB-30/31 \$	Specifications							
Model	Application	Service	Max. Inlet Pressure psig (bar)	Maximum Diff. psig (bar)	Temperature Ranges °F (°C)	Max. Temp. °F (°C)	Temperature Accuracy °F (°C)	Capillary Lengths feet (meters)
OB-30	Heating	Steam, Water	Steam 150 (10)	140	32 - 95 (0 - 35) 77 - 158 (25 - 70)	200	±7 (±3)	*6-1/2 (2)
OB-31	Cooling	Water, Non-Corrosive Liquids	Liquid 250 (17)	(9.6)	104 - 212 (40 - 100) 140 - 266 (60 - 130) 158 - 302 (70 - 150)	(185)	From Set Point	9-1/2 (3) 16-1/2 (5)

*Standard length.

NOTES: Capillary can withstand a maximum of 72°F (40°C) above rated range. If desired set temperature is in temperature range overlap, select lower range.

OB-30/31 Materials					
Body Material	Seat Type & Material	Valve Material	Capillary Material	Bulb Material	Thermal Well Material
Bronze ASTM B584	Single Seat 304 Stainless Steel	Teflon	304 Stainless Steel Armor Shielded Capillary	Copper-Nickel Plated	*304 Stainless Steel or Brass

*Other materials available upon request.

OB-30/31 Dimensions and Weights																
Si	ze	L		H ₁		н			т		К	F	1	We	ight	C.,
in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	lb	kg	00
1/2	15	3	80	5-1/8	130	12-1/2	315	3/8	10	8	200	1/2	15	6	2.8	3.7
3/4	20	3-1/8	85	5-1/8	130	12-1/2	315	3/8	10	8	200	1/2	15	6	2.8	4.6
1	25	3-1/2	95	5-1/8	130	12-1/2	315	3/8	10	8	200	1/2	15	6-1/2	3.0	5.8

Thermal Well Dimensions																
Model		A		В	C		D		E		F		G		Н	
Wouer	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
OB-30/31	3/4	20	1	25	7-1/2	204	1/4	7	.765	20	3/4	20	1/2	15	.380	10
OB-2000/2000PT	1	25	3/4	20	7-3/4	197	1/4	7	.89	23	1	25	3/4	20	.630	16
OBK-2000	1	25	3/4	20	12-1/2	318	1/4	7	.765	20	3/4	20	1/2	15	.515	13

OB-30/31, OBK-2000 and OB-2000/2000PT Thermal Well

Standard Material: 304 stainless steel or brass. Other materials available upon request.

NOTE: When inserting sensor into thermal well, for best results, it is recommended that heat transfer medium be applied to sensor before installation.

Pressure & Temperature Control Temperature Control Valves

OB-30/31

0B-3) Capac	ities—3	Steam							
		lb/hr						kg/hr		
Inlot	Outlat	Conr	nection	Size	Į	Inlot	Outlat	Conn	ection \$	Size
met	Outlet		in			mer	Outlet		mm	
p	sig	1/2	3/4	1			bar	15	20	25
C _V F	actors	3.7	4.6	5.8		C _V I	-actors	3.7	4.6	5.8
F	3	01	100	105		25	.20	30	38	48
Э		101	100	127		.30	.14	37	40	00 72
	8	75	9/	118			55	34	13	54
	6	104	130	164			.00	47	59	75
10	4	125	155	196		.7	28	57	70	89
	0	154	191	241			0	70	87	110
	12	101	125	158			.83	46	57	72
15	9	139	172	218		10	.62	63	78	99
15	6	165	205	259		1.0	.41	75	93	118
	0-5	200	249	314			035	91	113	143
	15	139	173	218			1.0	63	79	99
20	10	181	235	296		1.38	.7	82	107	135
	5	221	275	347			.35	100	125	158
	0-2	234	290	367			014	106	132	167
	20	149	186	234			1.38	68	85	106
25	10	204	254	320		1.72	1.0	93	110	145
		241	300	3/8			./	100	130	1/2
	0-5	200	100	420			1 70	70	00	191
20	20	109	190	200		20	1.72	117	90	114
30	0-7	200	375	400		2.0	0-48	137	140	215
	30	244	304	384			2.0	111	138	175
40	20	328	408	515		2 76	1 38	149	185	234
10	0-12	369	459	579		2.70	0-83	168	209	263
	40	268	333	420			2.76	122	151	191
50	30	383	451	569		3.45	2.0	174	205	259
	0-17	437	543	685			0-1.2	199	247	311
	50	290	360	454	1		3.45	132	164	206
60	40	395	491	619		4.0	2.76	180	223	281
	0-22	504	627	791			0-1.5	229	285	360
	60	310	385	486			4.0	141	175	221
70	50	328	424	665		4 83	3.45	149	193	302
10	40	502	624	787		1.00	2.76	228	284	358
	0-27	572	711	897			0-1.9	260	323	408
	70	329	409	616			4.83	150	186	280
80	60	452	562	708		5.52	4.0	205	255	322
	00	537 640	705	1 002			3.40	244	304	303
	80	3/6	/90	5/13			5.52	291	106	2/7
	70	478	694	749			4.83	217	315	340
90	60	570	708	893		6.0	4.00	259	322	406
	50	639	795	1 002		0.0	3 45	290	361	455
	0-37	707	879	1.109			0-2.6	321	400	504
	90	363	452	570			6.0	165	205	259
	80	502	625	788			5.52	228	284	358
100	70	600	747	942		6.9	4.83	273	340	428
	60	676	840	1,060			4.0	307	382	482
	0-42	776	963	1,215			0-2.9	353	438	552
	110	489	608	767			7.59	222	276	349
	100	619	770	971			6.9	281	350	441
125	80	798	992	1,250		8.62	5.52	363	451	568
	70	863	1,073	1,353			4.83	392	488	615
	0-55	944	1,174	1,480			0-3.8	429	534	673
	130	611	759	958			8.97	278	345	435
150	120	/36	915	1,154		10.0	8.28	335	416	525
	100	918	1,141	1,439			6.9	417	519	654
	0-63	1,113	1,384	1,/45			0-4.3	506	629	793

NOTE: Where it is not possible to calculate pressure drop, 35% - 40% of gauge supply pressure can be used as a reasonable approximation.

Temperature Regulator Selection Example

Parameters:

Fluid	Steam
Maximum inlet pressure	100 psi
Outlet pressure	
Maximum flow rate	
Temperature required	150°F
Distance from regulator to sensing point	5'
To Locate Proper Model:	
Entor inlet column at	100 pai

Enter inlet column at

	100 psi
Move to outlet pressure of	90 psi
Locate capacity of 570 lbs/hr under	
connection size	1"
Find capillary temperature range	77-158°F
Select capillary length	6-1/2'

Application Will Require:

OB-30, 1" with 77-158°F Temp. Range, Capillary Length 6-1/2'

OB-30/3	1 Capaci	ties—Wa	iter					
	g	om				l/n	nin	
	Cor	nection \$	Size			Cor	nection \$	Size
Δr		in			Δr		mm	
psig	1/2	3/4	1		bar	15	20	25
5	8.1	10.1	12.3		.35	30	38	47
10	11.9	14.3	18.5		.70	45	55	70
15	14.3	17.6	22.0		1.00	55	67	83
20	16.7	20.7	26.4		1.40	63	78	100
25	18.5	22.0	28.2		1.80	70	83	107
30	20.3	25.6	31.7		2.00	77	97	120
50	26.4	33.5	41.4		3.50	100	127	157
75	32.6	39.6	49.3		5.20	123	150	187
100	37.9	46.2	57.2		7.00	143	175	217
125	42.2	52.0	65.6		8.70	160	197	248
150	46.3	57.25	70.5		10.00	175	217	267

Capillary Temperature Ranges									
Temperature Ranges °F (°C)									
32 - 95 (0 - 35)									
77 - 158 (25 - 70)									
104 - 212 (40 - 100)									
140 - 266 (60 - 130)									
158 - 302 (70 - 150)									

NOTE: If desired set temperature is in temperature range overlap, select lower range.

OB-2000

For Steam

Armstrong's OB-2000 is a high performance externally piloted temperature regulator for large capacity applications such as heat exchangers, steam coils, steam dryers, plating tanks and parts washers. It is self-actuated and requires no external energy source. Capillary units mount in any position and can be easily disconnected and interchanged, offering easy installation and maximum application flexibility. Available in sizes 1/2" through 6" with six temperature ranges and three capillary lengths.

For a fully detailed certified drawing, refer to CDY #1013.

OB-2000L Specifications					
Application	Inlet Pressure psig (bar)	Reduced Pressure psig (bar)	Temperature Ranges °F (°C)	Temperature Accuracy °F (°C)	Capillary Lengths feet (meters)
Steam	NPT 10 - 300 (.69 - 20) 150 lb Flanged 10 - 185 (.69 - 13 300 lb Flanged 10 - 300 (.69 - 20)	7 (.48)	18 - 59 (-8 - 15) 50 - 97 (10 - 36) 86 - 144 (30 - 62) 131 - 201 (55 - 94) 176 - 260 (80 - 127) 239 - 361 (115 - 183)	±2 (±1) From Set Point	*6-1/2 (2) 9-1/2 (3) 16-1/2 (5)

*Standard length.

Note: If desired set temperature is in temperature range overlap, select lower range.

0B-2	OB-2000 Dimensions and Weights																								
ei	70			Face-to-	Face					u		٨				c				We	ight				
	26	NP	Г	150	ŧ	300	#	''1		12				'		u		N	PT	15	0#	30	0#	Cv	
in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	lb	kg	lb	kg	lb	kg		
1/2	15	5-15/16	150	5-9/16	141	5-3/4	147	6-3/4	170	2-15/16	74	7-15/16	200	6-5/8	169	8-3/4	222	31	15	33	15	39	18	5.0	
3/4	20	5-15/16	150	5-1/2	140	5-3/4	147	6-3/4	170	2-15/16	74	7-15/16	200	6-5/8	169	8-3/4	222	31	15	33	15	39	18	7.2	
1	25	6-15/16	160	5-3/4	147	6-1/4	159	6-15/16	175	3-1/16	76	8-15/16	226	6-7/8	174	8-7/8	226	39	19	41	20	47	21	10.9	
1-1/4	32	7-1/8	180	6-1/2	166	7-1/16	179	7-5/8	192	3-9/16	90	8-5/16	226	7-1/8	182	9-1/4	235	47	22	49	23	54	24	14.3	
1-1/2	40	7-1/8	180	7-7/16	189	7-15/16	202	7-5/8	192	3-9/16	90	8-15/16	226	7-1/8	182	9-1/4	235	47	22	49	23	54	24	18.8	
2	50	9-1/8	230	8-9/16	217	9-1/8	232	8-1/2	216	4-1/16	103	10-15/16	276	7-7/16	189	9-1/2	242	71	33	77	36	78	36	32	
2-1/2	65	-	-	10-15/16	278	11-1/2	292	9-13/16	251	4-7/8	122	13-13/16	352	8-1/8	206	10-1/8	259	-	-	138	63	140	64	60	
3	80	-	-	11-3/4	298	12-7/16	315	10-7/16	264	5-3/8	135	13-13/16	352	8-9/16	217	10-5/8	270	-	-	149	69	155	71	78	
4	100	-	-	13-1/2	343	14-1/8	359	12-5/8	321	6-9/16	167	15-13/16	401	9-1/4	234	11-1/4	287	-	-	234	107	243	110	120	

NOTE: For 6" (150 mm) consult factory.

*50% reduced port available for sizes 1/2" - 4". The C_v value should be divided by 2 to get reduced port C_v.

OB-2000

For Steam

OB-2000 Sensor and Accessory Specifications												
Capillary Material	Capillary Temperature Ranges °F (°C)	Bulb Material	Bulb Connection	Thermal Well Material	Thermal Well Connection							
Copper Capillary Tube With 304 Stainless Steel Armor Shield	18 - 59 (-8 - 15) 50 - 97 (10 - 36) 86 - 144 (30 - 62) 131 - 201 (55 - 94) 176 - 260 (80 - 127) 239 - 361 (115 - 183)	Nickel Plated Copper Bulb	3/4" (20 mm) NPT	Brass* 304 Stainless Steel*	1" (25 mm) NPT							

*Standard. Other material available upon request. See page 304 for dimensions of well.

NOTE: Capillary can withstand a maximum of 36°F (20°C) above rated range.

NOTE: If desired set temperature is in temperature range overlap, select lower range.

OB-2000 Materials					
OB-2000	Body Material	Seat Type & Material	Valve Material	Connection	Maximum Temperature °F (°C)
Main Valve	Ductile Iron ASTM A536	Single Seat Stainless Steel	Stainless Steel AISI 420	NPT 150 lb Flanged 300 lb Flanged	450 (232)
Temperature Pilot Valve	Bronze ASTM B584	AI5I 420		1/4" (6 mm) NPT	

Valve Sizing
Proper valve selection requires the following information
 Steam capacity required for application
 Supply pressure of steam
 Allowable pressure drop across valve*

*Where it is not possible to calculate pressure drop, 35% - 40% of gauge supply pressure can be used as a reasonable approximation.

Temperature Regulator Selection Example Parameters:

Fluid
Maximum inlet pressure 100 psi
Outlet pressure
Maximum flow rate1,500 lbs/hr
Temperature required 180°F
Distance from regulator to sensing point 5'
To Locate Proper Model (refer to chart on page 311):
To Locate Proper Model (refer to chart on page 311): Enter inlet column at
To Locate Proper Model (refer to chart on page 311): Enter inlet column at
To Locate Proper Model (refer to chart on page 311): Enter inlet column at
To Locate Proper Model (refer to chart on page 311): Enter inlet column at

Select capillary length								 (6-1	/2	1
Application Will Require:											

OB-2000, 1" with 131-201°F Temp. Range, Capillary Length 6-1/2'

OB-2000L

For Steam

Armstrong's OB-2000L is a high performance externally piloted temperature regulator for large capacity and low pressure applications. It is self-actuated and requires no external energy source. Capillary units mount in any position and can be easily disconnected and interchanged, offering easy installation and maximum application flexibility. Available in sizes 1/2" through 4" with six temperature ranges and three capillary lengths.

For a fully detailed certified drawing, refer to CDY #2232.

OB-2000L Specifications					
Application	Inlet Pressure psig (bar)	Reduced Pressure psig (bar)	Temperature Ranges °F (°C)	Temperature Accuracy °F (°C)	Capillary Lengths feet (meters)
Steam	5 - 15 (.3 - 1)	3 (.21)	18 - 59 (-8 - 15) 50 - 97 (10 - 36) 86 - 144 (30 - 62) 131 - 201 (55 - 94) 176 - 260 (80 - 127) 239 - 361 (115 - 183)	±2 (±1) From Set Point	*6-1/2 (2) 9-1/2 (3) 16-1/2 (5)

*Standard length.

Note: If desired set temperature is in temperature range overlap, select lower range.

0B-2	OB-2000L Dimensions and Weights																			
		F	ace-to-	Face "L"		u						E		c			We	ight		
31	26	NPT		150#	ł	<u>п</u> 1		<u>п</u> 2		A 1		r		u	G		NPT		150#	
in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	lb	kg	lb	kg	
1/2	15	5-15/16	150	5-9/16	141	6-3/4	170	2-15/16	74	7-15/16	200	6-5/8	169	8-3/4	222	31	15	33	15	6.5
3/4	20	5-15/16	150	5-1/2	140	6-3/4	170	2-15/16	74	7-15/16	200	6-5/8	169	8-3/4	222	31	15	33	15	9
1	25	6-5/16	160	5-3/4	147	6-15/16	175	3-1/16	76	8-15/16	226	6-7/8	174	8-7/8	226	39	19	41	20	12
1-1/4	32	7-1/8	180	6-1/2	166	7-5/8	192	3-9/16	90	8-15/16	226	7-1/8	182	9-1/4	235	47	22	49	23	19
1-1/2	40	7-1/8	180	7-7/16	189	7-5/8	192	3-9/16	90	8-15/16	226	7-1/8	182	9-1/4	235	47	22	49	23	22
2	50	9-1/8	230	8-9/16	217	8-1/2	216	4-1/16	103	10-15/16	276	7-7/16	189	9-1/2	242	71	33	77	36	38
2-1/2	65	_	—	10-15/16	278	9-13/16	251	4-7/8	122	13-13/16	352	8-1/8	206	10-1/8	259	_	—	138	63	66
3	80		—	11-3/4	298	10-7/16	264	5-3/8	135	13-13/16	352	8-9/16	217	10-5/8	270	—	—	149	69	78
4	100	_	_	13-1/2	343	12-5/8	321	6-9/16	167	15-13/16	401	9-1/4	234	11-1/4	287	_	_	234	107	116

*50% reduced port available for sizes 1/2" - 4". The C_v value should be divided by 2 to get reduced port C_v.

For capacities see page 48.

Designs, materials, weights and performance ratings are approximate and subject to change without notice. Visit www.armstronginternational.com for up-to-date information.

OB-2000L

For Steam

OB-2000L Sensor and Accessory Specifications												
Capillary Material	Capillary Temperature Ranges °F (°C)	Bulb Material	Bulb Connection	Thermal Well Material	Thermal Well Connection							
Copper Capillary Tube With 304 Stainless Steel Armor Shield	18 - 59 (-8 - 15) 50 - 97 (10 - 36) 86 - 144 (30 - 62) 131 - 201 (55 - 94) 176 - 260 (80 - 127) 239 - 361 (115 - 183)	Nickel Plated Copper Bulb	3/4" (20 mm) NPT	Brass* 304 Stainless Steel*	1" (25 mm) NPT							

*Standard. Other material available upon request. See page 304 for dimensions of well.

NOTE: Capillary can withstand a maximum of 36°F (20°C) above rated range.

NOTE: If desired set temperature is in temperature range overlap, select lower range.

OB-2000L Materials					
OB-2000	Body Material	Seat Type & Material	Valve Material	Connection	Maximum Temperature °F (°C)
Main Valve	Ductile Iron ASTM A536	Single Seat Stainless Steel	Stainless Steel	NPT 150 lb Flanged 300 lb Flanged	450 (232)
Temperature Pilot Valve	Bronze ASTM B584	AISI 420	AISI 420	1/4" (6 mm) NPT	

GP-2000L, OB-2000L

Capacities for Steam Service

GP-2	GP-2000L and OB-2000L Steam Capacities																					
					lb/h	r						kg/hr										
Inlot	Connection Size							ſ	Inlat	Connection Size												
Inner	Uullel					in	l					Imet	Uullet					mr	n			
ľ	osig	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3	4		t	ar	15	20	25	32	40	50	65	80	100
5	2	218	277	316	495	594	1,100	1,782	1,881	3,135		0.34	0.14	99	126	143	225	269	499	808	853	1,422
10	7 3	161 356	223 435	297 475	471 812	545 920	942 1,518	1,635 2,574	1,933 2,772	2,874 4,598		0.69	0.48 0.21	73 161	101 197	135 215	214 368	247 417	427 689	742 1,168	877 1,257	1,304 2,086
15	12 8 3	178 261 416	246 362 482	328 483 594	519 764 970	601 885 1,168	1,038 1,528 1,694	1,803 2,654 3,069	2,131 3,137 3,366	3,169 4,665 5,643		1.03	0.83 0.55 0.21	81 119 189	112 164 219	149 219 269	235 347 440	273 401 530	471 693 768	818 1,204 1,392	966 1,423 1,527	1,437 2,116 2,560

Note: For reduced port capacity, please divide capacity by 2.

OB-2000PT

For Steam Service

The OB-2000PT is a diaphragm-operated externally piloted pressure/temperature combination regulator. It is used in applications where maximum pressure should be limited and the temperature of the heated medium is controlled using a single seated main valve. Temperature pilot and capillary unit disconnect, making repairs or temperature range changes quick and easy. Available in sizes 1/2" through 6" and with a choice of four spring ranges, six temperature ranges and three capillary lengths.

For a fully detailed certified drawing, refer to CDY #1006.

OB-2000PT S	pecifications					
Application	Inlet Pressure psig (bar)	Minimum Differ. Pressure psig (bar)	Reduced Pressure & Spring Color psig (bar)	Temperature Ranges °F (°C)	Temperature Accuracy °F (°C)	Capillary Lengths feet (meters)
Steam	NPT 15 - 300 (1 - 20) 150 lb Flanged 15 - 185 (1 - 13) 300 lb Flanged 15 - 300 (1 - 20)	7 (.48)	1.5 - 3 (.1021) Yellow 3 - 21 (.21 - 1.4) Yellow 15 - 200 (1.0 - 13.8) Green	18 - 59 (-8 - 15) 50 - 97 (10 - 36) 86 - 144 (30 - 62) 131 - 201 (55 - 94) 176 - 260 (80 - 127) 239 - 361 (115 - 183)	±2 (±1) From Set Point	6-1/2 (2)* 9-1/2 (3) 16-1/2 (5)

*Standard length

DB-2000PT Sensor and Accessory Specifications								
Capillary Material	Capillary Temperature Ranges °F (°C)	Bulb Material	Bulb Connection	Thermal Well Material	Thermal Well Connection			
Copper Capillary Tube With 304 Stainless Steel Armor Shield	18 - 59 (-8 - 15) 50 - 97 (10 - 36) 86 - 144 (30 - 62) 131 - 201 (55 - 94) 176 - 260 (80 - 127) 239 - 361 (115 - 183)	Nickel Plated Copper Bulb	3/4" (20 mm) NPT	Brass* 304 Stainless Steel*	1" (25 mm) NPT			

*Standard. Other material available upon request. See page 304 for dimensions of well.

NOTES: Capillary can withstand a maximum of 36°F (20°C) above rated range. If desired set temperature is in temperature range overlap, select lower range.

OB-20	OOPT	Dimensi	ons ai	nd Weights	;																	
Siz	Face-to-Face			ц		H.	u			6				Wei	ghts							
		NPT	-	150#		300#	ŧ			1''						N	РТ	15	0#	30	0#	Cv
in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	lb	kg	lb	kg	lb	kg	1
1/2	15	5-15/16	150	5-9/16	141	5-3/4	147	15-3/4	398	6-3/4	170	7-15/16	200	6-1/2	166	47	22	49	23	55	25	5.0
3/4	20	5-15/16	150	5-1/2	140	5-3/4	147	15-3/4	398	6-3/4	170	7-15/16	200	6-1/2	166	47	22	49	23	55	25	7.2
1	25	6-15/16	160	5-3/4	147	6-1/4	159	15-15/16	404	6-15/16	175	8-15/16	226	7	178	57	26	59	28	64	29	10.9
1-1/4	32	7-1/8	180	6-1/2	166	7-1/16	179	17-1/8	434	7-5/8	192	8-15/16	226	7-1/4	185	67	31	69	31	74	34	14.3
1-1/2	40	7-1/8	180	7-7/16	189	7-15/16	202	17-1/8	434	7-5/8	192	8-15/16	226	7-1/4	185	67	31	69	31	75	34	18.8
2	50	9-1/8	230	8-9/16	217	9-1/8	232	19-5/8	498	8-1/2	216	10-15/16	276	6-1/2	166	89	41	94	43	100	46	32
2-1/2	65	-	-	10-15/16	278	11-1/2	292	21-3/4	552	9-13/16	251	13-13/16	352	6-1/2	166	-	-	158	72	167	76	60
3	80	-	-	11-3/4	298	12-7/16	315	22-5/8	575	10-7/16	264	13-13/16	352	6-1/2	166	-	-	171	78	183	83	78
4	100	-	-	13-1/2	343	14-1/8	359	25-15/16	658	12-5/8	321	15-13/16	401	6-1/2	166	-	-	263	120	281	128	120

Note: For 6" (150 mm) consult factory.

OB-2000PT Materials

00 20001 1 1111110	1013		
OB-2000PT	Body Material	Valve & Seat Material	Maximum Temperature °F (°C)
Main Valve	Ductile Iron ASTM A536		
Temperature Pilot Valve	Bronze ASTM B584	Stainless Steel AISI 420	450 (232)
Pressure Pilot	Ductile Iron ASTM A536		

OB-2000, **OB-2000PT**

Capacities for Steam Service

OB-2000, OB-2000PT Capacities—Steam

					k	cg/hr					
Inlot	Outlot					Connect	ion Size				
Innet	Outlet					m	m				
b	ar	15	20	25	32	40	50	65	80	100	150
C _V F	actor	5	7.2	10.9	14.3	18.8	32	60	78	120	250
0.69*	021	96	138	209	274	360	613	1,150	1,494	2,299	4,790
1.03	0.55	91	131	199	261	343	584	1,095	1,423	2,189	4,561
	021	114	164	248	325	427	627	1,363	1,772	2,726	5,679
1.38	0.90	142	205	310	205	534	910	1,194	2 218	2,309	4,977
	1.24	107	154	234	307	403	686	1,287	1.673	2.573	5,361
1.72	034	154	222	336	440	579	985	1,848	2,402	3,695	7,698
2.07	1.59	114	165	249	327	430	732	1,373	1,784	2,745	5,719
2.07	048	173	250	378	496	652	1,109	2,080	2,704	4,161	8,668
	2.28	128	184	278	365	479	816	1,530	1,989	3,060	6,376
2.76	1.72	114	165	249	327	430	732	1,373	1,784	2,745	5,719
	083	1/3	194	3/8	490	652	916	2,080	2,704	4,101	6,000
3 45	2.90	179	258	391	513	674	1 1 1 4 7	2 151	2 796	3,000 4,301	8 961
0.40	0 - 1.17	212	305	462	607	798	1.358	2,546	3.309	5.091	10.607
	3.52	148	214	324	425	558	950	1,781	2,315	3,562	7,421
4 1 4	3.10	148	214	324	425	558	950	1,781	2,315	3,562	7,421
4.14	2.41	223	321	486	637	838	1,426	2,673	3,475	5,347	11,139
	0 - 1.5	251	361	547	718	943	1,606	3,011	3,914	6,022	12,546
	4.34	213	307	465	611	803	1,366	2,562	3,330	5,123	10,673
5.17	3.79	269	387	586	/69	1,011	1,721	3,227	4,195	6,454	13,446
	0.10	3/8	409	090 758	912	1,199	2,041	3,820	4,974	7,003	17 30/
	5.86	270	389	589	772	1,000	1 729	3 241	4 213	6 482	13 505
	5.17	340	490	742	974	1,280	2,179	4,086	5,311	8,171	17,023
6.89	4.14	415	597	904	1,186	1,559	2,653	4,975	6,467	9,949	20,728
	0 - 2.9	445	641	970	1,272	1,673	2,847	5,338	6,939	10,676	22,242
	7.31	335	482	730	958	1,260	2,144	4,020	5,226	8,040	16,750
8.62	6.89	380	547	828	1,086	1,428	2,431	4,558	5,925	9,116	18,991
	5.1/	510	735	1,112	1,459	1,918	3,265	6,121	7,957	12,242	25,504
	8.76	400	576	872	1,550	1 503	2 559	4 798	6,452	9.596	19 991
10.34	6.89	563	811	1.227	1.610	2.117	3.603	6.755	8.782	13.510	28.147
	0 - 4.6	639	920	1,392	1,827	2,402	4,088	7,665	9,964	15,330	31,937
	10.20	465	669	1,013	1,329	1,747	2,973	5,575	7,247	11,150	23,229
12 07	8.62	611	880	1,332	1,748	2,298	3,912	7,335	9,535	14,670	30,562
12.07	6.89	720	1,036	1,569	2,058	2,706	4,606	8,636	11,226	17,271	35,982
	0 - 5.5	/30	1,059	1,604	2,104	2,766	4,709	8,828	11,4//	17,657	36,785
	10.3/	656	045	1,137	1,491	2.466	1 108	7 872	0,100	12,012	20,007
13.79	8 62	776	1 118	1 693	2 221	2,400	4 970	9.318	12 113	18 636	38 825
	0 - 6.3	833	1,199	1.815	2.381	3.131	5.329	9.992	12,990	19.984	41.633
	13.17	586	844	1,278	1,676	2,204	3,751	7,033	9,143	14,066	29,305
15 51	12.07	698	1,005	1,521	1,996	2,624	4,466	8,374	10,887	16,749	34,894
10.01	10.34	829	1,194	1,808	2,372	3,119	5,309	9,954	12,940	19,907	41,473
	0 - 7.24	930	1,339	2,027	2,659	3,495	5,950	11,155	14,502	22,311	46,481
	13.79	737	1,062	1,607	2,109	2,773	4,719	8,849	11,503	17,697	36,869
17.24	10.24	097	1,200	1,917	2,515	3,300	5,627	11 9/2	15,710	21,102	43,962
	0 - 8.06	1 027	1,421	2,152	2,023	3,860	6 570	12 319	16,015	23,007	51 329
	13.79	926	1,334	2.019	2,649	3,483	5.929	11.116	14,451	22,233	46.318
18.96	12.07	1,043	1,502	2,273	2,982	3,921	6,674	12,514	16,268	25,028	52,141
	0 - 8.96	1,124	1,618	2,449	3,213	4,224	7,191	13,482	17,527	26,965	56,177
	13.79	1,096	1,578	2,389	3,134	4,120	7,013	13,150	17,095	26,300	54,793
20.00	12.07	1,196	1,722	2,607	3,420	4,497	7,654	14,351	18,656	28,702	59,796
	0 - 9.79	1,220	1,758	2,661	3,491	4,589	7,811	14,646	19,040	29,292	61,024

*Minimum inlet pressure for OB-2000PT is 15 psi (1 bar) because of the pressure pilot.

OB-2000, OB-2000PT

Capacities for Steam Service

OB-2000, OB-2000PT Capacities—Steam

					I	b/hr					
Inlat	Outlot					Connect	ion Size				
Inner	Outlet					i	n				
p	sig	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3	4	6
C _V F	actor	5	7.2	10.9	14.3	18.8	32	60	78	120	250
10*	0 - 3	211	304	460	604	794	1,352	2,534	3,294	5,068	10,559
15	0-3	201	290	438	5/5 716	756	1,287	2,413	3,137	4,826	10,055
	13	219	316	478	628	825	1,003	2.633	3,423	5.267	10.972
20	0 - 3	313	451	683	896	1,178	2,006	3,761	4,889	7,521	15,669
25	18	236	340	515	676	889	1,513	2,837	3,688	5,673	11,819
	0 - 5	339	489	740	971	1,276	2,172	4,073	5,295	8,146	16,972
30	23	252	363	550	721	948	1,614	3,026	3,934	6,052	12,609
	33	281	<u> </u>	613	804	1,437	2,440	4,000	2,902	9,172	14,056
40	25	395	569	861	1.130	1,486	2.529	4,741	6.164	9.483	19,756
	0 - 12	468	673	1,020	1,338	1,758	2,993	5,612	7,296	11,224	23,384
	42	327	471	713	936	1,230	2,094	3,927	5,105	7,853	16,361
50	30	491	707	1,071	1,405	1,847	3,143	5,894	7,662	11,788	24,557
	0 - 1/	272	<u> </u>	1,206	1,582	2,080	3,540	6,638	8,630	13,276	27,659
	45	471	679	1 028	1,007	1,403	3 017	5 657	7 355	11 315	23 572
60	35	586	843	1,277	1,675	2,202	3,748	7,027	9,135	14,053	29,278
	0 - 22	639	920	1,392	1,827	2,401	4,088	7,664	9,963	15,328	31,934
	63	471	678	1,026	1,346	1,769	3,012	5,647	7,341	11,295	23,530
75	55	593	854	1,292	1,696	2,229	3,794	7,114	9,249	14,229	29,643
	45	703	1,012	1,532	2,010	2,643	4,499	8,435	10,966	16,871	35,148
	85	595	857	1,072	1 703	2,004	3 811	7 145	9 289	14 291	29 773
100	75	751	1,081	1,636	2,147	2,822	4,804	9,007	11,709	18,014	37,529
100	60	914	1,316	1,992	2,614	3,436	5,849	10,967	14,257	21,934	45,696
	0 - 42	981	1,412	2,138	2,805	3,687	6,276	11,768	15,299	23,536	49,034
	106	739	1,064	1,610	2,112	2,777	4,727	8,863	11,522	17,725	36,928
125	100	837	1,206	1,825	2,395	3,149	5,359	10,048	13,063	20,097	41,869
	0 - 55	1 194	1 720	2,431	3 416	4,220	7 644	14 333	18 633	28,505	59 722
	127	881	1,269	1,922	2,521	3,314	5,641	10,577	13,751	21,155	44,072
150	100	1,241	1,787	2,705	3,549	4,666	7,943	14,893	19,360	29,785	62,052
	0 - 67	1,408	2,028	3,070	4,027	5,295	9,012	16,898	21,968	33,796	70,409
	148	1,024	1,475	2,233	2,929	3,851	6,555	12,291	15,978	24,581	51,211
175	120	1,340	2 285	2,938	3,804	5,067	0,024	10,170	21,021	32,341	70 325
	0 - 80	1.622	2.336	3.536	4.639	6.098	10,380	19,463	25.302	38.926	81.097
	170	1,149	1,655	2,506	3,287	4,322	7,356	13,792	17,930	27,585	57,468
200	150	1,446	2,083	3,153	4,136	5,438	9,256	17,354	22,560	34,708	72,309
200	125	1,712	2,465	3,732	4,896	6,437	10,956	20,542	26,705	41,085	85,593
	0 - 92	1,836	2,643	4,002	5,250	6,902	8 270	22,028	28,637	44,056	91,784
	175	1,232	2 215	3 354	4 400	5 785	9 847	18 462	24 001	36 925	76 926
225	150	1,829	2,633	3,986	5,230	6,876	11,703	21,944	28,527	43,887	91,431
	0 - 105	2,049	2,951	4,468	5,861	7,706	13,116	24,593	31,971	49,186	102,472
	200	1,626	2,341	3,544	4,649	6,112	10,404	19,508	25,360	39,015	81,282
250	175	1,938	2,791	4,226	5,544	7,288	12,406	23,261	30,239	46,521	96,919
	150	2,176	3,133	4,743	6,223	8,181	13,925	26,110	33,943	52,219	108,790
	200	2,203	2,941	4,452	5.841	7,679	13,070	24,507	31,859	49,014	102 112
275	175	2,299	3,311	5,012	6,575	8,644	14,714	27,588	35,864	55,176	114,950
	0 - 130	2,477	3,567	5,400	7,084	9,313	15,852	29,723	38,640	59,446	123,847
	200	2,416	3,479	5,267	6,910	9,084	15,462	28,991	37,688	57,982	120,796
300	175	2,637	3,797	5,748	7,540	9,913	16,874	31,638	41,130	63,277	131,826
	0 - 142	2,691	3,875	5,866	7,695	10,117	17,220	32,288	41,975	04,576	134,534

*Minimum inlet pressure for OB-2000PT is 15 psi (1 bar) because of the pressure pilot.

OB-30, OB-2000, OB-2000PT

For Steam Service

Points to Remember When Installing

- Drain condensate at inlet of pressure/temperature regulator with inverted bucket steam trap.
- · Protect temperature regulating valve from dirt and scale by installing strainer with 100 mesh screen at inlet of valve.
- · Install shutoff valves on either side of the regulating valve along with a by-pass line for maintenance purposes.
- Install vacuum breaker after the outlet of equipment and before the steam trap.

Typical Installation—OB-30, OB-2000

- Install sensor so it is fully immersed in the fluid being heated.
- · If temperature well is used, apply heat transfer medium to sensor before insertion into well.
- Place thermometer into system in close proximity to temperature sensor for accurate valve adjustment.
- If possible, do not elevate condensate after steam trap.
- · Determine pressure setting before temperature setting (OB-2000PT only).

Shell and Tube Heat Exchanger

Load Calculations

Heating oil with steam

lb/hr steam = $\frac{\text{GPM}}{2} \times \Delta T \times 1.1$ 4

Heating water with steam

lb/hr steam = $\frac{\text{GPM}}{2}$ x Δ T x 1.1

Heating air with steam lb/hr steam = $\frac{CFM}{2000} \times \Delta T \times 1.1$ 900

Jacketed kettles or tanks

lb/hr steam = $\frac{\text{Gal x SG x Cp x } \Delta T \text{ x 8.3}}{2}$ Lat x T

Where:

- GPM = Gallons per minute
- = Temperature rise (°F) ΔT
- CFM = Cubic feet per minute
- = Specific heat of liquids (Btu/lb-°F) Ср
- Т = Time (hours)
- = Latent heat of steam (Btu/lb) Lat
- Gal = Gallons of liquid to be heated SG = Specific gravity
- 1.1
- = Safety factor

3

PNEUMATIC CONTROL VALVES - PV16G

(V16G globe valves series with linear actuators PA series)

DESCRIPTION

The PV16G control valves are single seated, two-way body constructed with in-line straight connections. The PA pneumatic actuator is rubber diaphragm and multisprings. Its action can be DA -direct action (air to close) or RA-reverse action (air to open). The PV16G valves have been designed to assure an accurate control in any process condition. Their wide application ranges allows the use of this valve with the most common process fluids such as water, superheated water, steam, air, gas and other non corrosive fluids.

MAIN FEATURES

Single seated, two ways, direct or reverse action valve. Valve top flange permanently attached to the body, removal is unnecessary for replacing the actuator. Soft sealing as standard.

OPTIONS:	Balanced plug (sizes DN125-DN200) Position transmitter 4-20 mA Pneumatic pilot positioner Electropneumatic pilot positioner Air filter regulator Top-work manual handwheel Stainless steel construction.
USE:	Saturated and superheated steam. Hot and superheated water. Air, gases and other noncorrosive fluids.
AVAILABLE	DV(100 single cost unbelowed
MODELS:	PV16G-single seat unbalanced. PV16G2-single seat, pressure balanced.
VALVE SIZES:	DN15 to DN200
CONNECTIONS:	Flanged EN 1092-2 PN16
ACTUATORS:	PA-205; PA-280; PA-340; PA-435
ACTUATOR CONN:	1/4" NPT-F
CONTROL SIGNAL:	0,2 - 1 bar ; 0,4 - 1,2 bar ; 0,4 - 2 bar.

HOW TO SELECT: Never size the valve according to the pipe diameter in which it has to be fitted but according to the required actual flow of steam or water.Refer to valve calculation data sheet or consult the factory.

VALVE LIMITING CONDITIONS:	Body design conditions: PN16 16 bar at 120°C 14,7 bar at 200°C Min.working temperature: -10°C
MAX. AIR SUPPLY PRESSURE: AMBIENT	3,5 bar
TEMPERATURE:	-20ºC+70ºC
BONNET :	From -5°C to +220°C (standard)
STEM SEALING:	PTFE/GR V-Rings - up to 220°C (Standard bonnet) Graphite - up to 400°C (Standard on valves DN125-200)
PLUG CHARACT.:	EQP - Equal percentage PT - On-off
PLUG DESIGN: PORT :	Contoured Full port

CE MARKING (PED - European Directive 97/23/EC)							
PN 16	Category						
DN15 to DN50	SEP - art. 3, paragraph3						
DN65 to DN200	1 (CE Marked)						

PNEUMATIC CONTROL VALVES - PV16G

(V16G globe valves series with linear actuators PA series)

SECTION

3

PV16 DA - Direct action

PV16 RA – Reverse action

DIMENSIONS - VALVE BODY							
DN	А (mm)	B (mm)	C (mm)	WEIGHT Kgs			
15	130	48	80	3			
20	150	53	80	3,7			
25	160	58	85	4,4			
32	180	70	90	6,8			
40	200	75	105	9,5			
50	230	83	105	11,7			
65	290	93	165	18,5			
80	310	100	175	20,3			
100	350	110	190	30			
125	400	125	240	-			
150	480	142	290	-			
200	600	170	315	-			

PV16 RA - Reverse action from DN15 to DN100

	MATERIALS								
POS.	DESIGNATION	MATERIAL							
1	Valve Body	GJS-400-18-LT / 0.7043							
2	Bonnet	CF8 / 1.4308							
2	Actuator (Steel)	S235JRG2 / 1.0038							
3	Actuator (Stainless steel)	AISI304 / 1.4301							
4	Diaphragm	NBR 70							
Б	Yoke (Steel)	C45E / 1.1191							
5	Yoke (Stainless steel)	AISI304 / 1.4301							
6	Valve Seal	PTFE/GR							
7 Standard packing PTFE/GR									

	DIMENSIONS - ACTORTOR								
	~ 5		D (mm)						
Туре	Ø E (mm)	DN15-100 DA/RA	DN125-200 DA	WEIGHT Kgs					
PA-205	210	235	—	5,7					
PA-280	275	240	—	8,8					
PA-340	335	265	—	14,3					
PA-435	430	295		24,5					

	FLOW RATE COEFFICIENTS											
	SIZES											
	DN15	DN15 DN20 DN25 DN32 DN40 DN50 DN65 DN80 DN100 DN125 DN150 DN200										
Kvs 3,8 5,1 9,4 15,4 22,2 40,1 63,4 89,7 136,7 230,6 316,1 555,3												
Kvs in m3/h , see	data shee	et IS PV10	.00 E ; Fo	r conversi	on Kvs =	Cv(US) x	0,855					

ACTUATOR STROKE IN mm												
	SIZES											
	DN15	DN20	DN25	DN32	DN40	DN50	DN65	DN80	DN100	DN125	DN150	DN200
Stroke	20	20 20 20 20 20 20 30 30 40 40/50 50										

PNEUMATIC CONTROL VALVES - PV16G

(V16G globe valves series with linear actuators PA series)

MAX. PERMISSIBLE PRESS.DROP IN bar - Normally closed valve (fluid to open) -Reverse action actuator (air signal to open)													
ACTUATOR	CONTROL						SIZ	ES.					
ACTUATOR	SIGNAL	DN15	DN20	DN25	DN32	DN40	DN50	DN65	DN80	DN100	DN125	DN150	DN200
	0,2 ÷ 1 bar	6	6	5	_	_	_	_	_	_	_	_	_
PA-205	0,4 ÷ 1,2 bar	10	10	7		_		_	_	—	_	_	_
	0,4 ÷ 2 bar	12	12	9		—		_		_		_	_
	0,2 ÷ 1 bar	28	26	16	8	6	3,5	_	_	—			
PA-280	0,4 ÷ 1,2 bar	40	38	20	12	10	5			—			
	0,4 ÷ 2 bar	50	45	25	16	12	6,5	_		_	—	—	
	0,2 ÷ 1 bar	60	60	50	20	12	10						
PA-340A	0,4 ÷ 1,2 bar	80	80	60	30	16	13	—	—		—	—	—
	0,4 ÷ 2 bar	100	100	80	40	20	18	—	_	_	—	—	_
	0,2 ÷ 1 bar	_	—		—		_	4	2,5	1			
PA-340B	0,4 ÷ 1,2 bar	_			—	_	_	5	3,5	1,5			
	0,4 ÷ 2 bar	_	—		—	—	_	6	4	2		—	
	0,2 ÷ 1 bar					40	25				*	*	*
PA435A	0,4 ÷ 1,2 bar				—	48	30				*	*	*
	0,4 ÷ 2 bar	_	—	—	—	55	45	—	_	_	*	*	*
	0,2 ÷ 1 bar	_		—	—	—	-	6	5	3	*	*	*
PA435B	0,4 ÷ 1,2 bar	_				—		8	7	5	*	*	*
1 44000	0,4 ÷ 2 bar				—	—	_	10	8	6	*	*	*
	0,4 ÷ 2,5 bar					—		16	15	12	*	*	*

For valve size DN125 and above please consult.

The pressure drop values are referred to closed valves. They have been verified by a control signal coming from an electro-pneumatic converter with an enduring minimum signal of 0,2 bar.

The actuator press. drops given with closed valve for the actuator signal 0,4 - 2 bar are also valid for ON-OFF service with air supply at 2,5 bar. Special spring drops available on request.

The pressure drop values must be used within the body rating limits. For electric actuator selection please consult catalogue IS EL.20.00 E or our technical department.

MAX.	MAX.PERMISSIBLE PRESS.DROP IN bar - Normally open valve (fluid to open) - Direct action actuator (air signal to close)												
ACTUATOR	CONTROL		SIZES										
ACTUATOR	SIGNAL	DN15	DN20	DN25	DN32	DN40	DN50	DN65	DN80	DN100	DN125	DN150	DN200
DA 205	0,2 ÷ 1 bar	16	16	12	5	_	—	_		_		_	_
PA-203	0,4 ÷ 2 bar	25	24	16	7,5	—	—			_		_	
DA-280	0,2 ÷ 1 bar	—	_	19	10	8	4	_	_	—		—	
F A-200	0,4 ÷ 2 bar	—		25	20	16	7			_		_	—
PA-340A	0,2 ÷ 1 bar		—		17	16	10	_		_			
1 4 0 104	0,4 ÷ 2 bar	—	—	—	28	26	25	_		—	_	—	—
PA-340B	0,2 ÷ 1 bar			—		—	—	5	3,5	1,5		—	
FA-340D	0,4 ÷ 2 bar	—	—	—	—	—	—	8	7	3	_	—	—
PA435B	0,2 ÷ 1 bar	—	—	—	—	—	—	8	5	3	*	*	*
1 44000	0,4 ÷ 2 bar	—	—	—	—	—	—	16	10	7,5	*	*	*

* For valve size DN125 and above please consult.

The actuator pressure drops given with closed valve, are obtained with the following air pressures supply :

Actuator signal 0,2 to 1 bar : air supply 1,2 bar

Actuator signal 0,4 to 2 bar : air supply 2,5 bar

The actuator press. drops given with closed valve for the actuator signal 0,4-2 bar are also valid for ON-OFF service with air supply at 2,5 bar.

Special spring drops available on request. The pressure drop values must be used within the body rating limits.

For electric actuator selection please consult catalogue IS EL.20.00 E or our technical department.

3

PNEUMATIC CONTROL VALVES - PV16G

(V16G globe valves series with linear actuators PA series)

PNEUMATIC CONTROL VALVES - PV25 (ANSI)

V25S globe control valves with linear actuators PA series

DESCRIPTION

The PV25 control valves are single seated, two-way body constructed with in-line straight connections. The PA pneumatic actuator is rubber diaphragm and multisprings. Its action can be DA -direct action (air to close) or RA-reverse action (air to open). The PV25 valves have been designed to assure an accurate control in any process condition. Their wide application ranges allows the use of this valve with the most common process fluids such as water, superheated water, steam, air, gas and other non corrosive fluids (group 1).

MAIN FEATURES

Single seated, two way, direct or reverse action valve. Valve top flange permanently attached to the body, removal is unnecessary for replacing the actuator. Metal to metal sealing as standard.

OPTIONS:	Position transmitter 4-20 mA
	Pneumatic pilot positioner
	Electropneumatic pilot positioner
	Air filter regulator
	Top-work manual handwheel
	Stainless steel construction.
	Soft sealing and stellite seat and plug
USE:	Saturated and superheated steam.
	Hot and superheated water.
	Air, gases and other noncorrosive
	fluids.

AVAILABLE MODELS: PV25S Cast steel

VALVE SIZES: 1/2" to 6"

CONNECTIONS: Flanged ANSI B16.5 150# and 300#

ACTUATORS: PA-205; PA-280; PA-340; PA-435 ACTUATOR CONN: 1/4" NPT-F

CONTROL SIGNAL: 0,2 - 1 bar ; 0,4 - 1,2 bar ; 0,4 - 2 bar.

HOW TO SELECT: Never size the valve according to the pipe diameter in which it has to be fitted but according to the required actual flow of steam or water. Refer to valve calculation data sheet or consult the factory.

CE MARKING (PED - European Directive 97/23/EC)								
ANSI 150	ANSI 300	Category						
1" - 2" (DN25-50)	1" (DN25)	SEP - art. 3, paragraph3						
3"-6" (DN80-150)	11/2"-4" (DN40-100)	1 (CE Marked)						
/	11/2"-6" (DN40-150)	2 (CE Marked)						

Note: classification for gases - Group 2, for others see IMI

MAX. AIR SUPPLY	
PRESSURE:	3,5 bar
AMBIENT	
TEMPERATURE:	-20ºC+70ºC
BONNET :	From -5°C to +220°C (standard)
	Finned for temperature >220°C
STEM SEALING:	PTFE/GR V-Rings - up to 220°C
	(Standard bonnet)
	Graphite - up to 400°C
	(Finned bonnet)
	Stainless steel bellows
PLUG CHARACT.:	EQP - Equal percentage
	PL - Linear
	PT - On-Off
PLUG DESIGN :	Contoured
	V-ported
	Perforated
	(Low noise, anti-cavitation)
	Microflow
PORT :	Full port or reduced on request
COMPLEMENTARY	
INFORMATION :	See IS PV10.00 E

PNEUMATIC CONTROL VALVES - PV25 (ANSI)

V25S globe control valves with linear actuators PA series

VALVE BODY LIMITING CONDITIONS								
PV25S - ANSI 150 PV25S - ANSI 300								
ALLOWABLE PRESSURES	RELATED TEMP.	ALLOWABLE RELATED PRESSURES TEMP.						
19,3 bar	-10 /50º C	50 bar	-10 /50º C					
15,8 bar	150 ºC	43,9 bar	200 ºC					
12,1 bar	250 ºC	36,9 bar	350 ºC					
8,4 bar	350 ºC	34,6 bar	400 ºC					

MATERIALS								
POS.	DESIGNATION	MATERIAL V25S						
1	Valve Body	ASTM A216WCB / 1.0619 ; GP240GH / 1.0619						
2	Bonnet	CF8 / 1.4308 **						
3 —	Actuator (Steel)	S235JRG2 / 1.0038						
	Actuator (Stainless steel)	AISI304 / 1.4301						
4	*Diaphragm	NBR 70						
5	Yoke (Steel)	C45E / 1.1191						
5	Yoke (Stainless steel)	AISI304 / 1.4301						
6	*Valve plug	PTFE/GR ; St.Steel						
7	*Standard packing	PTFE/GR						
8	*Metal bellows	AISI316Ti / 1.4571						

* Available spare parts **Except DN6", totaly in cast steel.

3

PNEUMATIC CONTROL VALVES - PV25 (ANSI)

V25S globe control valves with linear actuators PA series

3

PNEUMATIC CONTROL VALVES - PV25 (ANSI)

V25S globe control valves with linear actuators PA series

	DIMENSIONS (mm) - VALVE BODY									
	A *		Þ	С						
SIZE	A " ANSI 300	B ANSI 150	B ANSI 300		BON	INET				
	ANOI 300	ANGI 150	ANGI 300	STANDARD	FINNED	EXTENDED	BELLOWS			
1/2"	190	44,5	47,5	85	150	150	290			
3/4"	194	49	58,5	85	150	150	290			
1"	197	54	62	90	170	170	295			
11/2"	235	63,5	78	115	195	195	285			
2"	267	76	82,5	125	215	215	285			
3"	317	95	105	175	275	275	392			
4"	368	114,5	127	190	310	310	400			
6"	470	140	159	210	390	390	480			

* ANSI 150 is drilled with the same lenght

DIMENSIONS - ACTUATOR									
Туре	ø E (mm)	D (mm) DN1/2" - 4" DA/RA	WEIGHT Kgs						
PA-205	210	235	5,7						
PA-280	275	240	8,8						
PA-340	335	265	14,3						
PA-435	430	295	24,5						

FLOW RATE COEFFICIENTS & VALVE STROKE										
	SIZES									
	1/2"	3/4"	1"	11/4"	11/2"	2"	21/2"	3"	4"	6"
Kvs (m3/h)	3,8	5,1	9,4	-	22,2	40,1	-	89,7	136,7	316,1
Stroke (mm)	20	20	20	-	20	20	-	30	30	40

Kvs in m3/h , for conversion Kvs = $Cv(US) \ge 0.855$

Perforated plugs has different flow rates, see data sheet IS PV10.00 E .

		PLUG I	DESIGN		
Microflow Linear PL	Contoured Equal % or Linear EQP - PL	V - Ported Equal percentage EQP	V - Ported Linear PL	Perforated Equal percentage EQP	Perforated Linear PL
	F	E	E		

V-Ported and perforated plugs are also available in

Dalanceu	pressure	version.	

VALVE DESIGN - FLOW DIRECTION									
Microflow Linear PL	Contoured Equal % or Linear EQP - PL	V - Ported EQP - PL	V - Ported Perforated EQP - PL	V-Ported Balanced EQP - PL	Perforated Balanced EQP - PL				
Chin-	Q7-	<u>S</u> F	CEF-	S.	CE				

3

PNEUMATIC CONTROL VALVES - PV25 (ANSI)

V25S globe control valves with linear actuators PA series

MAX. PERM.PRESS.DROP IN bar - N.C.(fluid to open) -Reverse action actuator (air signal to open)										
	CONTROL				SIZES					
ACTUATOR	SIGNAL	1/2"	1/2" 3/4" 1"		11/2"	2"	3"	4"		
	0,2 ÷ 1 bar	6	6	5	—			_		
PA-205	0,4 ÷ 1,2 bar	10	10	7	—	_	_	_		
	0,4 ÷ 2 bar	12	12	9	—		—	—		
	0,2 ÷ 1 bar	28	26	16	6	3,5				
PA-280	0,4 ÷ 1,2 bar	40	38	20	10	5	_	_		
	0,4 ÷ 2 bar	50	50 45 25 1		12	6,5	_	_		
	0,2 ÷ 1 bar	60	60	50	12	10	_	_		
PA-340A	0,4 ÷ 1,2 bar	80	80	60	16	13	_	_		
	0,4 ÷ 2 bar	100	100	80	20	18	—	—		
	0,2 ÷ 1 bar		_	_	_	_	2,5	1		
PA-340B	0,4 ÷ 1,2 bar	—		—	—		3,5	1,5		
	0,4 ÷ 2 bar	—			—		4	2		
	0,2 ÷ 1 bar				40	25	_	_		
PA435A	0,4 ÷ 1,2 bar	—	_	—	48	30	_	_		
	0,4 ÷ 2 bar	—		—	55	45	—	—		
	0,2 ÷ 1 bar	_		—	—	_	5	3		
PA435P	0,4 ÷ 1,2 bar	_		_	—		7	5		
F A400D	0,4 ÷ 2 bar	—	_	_	—	_	8	6		
	0,4 ÷ 2,5 bar	_	_	_	_	_	15	12		

* For valve size DN 6" please consult .

The pressure drop values are referred to closed valves. They have been verified by a control signal coming from an electro-pneumatic converter with an enduring minimum signal of 0,2 bar.

The actuator press. drops given with closed valve for the actuator signal 0,4 - 2 bar are also valid for ON-OFF service with air supply at 2,5 bar. Special spring drops available on request.

The pressure drop values must be used within the body rating limits.

For electric actuator selection please consult catalogue IS EL.20.00 E or our technical department.

If higher differential pressures are required please consult PA45 pneumatic actuators catalogue.

MAX. PERM.PRESS.DROP IN bar - N.O.(fluid to open) -Direct action actuator (air signal to close)												
ACTUATOR	CONTROL	SIZES										
SIGN	SIGNAL	1/2''	3/4"	1"	11/2"	2"	2"	4"				
DA 205	0,2 ÷ 1 bar	16	16	12	—	_	_	_				
PA-205 0,4 ÷	0,4 ÷ 2 bar	25	24	16		_	_	_				
PA-280	0,2 ÷ 1 bar	—	_	19	8	4	_	—				
FA-200	0,4 ÷ 2 bar	—		25	16	7	_	_				
PA-340A	0,2 ÷ 1 bar			_	16	10						
	0,4 ÷ 2 bar	—	_	_	26	25	_	_				
PA-340B	0,2 ÷ 1 bar	_		_	_	_	3,5	1,5				
1 4-0-00	0,4 ÷ 2 bar	—		_	_	_	7	3				
PA435B	0,2 ÷ 1 bar	_		_	_	—	5	3				
	0,4 ÷ 2 bar	—	—	_	_	_	10	7,5				

* For valve size DN 6" please consult.

The actuator pressure drops given with closed valve, are obtained with the following air pressures supply:

Actuator signal 0,2 to 1 bar :air supply 1,2 bar ; Actuator signal 0,4 to 2 bar : air supply 2,5 bar

The actuator press. drops given with closed valve for the actuator signal 0,4- 2 bar are also valid for ON-OFF service with air supply at 2,5 bar. Special spring drops available on request.

The pressure drop values must be used within the body rating limits.

For electric actuator selection please consult catalogue IS EL.20.00 E or our technical department.

PNEUMATIC CONTROL VALVES - PV25 (ANSI)

V25S globe control valves with linear actuators PA series

ORDI	ERIN	G CODE	<mark>S V</mark>	25			
VALVE CODES	Πv	25 S	T			X	
Actuator Type (1)	H						-
Pneumatic Actuator	Р						
Electric Actuator	E						
Group Designation							
Globe valve, two way, straight body	v						
Valve Model							
ASTM A216 WCB body, stainless steel trim		.25 S					
Stem Sealing							
PTFE/GR-V-Rings / Standard bonnet			1	1			
Virgin PTFE V-Rings / Standard bonnet			2				
Graphite / Standard bonnet			3	1			
Graphite / Finned bonnet			4]			
Bellows			8				
Valve Plug							
EQP (equal percentage) - Soft (PTFE-GR)				1			
EQP (equal percentage) - Metal AISI316 / 1.4401				3			
EQP (equal percentage) - Stellite				4			
PL (linear) - Soft (PTFE/GR)				6			
PL (linear) - Metal AISI316 / 1.4401				7			
PT (on-off) - Soft (PTFE/GR)				9			
PT (on-off) - Metal AISI316 / 1.4401				10			
Pipe Connection							
Flanged ANSIB16.5 150#					U		
Flanged ANSIB16.5 300#					v		
Size							
1/2"					15		
3/4"					20		
Actuator						(1)	
Extras (3)						(1)	F
							-
ACTUATOB CODES (pneumatic)	P.		7	To be	introc	luced	on " X " if supplied
	H			in cor	nhinat	ion wi	ith the valve
Group Designation	1 i	· • • • • • • • • • • • • • • • • • • •	-i	Exam	inle:		
Multi-spring, pneumatic linear actuator	Р.			V25G	i valve	mode	el EQP soft plug_PTEE/GB
Actuator Size				stem	sealin	a DN	2" ANSI 150#complete with reverse
205	1			actior	n actua	ator si	gnal 0,4-1,2bar, size340A steel.
280	3						3
340 A - From DN15 to DN50	5						
340 B - From DN65 to DN100	6			Code	: PV.2	5G.11	IU50.5R18
435 A - From DN15 to DN50	7						
435 B - From DN65 to DN100	8			REM	ARKS		
Actuator				(1)- Ir	ndicate	actu	ator type.
Direct Action		D		(2)- C	mitteo	d if the	e standard actuator is selected.
Reverse Action		R		(3)- T	o be u	ised o	nly when a non-standard
Actuator Constrution				comb	inatior	n valvo	e is supplied.
Steel construction (painted) - standard		(2)		ADCA	ATRO	_ cont	rol valves are identified by a
Stainless steel construction		Ι		serial	numb	er on	a nameplate, located on the
Control Signal				actua	tor yol	ke.	
0,2 - 1 bar (3/15 psi)		1	5	Alway	/s orde	er spa	res by using that serial
0,4 - 1,2 bar (6/18 psi)		18	в	numb	er. If t	he va	lve has non-standard extras
0,4 - 2 bar (6/30 psi)		3	0	the se	erial nu	umber	r has also an E (extras).

PNEUMATIC CONTROL VALVES - PV40

(V40 globe valves series with linear actuators PA or EL series)

DESCRIPTION

The PV40 control valves are single seated, two-way body constructed with in-line straight connections. The PA pneumatic actuator is rubber diaphragm and multisprings. Its action can be DA -direct action (air to close) or RA-reverse action (air to open). The PV40 valves have been designed to assure an accurate control in any process condition. Their wide application ranges allows the use of this valve with the most common process fluids such as water, superheated water, steam, air, gas and other non corrosive fluids.

MAIN FEATURES

Single seated, two way, direct or reverse action valve. Valve top flange permanently attached to the body, removal is unnecessary for replacing the actuator. Metal to metal sealing as standard.

			and the second se
OPTIONS:	Soft sealing		
	Position transmitter		
	Pneumatic pilot positioner		
	Air filter regulator		
	Top-work manual handwheel	MAX.AIR	
USE	Saturated and superheated steam	SUPPLY	3.5 bar
002.	Hot and superheated water	AMBIENT	0,0 001
	Diathermic oil	TEMPERATURE	-20ºC +70ºC
	Air cases and other no corrosive fluids	STEM SEALING:	PTEE/GB V-Bings-220ºC
		OTEM OLALING.	(Standard bonnet)
	$PV/10S_FV/10S_steel construction$		Graphite – 300°C
NODELO.	PV/01 EV/01 steiploss stool		(Extended bonnet)
		DUUC	(Extended bonnet)
VALVE SIZES.		FLUG	
CONNECTION:	Flanged EN 1092-1 or ANSI	CHARACT.:	EQP – Equal percentage
	Threaded connections on request		PL – Linear
PNEUMATIC			PT – On-off
ACTUATORS:	PA-205,PA-280,PA-340,PA-435	PLUG DESIGN:	Contoured
			Perforated
ACTUATOR CONN:	1/4" NPT-F		(Low noise, anti-cavitation)
CONTROL SIGNAL:	0,2 – 1bar; 0,4 – 1,2 bar ; 0,4 – 2 bar		Microflow
ELECTRIC ACT .:	Consult catalogue IS EL20.00 E	PORT:	Full or reduced on request

HOW TO SELECT: Never size the valve according to the pipe diameter in which it has to be fitted, but according to the required actual flow of steam or water. Refer to the valve calculation data sheet or consult the factory.

VALVE LIM. V4	CONDITIONS 0S	VALVE LIM. CONDITIONS V40I				
PRESSURE/TE	MPERATURE *	PRESSURE/TE	MPERATURE *			
40 bar	-10/50ºC	40 bar	-10/100ºC			
33,3 bar	200 ºC	33,7 bar	200 ºC			
30,4 bar 250 ºC		31,8 bar	250 ºC			
27,6 bar	300 ºC	29,7 bar	300 ºC			

Maximum temperature limited to the valve packing selected Valves with soft seat, maximum allowable temperature: 200°C * PN63 and PN100 design on request

۲	PN63	and	PN100	design	on	request	
---	------	-----	-------	--------	----	---------	--

CE MARKING (PED - European Directive 97/23/EC)								
PN 40 Category								
DN15 to DN32	SEP - art. 3, paragraph3							
DN40 to DN50 1 (CE Marked)								

PNEUMATIC CONTROL VALVES - PV40

(V40 globe valves series with linear actuators PA or EL series)

DIMENSIONS - VALVE BODY										
DN	EN FLANGES	ANSI 150 FLANGES	ANSI 300 FLANGES	B (mm)	C (mm) BONNET					
	A (mm)	A (mm)	A (mm)	()	STAND.	FINNED	EXTEND.			
15 - 1/2"	150	184	190	71	75	140	140			
20 - 3/4"	150	184	194	71	75	140	140			
25 - 1"	160	184	197	71	75	140	140			
32	180	-	-	75	83	163	163			
40 - 11/2"	200	222	235	82	96	163	163			
50 - 2"	230	254	267	97	100	182	182			

Note: welded-on flanges EN 1092-1 PN40 or ANSI B16.5 Cl.150 and 300 lbs. RF

DIMENSIONS - ACTUATOR									
Type	ø E	D (mm)	WEIGHT						
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(mm)	DA/RA	Kgs						
PA-205	210	235	5,7						
PA-280	275	240	8,8						
PA-340	335	265	14,3						
PA-435	430	295	24,5						

		MATERIALS			
POS.	DESIGNATION	PV40S - EV40S	PV40I - EV40I		
1	Valve Body	S355 J2 G3 / 1.0570	AISI 316 / 1.4401		
2	Bonnet	CF8 / 1.4308	CF8 / 1.4308		
3	* Actuator (Steel)	S235JRG2 / 1.0038	S235JRG2 / 1.0038		
5	* Actuator (St.steel)	AISI304 / 1.4301	AISI304 / 1.4301		
4	Diaphragm	NBR70	NBR70		
Б	Yoke (steel)	C45E / 1.1191	C45E / 1.1191		
5	Yoke (st. steel)	AISI304 / 1.4301	AISI304 / 1.4301		
6	Valve plug	St.Steel - PTFE/GR	St.Steel - PTFE/GR		
7	Standard packing	PTFE/GR	PTFE/GR		

* Electric actuator : see IS EL20.00 E

PNEUMATIC CONTROL VALVES - PV40

(V40 globe valves series with linear actuators PA or EL series)

FLOW RATE COEFFICIENTS										
SIZES										
	DN15	DN20	DN25	DN32	DN40	DN50				
Kvs	3,8	5,1	9,4	15,4	22,2	40,1				
(vs in m3/h see	data shee	t IS PV10	00 E ·							

For conversion $Kvs = Cv(US) \times 0.855$

	ACT	UATOR S	STROKE	N mm				
	SIZES							
	DN15	DN20	DN25	DN32	DN40	DN50		
Stroke	20	20	20	20	20	20		

MAX. P	MAX. PERM.PRESS.DROP IN bar - N.C.(fluid to open) -Reverse action actuator (air signal to open)												
ACTUATOR	CONTROL		SIZES										
ACTUATOR	SIGNAL	DN15	DN15 DN20 DN25 DN32		DN40	DN40 DN50		DN80	DN100				
	0,2 ÷ 1 bar	6	6	5	_	_		_		—			
PA-205	0,4 ÷ 1,2 bar	10	10	7		—				_			
	0,4 ÷ 2 bar	12	12	9	_	—			_	_			
	0,2 ÷ 1 bar	28	26	16	8	6	3,5	_	—	—			
PA-280	0,4 ÷ 1,2 bar	40	38	20	12	10	5			_			
	0,4 ÷ 2 bar	50	45	25	16	12	6,5		_	_			
	0,2 ÷ 1 bar	60	60	50	20	12	10	_	_				
PA-340A	0,4 ÷ 1,2 bar	80	80	60	30	16	13			_			
	0,4 ÷ 2 bar	100	100	80	40	20	18		_	_			
	0,2 ÷ 1 bar	—		—	—	40	25	—		—			
PA435A	0,4 ÷ 1,2 bar	—		_		48	30	_		—			
	0,4 ÷ 2 bar	_	_	_	_	55	45		_	_			

The pressure drop values are referred to closed valves. They have been verified by a control signal coming from an electro-pneumatic converter with an enduring minimum signal of 0,2 bar.

The actuator press. drops given with closed valve for the actuator signal 0,4 - 2 bar are also valid for ON-OFF service with air supply at 2,5 bar. Special spring drops available on request.

The pressure drop values must be used within the body rating limits. For electric actuator selection please consult catalogue IS EL.20.00 E or our technical department.

MAX. F	MAX. PERM.PRESS.DROP IN bar - N.O.(fluid to open) -Direct action actuator (air signal to close)											
ACTUATOR	CONTROL	SIZES										
ACTUATOR	SIGNAL	DN15	DN20 DN25 DN32 DN40 DN50 D		DN65	DN80	DN100					
DA 205	0,2 ÷ 1 bar	16	16	12	5	_	—	_	_	_		
FA-203	0,4 ÷ 2 bar	25	24	16	7,5			—	—			
PA-280	0,2 ÷ 1 bar	—	_	19	10	8	4	—	—	—		
F A-200	0,4 ÷ 2 bar	_	_	25	20	16	7	_	_	_		
DA-340A	0,2 ÷ 1 bar	—	_	—	17	16	10	—	—	—		
F A-340A	0,4 ÷ 2 bar	_	_	_	28	26	25	_	_			

The actuator pressure drops given with closed valve, are obtained with the following air pressures supply:

Actuator signal 0,2 to 1 bar : air supply 1,2 bar Actuator signal 0,4 to 2 bar : air supply 2,5 bar

The actuator press. drops given with closed valve for the actuator signal 0,4- 2 bar are also valid for ON-OFF service with air supply at 2,5 bar. Special spring drops available on request.

The pressure drop values must be used within the body rating limits.

For electric actuator selection please consult catalogue IS EL.20.00 E or our technical department.

PNEUMATIC CONTROL VALVES - PV40

(V40 globe valves series with linear actuators PA or EL series)

ORDE	RI	١G	i COI	DE	S V4	0				
VALVE CODES	Г	V	40 5	31				.x.		
Actuator Type (1)										
Pneumatic Actuator	Р									
Electric Actuator	E									
Group Designation	1 =									
Globe valve, two way, straight body		v								
Valve Model										
PN40 steel body			.40 5	3						
PN40 stainlesssteel body			.40							
Stem Sealing			1							
PTEE/GB-V-Bings / Standard bonnet					1					
Virgin PTEF V-Bings / Standard bonnet					2					
Graphite / Standard bonnet					3					
Graphite / Finned bonnet					4					
					·					
FOP (equal percentage) - Soft (PTFF-GR)										
EOP (equal percentage) - Metal AISI316 / 1 4401						3				
EOP (equal percentage) - Stellite						4				
PL (linear) - Soft (PTEF/GR)						6				
PL (linear) - Metal AISI316 / 1 4401						7				
PT (op_off) - Soft (PTEE/GR)						9				
PT (on-off) - Metal AISI316 / 1 4401						10				
Pipe Connection										
Threaded BSP ISO 7/1 Bp						Δ				
Flanged EN1002-1 PN/0						N				
Elanged ANSI R16 5 200#						V				
DNI15							15			
DN20							20			
							20			
 Actuator								(1)		
Extras (3)								(.)	E	
									_	
ACTUATOR CODES (pneumatic)	Ρ.			Т	-	To be in	itrodi	uced	on ")	X.", if supplied
····· · · · · · · · · · · · · · · · ·	-					in comb	inatio	on wi	ith the	valve
Group Designation	1	j	╬┈╋┄	-t	i	Example	ə:			
Multi-spring, pneumatic linear actuator	P.					V40S va	alve r	mode	el EOI	P soft plug. PTFF/GR
Actuator Size	1					stem se	alina	1 DN	50 cor	molete with reverse action
205		1				actuator	sian	nal 0	4-1 2	bar size340A steel
280		3				aoraaroi	o.g.	.u. 0,	, · ·, <u>–</u>	
340 A - From DN15 to DN50		5								
435 A - From DN15 to DN50		7				Code: P	V.40)S.11	1N50.	5R18
		-								
			11			REMAR	KS.			
Actuator						(1)- India	cate	actu	ator ty	vpe.
Direct Action			D			(2)- Omi	itted	if the	e stan	dard actuator is selected
Reverse Action			B			(3)- To h		sed o	only w	hen a non-standard
Actuator Constrution						combine	ation	valv	e is si	upplied.
Steel construction (painted) - standard			0	2)		ADCATI	ROI	cont	trol va	lves are identified by a
Stainless steel construction				-		serial n	imbe	ar on	a nar	neplate located on the
Control Signal						actuator	vok		anal	Toplato, loodtou oli tilo
0.2 - 1 bar (3/15 psi)				1	15		order	v. r enn	iree hi	vusing that seriel
0.4 - 1.2 bar (6/18 nsi)	0.2 - 1 Dar $(3/15$ psi) 0.4 - 1.2 bar $(6/18$ psi)					Always order spares by using that serial				
0,4 - 1,2 bar (6/18 psi)				20	the serial number has also an E (extras)					
U.4 = 7 UAL 10/30 USU					201	The corre	יייח וב			

LINEAR PNEUMATIC ACTUATORS

PA205 - PA435

DESCRIPTION

Pneumatic multi-spring linear actuators PA series for modulating and open-close duty of a control and process technology to operate control valves.

MAIN FEATURES

Direct and reverse action actuators for maximum 45mm valve stroke.

Operation with compressed air, nitrogen or clean water.

Limit switches
Manual operating device
Different kind of positioners
Stainless steel construction

- USE: Actuating of V series Adcatrol control valves or others on request.
- AIR SUPPLY: Max. 3,5 bar
- CONNECTION: DN 1/4"
- AVAILABLE MODELS: PA205, PA280, PA340, PA435
- MAX.AMBIENT TEMPERATURE: -20 °C to 80 °C

LINEAR PNEUMATIC ACTUATORS

PA205 - PA435

	MATERIALS									
POS.	DESIGNATION	MATERIAL								
1	Body (Steel)	S235JRG2 / 1.0038								
'	Body (Stainless steel)	AISI 304 / 1.4301								
n	Body (Steel)	S235JRG2 / 1.0038								
2	Body (Stainless steel)	AISI 304 / 1.4301								
3	*Diaphragm	NBR 70								
4	Diaphragm plate	S235JRG2 / 1.0038								
5	Spring	Spring steel								
6	*Seal ring	NBR								
7	Guide	Nylon								
8	Rod	AISI316 / 1.4401								
9	Yoke (Steel)	C45E / 1.1191								
9	Yoke (Stainless steel)	AISI 304 / 1.4301								

* Available spare parts

DIMENSIONS (mm)											
	ACTUATOR MODEL										
DIMENSIONS	PA205	PA280	PA340A	PA340B	PA435A	PA435B					
ØA	210	275	335	335	430	430					
В	235	245	265	265	295	315					
С	92	92	82	92	72	82					
Ø D	40	40	40	45	40	45					
м	M10	M10	M10	M10	M10	M10					
ØG	250	250	350	350	350	350					
F	100	100	110	110	120	140					
STROKE (mm)	20	20	20	30	40	45					
WEIGHT (Kgs)	6	10	15	15	25	27					

PA 435B

LINEAR ELECTRIC ACTUATORS - Type EL EL12, EL20, EL45, EL80, EL120, EL250

DESCRIPTION

Electric linear actuators EL series for modulating and openclose duty of control and process technology to operate control valves.

The self-locking stem/stem nut is driven by an electric motor via a gearing. Load and limit switches define the stops for the end positions.

MAIN FEATURES

- Valve protection against excessive force due to load-dependent seating.

- Comfortable manual operation when disengaging the actuator motor.

- Mounting to valve made via yoke or mounting flange DIN 3358. The design enables easy connection to all types of valves. Standard version is suitable for Adcatrol valves.

- Generating a defined closing force in the end position leads to constantly tight shut-off of the valve.

- A robust metal cover protects efficiently against external contamination and manipulation.

- The actuators are in enclosure protection IP 65 (EL12 IP43) and are designed for rugged industrial use.

- Stall proof synchronous motors (or brake motors for higher positioning forces) ensure highest positioning accuracy.

- Mechanical stroke indication via anti-rotation bar.

- Exact, backlash-free measurement of actual valve stroke by direct coupling to the valve stem.

- Universally usable actuators due to control via 3-point-step controllers, analogue input signals (0...10 V, 0 (4)...20 mA), or fieldbus systems.

- Easy supplement to actuator with optional devices due to modular design.

- Limit switches, easily adjustable, for stroke limitation (not necessary for Adcatrol valves) or as signal for intermediate positions.

- Integrated, adjustable stroke setting to nominal stroke over the complete stroke range (without exchanging pinions, ...).

LINEAR ELECTRIC ACTUATORS - Type EL EL12, EL20, EL45, EL80, EL120, EL250

	т	ECHNICAL DATA					
Туре	EL12	EL20	EL45	EL45.1	EL45.2		
Positioning force kN	1,2	2,0		4,5			
Positioning speed 1) mm/min (mm/s)	8 (0,14)	15 (0,25)	17 (0,28)	25 (0,4)	50 (0,8)		
Power consumption (230 V) A	4	6,6	28	28	32		
Nominal current (230 V) A	0,017	0,029	0,135	0,135	0.160		
Type of motor ³⁾	syn	syn	syn	syn	syn		
Motor protection ⁴⁾	В	В	В	В	В		
Max. stroke mm	35 mm		75 (standa	ard 55mm)			
Supply voltages ²⁾		24 V / 115 V / 230 V / 400 V 50/60 Hz, 24 V DC					
Type of duty acc. to IEC 34-1	S1 – 100% S4 – 30% c.d.f. 600 c/h						
Cable entry	3 x M16 x 1,5	2 x M16x1.5 and 1 dummy plug M16x1.5					
Electrical connection	Inside terminal I	de terminal board, terminal configuration according to electrical connection wiring diagram					
Switch off in end position	2 load-dependent	t switches, max. 250	VAC, rating for reload, max. 3 A	esistive load, max. 5	A, for inductive		
Mounting position		as desired, how	ever downward posit	ion not possible			
Ambient temperature			–20 °C to +60 °C				
Lubricant for gearing		Klüber	Mickrolube GL 261	grease			
Position indicator			by anti-rotation bar				
Manual adjustment	crank handle	e by means of lateral hand wheel					
Enclosure protection acc. to EN 60529	IP 43	IP 65					
Trapezoidal thread	Tr 8 x 1,5	Tr 14 x 3					
Connection type		EN ISO 5	210 F05 (also refer t	o options)			
Weight kg	2,1		8,	0			

		TECHNICAL D	ATA					
Туре	EL80	EL80.1	EL80.2	EL120	EL120.1	EL120.2		
Positioning force kN		8,0			12			
Positioning speed ¹⁾ mm/min (mm/s)	13,5 (0,2)	25 (0,4)	50 (0,8)	13,5 (0,2)	25 (0,4)	50 (0,8)		
Power consumption (230 V) A	25	34	152	25	34	152		
Nominal current (230 V) A	0,11	0,15	0,78	0.11	0.15	0.78		
Type of motor 3)	syn	syn	asyn	syn	syn	asyn		
Motor protection 4)	В	В	Т	В	В	Т		
Max. stroke mm	80							
Supply voltages 2)	24 V / 115 V / 230 V / 400 V 50/60 Hz, 24 V DC							
Type of duty acc. to IEC 34-1	S4 – 30% c. d.f. 600 c/h							
Cable entry	2 x M16x1.5 and 1 dummy plug M16x1.5							
Electrical connection	Inside terminal board, terminal configuration according to electrical connection wiring diagram							
Switch off in end position	2 load-dependent switches, max. 250 V AC, rating for resistive load, max. 5 A, for inductive load, max. 3 A							
Mounting position		as desire	ed, however dowr	ward position not	possible			
Ambient temperature			–20 °C t	o +60 °C				
Lubricant for gearing			Klüber Microlub	e GL 261 grease				
Position indicator	by anti-rotation bar							
Manual adjustment	by means of lateral hand wheel							
Enclosure protection according to EN 60529	529 IP 65							
Trapezoidal thread	Tr 20 x 4							
Connection type			DIN 3210 G0 (als	so refer to options)			
Weight kg			1:	3,0				

3

LINEAR ELECTRIC ACTUATORS - Type EL

EL12, EL20, EL45, EL80, EL120, EL250

		TECHNICAL D	ATA				
Туре	-	-	-	-	EL250.1	EL250.2	
Positioning force kN	- - - EL250.1 EL2 - - 25 - 25 - - - 25 (0,4) 50 - - - 157 22 - - - 0.73 11 - - - 0.73 11 - - - - 38yn as - - - - T 100 100 115 V / 230 V 50/60 Hz, 24 V DC S4 - 30% c.d.f. 600 c/h 2 x M20x1.5 and 1 dummy plug M20x1.5 Inside terminal board, terminal configuration according to electrical connection wiring dia						
Positioning speed 1) mm/min (mm/s)	-	25 (0,4) 50 (0 157 218					
Power consumption (230 V) A	-	-	-	-	157	218	
Nominal current (230 V) A	-	-	-	_	0.73	1.0	
Type of motor ³⁾	-	-	-	-	asyn	as yn	
Motor protection 4)	-	-	-	_	т	т	
Max. stroke mm			10	00			
Supply voltages ²⁾			115 V / 230 V 50)/60 Hz, 24 V D0	0		
Type of duty acc. to IEC 34-1	S4 – 30% c.d.f. 600 c/h						
Cable entry	2 x M20x1.5 and 1 dummy plug M20x1.5						
Electrical connection	Inside terminal board, terminal configuration according to electrical connection wiring diagram						
Switch off in end position	2 load-dependent switches, max. 250 V AC, rating for resistive load, max. 5 A, for inductive load, max. 3 A						
Mounting position		as desire	d, however dowr	ward position no	ot possible		
Ambient temperature			–20 °C t	o +60 °C			
Lubricant for gearing	Klüber Microlube GL 261 grease						
Position indicator	by anti-rotation bar						
Manual adjustment	by means of lateral hand wheel						
60529	IP 65						
Trapezoidal thread	Tr 26 x 5						
Connection type		[DIN 3210 G0 (als	o refer to option	s)		
Weight kg			19	9,0			

 1) at 60 Hz, the positioning speeds and input power increase by 20%
 2) other supply voltages on request
 3) syn asyn
 synchronous motor
 4) B
 stallproof motor

|--|

Yoke for adaptation to valves refer to dimension sheet.	STALA/
	FLA
Mounting flange with central attachment Mxx refer to dimension sheet (thrust rod must be secured against revolving).	ZFLA
Compact plug 10/24 poles with additional housing at actuator Voltages⊠500 V.	KS
Special finish coating for use in the tropics "tropics coating".	LA-TR
Version with bellows at thrust rod (for EL20, EL45, EL80, EL120).	A-FAB
	Yoke for adaptation to valves refer to dimension sheet. Mounting flange with central attachment Mxx refer to dimension sheet (thrust rod must be secured against revolving). Compact plug 10/24 poles with additional housing at actuator Voltagesi≤1500 V. Special finish coating for use in the tropics "tropics coating". Version with bellows at thrust rod (for EL20, EL45, EL80, EL120).

Options for actuators

Additional limit switches for signalling end positions or intermediate positions, freely adjustable, max. 250 V AC, rating for resistive load max. 5 A, for inductive load max. 3 A, max. 2 switches for EL20 and EL45, max. 4 switches for EL80 and EL120.	WE
Additional limit switches for signalling end positions or intermediate positions, freely adjustable, with gold-plated contacts for low voltage, max. 30 V AC, rating for resistive load max. 0.1 A, max. 2 switches for EL20 and EL45, max. 4 switches for EL80 and EL120.	WE-G
Potentiometer 100/130/200/500/1000/5000 Ohms or 10 kOhms	
Linearity error ≤ 0.5 %, max. 1.5 W, contact current 30 mA	POI
Flectronic position feedback 2-/3-/4-wire system	
Inductive travel measuring, output 0 (4)20 mA	ESR
Connection 24 V DC	-
Positioning electronics for actuator control	
Input 010 V, 0 (4)20 mA, output 010 V, 0 (4)20 mA	PEL
Supply voltage 24, 115, 230 V 50/60 Hz	
Heating resistor with thermoswitch against moisture	
with automatic temperature regulation, max. 15 Watts	HZ/WP
Supply voltage 24, 115, 230 V 50/60 Hz	

3

LINEAR ELECTRIC ACTUATORS - Type EL EL12, EL20, EL45, EL80, EL120, EL250

ELECTRICAL CONNECTION

- WE Limit switch
- HZ Heater with thermoswitch
- POT Potentiometer
- ESR Electronic position feedback
- PEL Positioning electronics WSE External reversing contactor
- WSE External reversing contactor unit REG Process controller

3

LINEAR ELECTRIC ACTUATORS - Type EL EL12, EL20, EL45, EL80, EL120, EL250

DIMENSIONS

EL20 - EL45- EL80 - EL120

	DIMENSIONS											
Туре	EL20- EL45	EL80 - EL120	EL250	Туре	EL20 - EL45	EL80 - EL120	EL250					
а	94.5	130	190	0	210	220	240					
b	173	197	226	р	115	179	164					
Øc	145	188	216	r	45	45	51					
d	42	69	70	Øw	22	22	22					
Øe	54	100	100	М		M16x1,5	M20x1,5					
Øf	74	130	130	max. G	M20	M20	M20					
Øg	35 f8	60	60	ØD	Ø 40, Ø 45	Ø 40, Ø 45	Ø 45, 65					
i	3	26	3	G	M10	M10	M16					
k		16	22	S	110 (100)	110 (100)	125					
n	14	20	26	Х	190	- 228	235					
Øt	50	102	102									
u	M6	M10	M10									
v												
Н	Stroke ac	tuators (see techni	cal data)									

3

LINEAR ELECTRIC ACTUATORS - Type EL EL12, EL20, EL45, EL80, EL120, EL250

DIMENSIONS

EL12

Туре	EL 12
ØD	40
S	100
X1	160
X2	55

LINEAR ELECTRIC ACTUATORS - Type EL EL12, EL20, EL45, EL80, EL120, EL250

COMBINATION WITH A CONTROL VALVE (short instruction)

On delivery the driving rod (1) is driven out to the bottom end limit (anti-rotation flange at bottom mark).

Further procedure:

-Insert valve stem (4) into the valve all the way to limit stop -Move the driving rod (1) up by rotating the hand wheel anticlockwise by about 20 mm (see manual operation). -Lift the actuator and yoke over the valve stem, place onto the top of the valve and secure using the mounting nut (9) -Unscrew the locking plate (3) and the anti-rotation flange (8) in succession from the coupling flange (2) and allow it to fall over the stem. -Remove the threaded socket (6) from the coupling flange and screw it onto the stem according to dimension L from table 1. -Drive out the rod by rotating the hand wheel clockwise until the threaded socket (6) stops in the coupling flange (2). Screw the anti-rotation flange (8) and the locking plate (3) onto the coupling flange

-Tighten the stem with the nut (5) against the threaded socket.

- When mounting pay attention that the valve plug is not

pressed onto the seat and is not turned.

For electrical connections please report to IMI EL20.00

MANUAL OPERATION

The manual adjustment must not be disengaged or engaged while the motors is running.

Execute the manual adjustment only with motor being at standstill, hereto:

-With the left hand press the disengaging rod (11) with plate in direction of the outgoing driving rod toward the bottom -Simultaneously turn the handwheel (10) with the right hand until the coupling-in has sensible been executed

-To actuate the linear actuator now turn the handwheel, hold the disengaging rod with the plate in engaged position Turning crank handle to the right (clockwise), the driving rod moves out of the actuator

Turning crank handle to the left (anti-clockwise), the driving rod moves into the actuator

(The linear actuator is automatically switched back to motoric operation, as soon as the disengaging rod will be released).

(L) Dimensions in mm												
Valve Type	DN15	DN20	DN25	DN32	DN40	DN50	DN65	DN80	DN100	DN125	DN150	DN200
EV16G	18	18	18	13	12	14	25	25	19	-	-	-
EV40S	18	18	18	13	12	14	25	25	19	-	-	-
Table1												

	Ac	tuator s	electior	n for two	o way va	lves typ	De EV16	<mark>G, EV25</mark>	iG and E	V40S		
Actuator	Actuator Differential pressure (bar)											
Туре	DN15	DN20	DN25	DN32	DN40	DN 50	DN65	DN80	DN100	DN125	DN150	DN200
EL12	38	20	12	6,5	3,5	1,8	-	-	-	-	-	-
EL20	40	40	28	16	9,9	5,8	3	1,7	0,6	-	-	-
EL45	40	40	40	40	29,8	18,5	10,5	6,6	3,8	-	-	-
EL80	40	40	40	40	40	36,4	21	13,6	8,2	-	-	-
EL120	-	-	•		40	40	33,1	21,6	13,3	8,3	5,6	3
EL250	-	-	-	-	-	-	40	40	30,2	19,1	12,1	5,5

Remarks: V-rings stem packing.

		Actuato	r selecti	on for t	hree wa	y valves	stype E'	V253G a	and EV4	03S		
Actuator		Differential pressure (bar)										
Туре	DN15	DN20	DN25	DN32	DN40	DN50	DN65	DN80	DN100	DN125	DN150	DN200
EL12	25	22	13,2	7,1	3,8	1,9	-	-	-	-	-	-
EL20	25	25	25	17,3	10,8	6,6	3,4	2	1,1	-	-	-
EL45	-		-	25	25	19,8	11,6	7,3	3,8	2,4	1,5	-
EL80	-	-	-	-	25	25	23,1	14,8	8.9	5,5	3,6	-
EL120	-	-	-	-	25	25	25	23,1	14,5	9,1	6,1	-
EL250	-	-	-	-	-	-	-	-	-	-	-	-

LINEAR ELECTRIC ACTUATORS - Type EL EL12, EL20, EL45, EL80, EL120, EL250

ORI	DER	INC	G C	OC	DES	S EL - ELR
	E.					To be introduced on ".X.", if supplied in
ACTUATOR CODES (Electric)						combination with the valve.
Group Designation						Example:
EL Series electric linear actuator	E.					V16G valve model EQP soft plug, PTFE/GR
Valve Model						stem sealing DN50 complete with 230V electric
V16G, V16I	1(6				actuator EL20 with positioner for 4-20mA signal.
V25G, V25S, V25I	2!	5				
V40S, V40I, WV40I	4(D				
V253G	2:	3				
Valve Size						Code: EV.16G11L50.2013
DN15 to DN50		D.				
DN65 to DN100		J.				
DN125 to DN200		М.				
Actuator Type						
EL12			12			
EL20			20			
EL45			40			
EL45.1			41			
EL45.2			42			
EL80			60			
EL80.1			61			
EL80.2			62			
EL120			70			
EL120.1			71			REMARKS:
EL120.2			72			
EL250			80			(2)- Omitted if the standard actuator is selected.
EL250.1			81			
EL250.2			82			
ELK2.1			2A			ADCATROL control valves are identified by a serial
ELR2.2			2B			number on a nameplate, located on the actuator yoke.
ELK2.3			2C			Always order spares by using that serial number.
				4		It the valve has non-standard extras the serial number
				1		nas also an E (extras).
24 VAC				2		
24 1/DC				3 1		
24 VDC				4		
rontrol Signal				3		
Actuator without positioner (standard)					(2)	
4 - 20 mA with positioner PFL (not for DC)					(2) २	
0 - 10 V with positioner PEL (not for DC)					4	
Positioner PEL (DC)					5	
					5	

3

PI991 Intelligent Positioner with HART, PROFIBUS PA, FOUNDATION Fieldbus H1 or FoxCom for EEx ia Intrinsically Safe Applications

DESCRIPTION

The microprocessor controlled positioner PI991 is designed to control pneumatic valve actuators and can be operated locally or by means of control systems. The advanced diagnostic can be partially shown on the local LCD of the positioner or fully on a PC or a DCS workstation with a DTM based software (VALcare or Valve Monitor). The positioner is available with different communication protocols. This includes versions with analog setpoint (4 to 20 mA) and superimposed HARTor FoxCom signal; digital with FoxCom protocol, or fieldbus communication according to PROFIBUS-PA and FOUNDATION fieldbus H1 according to IEC 1158-2 based on FISCO. The PI991 also has the capability to control a Partial Stroke Test (PST) that offers perators a tool to identify the trouble-proof function of ESD (Emergency Shut Down) valves.

Version "Intelligent"

- Autostart with self calibration
- Self diagnostic, status and diagnostic messages

Version "Intelligent with Communication"

- Communication HART, FOUNDATION Fieldbus H1, PROFIBUS-PA or FoxCom
- Configuration by means of local keys, Hand Held Terminal, PC or I/A Series system or with an infrared interface by means of IRCOM

Version "Intelligent without Communication"

• Input signal 4-20 mA

For all Versions

- Stroke range 8 to 260 mm (0.3 to 10.2 in)
- Angle range up to 95°
- Supply air pressure up to 6 bar (90 psig), with "Spool Valve" up to 7 bar (105 psig)
- Single or double acting
- Mounting on linear actuators according to NAMUR:
 - IEC 534 Part 6
 - VDI/VDE 3847
 - Direct mounting on actuators FlowPak and FlowTop
- Mounting on rotary actuators acc. to VDI/VDE 3845
- Protection class IP 65, NEMA 4X
- Explosion protection:
 - II 2 G EEx i / II 2 G EEx n (intrinsic safety) according to ATEX
 - Intrinsic safety according to FM and CSA
 - Ambient temperature -40 to 80°C (-40 to 176°F)
- Display and Local User Interface:
 - Multilingual Full-Text Graphic LCD or LEDs
 - Status- and Diagnostic-Messages displayed on LCD
 - Easy configuration by means of 3 pushbuttons

PI991 Intelligent Positioner with HART, PROFIBUS PA, FOUNDATION Fieldbus H1 or FoxCom for EEx ia Intrinsically Safe Applications

- Mechanical travel indicator
- Suitable for safety applications up to SIL 3
- Partial Stroke Test (PST) for Emergency Shut Down applications
- Infrared Interface for wireless communication
- Stainless Steel housing for Offshore or Food and Beverage applications
- Additional Inputs/outputs (optional):
 - 2 binary outputs (limits)
 - Position feedback 4 to 20 mA, 1 Alarm output
 - 2 binary inputs
 - Built-in independent inductive limit switches (2- 3-wire) or micro switches
 - Sensors for supply air pressure and output pressure
 - Binary Inputs/Outputs dedicated to SIS logic solvers
 - Accessories
 - · Booster relay to minimize stroke time
 - Gauge Manifold

Input

All "intelligent" versions are with micro controller

With HART communication

With Fieldbus communication (acc. to FISCO)

Input signal digital fieldbus Supply voltage DC 9 to 32 V Operating current 10.5 mA ±0.5 mA (base current) Current amplitude..... ±8 mA Fault current base current +0 mA (+4 mA by means of independent FDE-safety circuit)

PROFIBUS-PA

Data transfer acc. to PROFIBUS- PA profileclass B based on EN 50170 and DIN 19245 part 4

FOUNDATION Fieldbus H1

With FoxCom communication

PI991 Intelligent Positioner with HART, **PROFIBUS PA**, FOUNDATION Fieldbus H1 or FoxCom for EEx ia Intrinsically Safe Applications

Without communication 4 to 20 mA

Common data for all versions

Supply

Response characteristics

Pneumatic connection

NAMUR mounting 3x female threads 1/4-18 NPT or G1/4 for pipe diameter 6 to 12 mm (0.24 to 0.47 in) Direct mounting Instead of output y1 an air connection on the backside with O-ring is used (closed at NAMUR mounting).

Electrical connection

Technical Data for Stainless Steel Housing

AIR FILTER REGULATOR - P 10

DESCRIPTION

The P10 air filter regulators are used to remove both solid and liquid impurities from the air and to regulate the output pressure to the required value for general purpose pneumatic systems.

The filter bowl which is transparent allows easy monitoring of the condensate level.

MAIN FEATURES

Self relieving. Compact combined filter/regulator. 5 micron large surface area element. Manual and automatic condensate exhaust easier when there is no pressure. Pressure gauge D.42 x 1/8" Mounting bracket

USE: Pneumatic systems AVAILABLE MODELS: P 10 VALVE SIZES: DN ¹/₄'' CONNECTIONS: BSP (BS21-Rp)

Valve model	P10				
Max.upstream pressure	12 bar				
Max.downstream pressure	10 bar				
Min.downstream pressure	0,5 bar				
Max.design temperature 60 °C					
Min.Operating temperature	-10 ºC				

POS.Nr.	DESIGNATION
1	Filtering element
2	Bow I (including bow I guard)
5	Exhaust ring
6	Air inlet connection
7	Low pressure air outlet
8	Flow indicator arrow
11	Pressure regulating knob
13	Pressure gauge

3

PNEUMATIC ANGLE TYPE INTERCEPTION VALVE - Type PAV 21

DESCRIPTION

The PAV series angle seat interception valves are designed for steam, gas and other fluids used on the process industry and they are the effective response to fluid interception when flexibility and cost is requested. Connections are female screwed.

MAIN FEATURES

Stainless steel body with high coefficient of flow. Resistance to corrosion Low air consumption Nylon rotational servo control Self-centring plug with soft sealing Live loading packing gland

OPTIONS:	Pilot solenoid valves
	Electromechanical switches

USE:

Saturated steam, water and other fluids compatible with the construction. 5 bar / 8 bar

ACTUATOR CONNECTIONS:

AIR SUPPLY:

PPI-63 G1/8" NPT PPI-90 G1/4" NPT

AVAILABLE MODELS: SIZES: CONNECTIONS: VALVE LIMITING CONDITIONS:

PAV 21 - Pneumatic angle valve DN $\frac{1}{2}$ " – DN 2" Threaded ISO

Body design conditions: PN16 Max. Working temperature: 190 °C Min. Working temperature: -10 °C Ambient temp.: -10 °C ...+ 80 °C

	MAX. PERMISSIBLE PRESS.DROP IN bar Normally closed valve (fluid to open) Reverse action actuator (air signal to open)						
ACT.	ACT. AIR SIZES						
Туре	PRESSURE	DN15	DN20	DN25	DN32	DN4 0	DN50
PPI-63	5 - 8 bar	16	16	16	-	-	-
PPI-90	5 - 8 bar	-	-	-	16	16	10

Note: Waterhammer free design.

Kvs in m3/h , see data sheet IS PV10.00 E ; For conversion Kvs = Cv(US) x 0,855

CE MARKING (PED - European Directive 97/23/EC)				
PN 16	Category			
DN15 to DN50	SEP - art. 3, paragraph3			

	FLOW RATE COEFFICIENTS					
			SIZ	ES		
	DN15	DN20	DN25	DN32	DN40	DN50
Kvs	4,8	9,5	18	23,2	32,7	52,6

MAX. PERMISSIBLE PRESS.DROP IN bar Normally closed valve (fluid to close) Reverse action actuator (air signal to open)							
ACT.	r. AIR SIZES						
Туре	PRESSURE	DN15	DN20	DN25	DN32	DN40	DN50
PPI-63	5 - 8 bar	16	16	16	-	-	-
PPI-63	6 - 8 bar	16	16	16	-	-	-
PPI-63	7 - 8 bar	16	16	16	-	-	-
PPI-90	5 - 8 bar	-	-	-	16	-	-
PPI-90	6 - 8 bar	-	-	-	16	16	-
PPI-90	7 - 8 bar	-	-	-	16	16	16

Note: not recommended when controlling liquids at high speed doing to waterhammer occurrence.

	DIMENSIONS (mm)							
			С	ØD	С	ØD	WHT.	WHT.
DN	A	В	Actu PP	iator I-63	Actu PP	iator I-90	Kgs w/PPI63	Kgs w/PPI90
15	68	174	155	75	155	110	1,35	2,4
20	75	182	158	75	158	110	1,45	2,5
25	90	190	166	75	166	110	1,65	2,7
32	116	261	227	75	227	110	2,3	3,3
40	116	265	229	75	229	110	2,55	3,5
50	138	282	238	75	238	110	3,6	4,7

	MATER	NALS		
POS.	DESIGNATION	MATERIAL		
1	Valve Body	CF8M / 1.4408		
2	Bonnet	CF8 / 1.4308		
3	Actuator Flange	CF8 / 1.4308		
4	Actuator Cover	CF8 / 1.4308		
5	Piston	Aluminium		
6	Indication Stem	Plastic		
7	* Packing	PTFE / GR		
8	* Valve Plug	1.4401 / PTFE-GR		

* Available spare parts

PNEUMATIC ANGLE TYPE INTERCEPTION VALVE - Type PAV 21

ORDERI	NG C	ODE	S P	A۷	21				
VALVE CODES	PAV						Y		7
Group Designation	1.41								-1
Pneumatic on-off angle valve	PAV								
Valve Model	1.70								
Two way straight design stainless steel construction		.21							
Valve Plug									
Soft (PTFE/GR) PT Type			1						
Pipe Connection									
Threaded BSP ISO 7/1 Rp					Α				
Size									
DN 15						15			
DN 20						20			
Fluid Direction									
Normally closed valve, fluid enter above the seat							A		
Normally closed valve, fluid enter below the seat							В	(1)	
Actuator								(1)	-
Extras (3)								1	<u>-</u>
ACTUATOR CODES (pneumatic)	PI.						To b in co	e intro mbina	duced on ".X.", if supplied tion with the valve.
Group Designation									
Piston linear actuator	PI.								
Actuator Size	•								
Piston pneumatic actuator PPI 63		.63							
Piston pneumatic actuator PPI 90		.90							
Actuator Type									
Direct action (air to close)			.D						
Reverse action (air to open)			.R		(1)- I	ndica	ate a	ctuato	r type.
Actuator Constrution					(2)- (Omitt	ted if	the st	andard actuator is selected.
Stainless steel				(2)	(3)- 1	Fo be	e use	d only	when a non-standard
				[com	oinati	ion v	alve is	supplied

BF3S10SPBN

Ball valve, 3-piece full bore design, suitable for air, gas, water and low pressure steam,

- Body, ball & stem: 316 stainless steel
- Seats: RPTFE
- · End Connections: Screwed BSP or socket weld
- Maximum pressure rating: 7,000 kpa (1,000 psi) •
- Maximum temperature rating: 204 degrees C
- Sizes: 8mm to 50mm

MATERIALS LIST

NO.	PART NAME	MATERIAL
1	BODY	ASTM A351 Gr.CF8M
4	BALL	ASTM A351 Gr.CF8M
5	STEM	SS316
9	END CAP	ASTM A351 Gr.CF8M
12	SEAT	RTFE.
13	THRUST WASHER	RTFE.
14	STEM PACKING	RTFE.
15	GLAND BUSH	SS304
19	HANDLE	SS304
21	HANDLE COVER	VINYL GRIP
22	STEM NUT	SS304
24	HANDLE NUT	SS304
28	LOCKING PAD	SS304
29	BELLEVILLE WASHER	SS304-CSP
30	TAB WASHER	SS304
31	O-RING	VITON
32	PACKING FOLLWER	PTFE +25%G F
35	BODY BOLT	SS304
36	BOLT WASHER	SS304
37	BOLT NUT	SS304

DIMENSIONS

unit:mm
 Z-4
 Z1-4

 7.0
 6.0

 7.0
 6.0

 7.0
 6.0
 Н H1 H4 Z1-4 L1 Ø٢
 DN8
 1/4"

 DN10
 3/8"

 DN15
 1/2"

 11.5
 63.5
 112.0
 73.0
 8.5
 37.0
 9.0
 50.0
 36.0

 12.5
 63.5
 112.0
 73.0
 8.5
 37.0
 9.0
 50.0
 36.0

 15.0
 63.5
 112.0
 73.0
 8.5
 37.0
 9.0
 50.0
 36.0

 15.0
 63.5
 112.0
 73.0
 8.5
 37.0
 9.0
 50.0
 36.0
 22
 20.0
 72.5
 112.0
 80.8
 8.5
 45.0
 9.0
 50.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 36.0
 DN20 3/4 7.0 7.0 6.0 DN25 1" 6.0 DN32 1-1/4" 70 60 42
 32.0
 34.3
 163.0
 36.7
 11.4
 39.0
 9.0
 50.0
 50.0
 36.0

 38.0
 108.0
 197.9
 115.3
 14.0
 74.8
 14.0
 70.0
 50.0

 50.0
 121.5
 197.9
 124.0
 13.7
 83.5
 14.0
 70.0
 50.0

 65.0
 157.5
 267.0
 155.0
 18.0
 108.8
 17.0
 102.0
 70.0

 80.0
 190.0
 267.0
 204.5
 146.0
 17.0
 102.0
 70.0
 DN40 1-1/2" DN50 2" DN65 2-1/2" 9.0 9.0 7.0 63 11.0 9.0 85 DN80 3" 11.0 9.0 DN100 4" 100.0 225.0 322.0 216.7 18.0 153.8 17.0 102.0 70.0 11.0 9.0 128.5

BF3S10S50BN

Ball valve, 3-piece full bore design, suitable for steam, water, air, gas and many chemicals.

- Body, ball & stem: 316 stainless steel
- Seats: graphite impregnated PTFE
- End Connections: Screwed BSP or socket weld
- Direct mount ISO mounting pad suitable for mounting
- of pneumatic or electric actuators.
- Spring return ("dead man") man handle also available
- Maximum pressure rating 7,000 kpa (1,000 psi)
- Maximum temperature rating 230 degrees C
- Sizes: 8mm to 50mm

MATERIALS LIST

NO.	PART NAME	MATERIAL
1	BODY	ASTM A351 Gr.CF8M
4	BALL	ASTM A351 Gr.CF8M
5	STEM	SS316
9	END CAP	ASTM A351 Gr.CF8M
12	SEAT	50% S.S. Filled PTFE
13	THRUST WASHER	RTFE.
14	STEM PACKING	RTFE.
15	GLAND BUSH	SS304
19	HANDLE	SS304
21	HANDLE COVER	VINYL GRIP
22	STEM NUT	SS304
24	HANDLE NUT	SS304
28	LOCKING PAD	SS304
29	BELLEVILLE WASHER	SS304-CSP
30	TAB WASHER	SS304
31	O-RING	VITON
32	PACKING FOLLWER	PTFE +25%G F
35	BODY BOLT	SS304
36	BOLT WASHER	SS304
37	BOLT NUT	SS304

DIMENSIONS

SL	ZE	PORT	L	E	Н	H1	H4	С	ØK	ØK1	Z-4	Z1-4	L1
DN8	1/4"	11.5	63.5	112.0	73.0	8.5	37.0	9.0	50.0	36.0	7.0	6.0	22.5
DN10	3/8"	12.5	63.5	112.0	73.0	8.5	37.0	9.0	50.0	36.0	7.0	6.0	22.5
DN15	1/2"	15.0	63.5	112.0	73.0	8.5	37.0	9.0	50.0	36.0	7.0	6.0	22.5
DN20	3/4"	20.0	72.5	112.0	80.8	8.5	45.0	9.0	50.0	36.0	7.0	6.0	27.5
DN25	1"	25.0	81.0	136.0	90.5	11.4	53.5	11.0	50.0	36.0	7.0	6.0	34.0
DN32	1-1/4"	32.0	94.5	185.0	98.7	11.4	59.0	11.0	50.0	36.0	7.0	6.0	42.5
DN40	1-1/2"	38.0	108.0	197.9	115.3	14.0	74.8	14.0	70.0	50.0	9.0	7.0	52.0
DN50	2"	50.0	121.5	197.9	124.0	13.7	83.5	14.0	70.0	50.0	9.0	7.0	63.5
DN65	2-1/2"	65.0	157.5	267.0	155.0	18.0	108.8	17.0	102.0	70.0	11.0	9.0	85.5
DN80	3"	80.0	190.0	267.0	208.5	18.0	118.3	17.0	102.0	70.0	11.0	9.0	102.0
DN100	4"	100.0	225.0	322.0	216.7	18.0	153.8	17.0	102.0	70.0	11.0	9.0	128.5

unit:mm

BF3S20SRN(B)F

Ball valve, 3-piece full bore design, firesafe and antistatic To API 607, BS5146, suitable for flammable fluid and gases, Water, air, gas and many chemicals.

- Body, ball & stem: 316 stainless steel
- Seats: RPTFE
- Body seals and gland packing: Graphite
- End Connections: Screwed BSP, NPT or socket weld
- Spring return ("dead man") man handle also available
- Maximum pressure rating 14,000 kpa (2,000 psi)
- Maximum temperature rating 204 degrees C
- Sizes: 8mm to 50mm

-	0		
5 SIZE: 1/4"-2" F RUL PRT and STAMD DUS, BIT VELED END, 11 HOUTING PAD 2-81 (SCREDE EDUS/ST 2-81 (SCREDE EDUS/ST 2-81 (SCREDE EDUS/ST 2-81 (SCREDE EDUS/ST 2-81 (SCREDE EDUS/ST 2-81 (SCREDE EDUS/ST 3-14" - 14" - 14" (SCREDE BIS.20-1-PPE THREADS BIS.10-1-PPE THRE	FIRE-SAFE API 607 R0 PDR FALL VALVE SUBCRT VELDED END XET VELDED END XET VELDED END XET VELDED END XET VELDED END SO XET VELDED END SO STEM 6 SS TRIM 6 SS TRIM 6 SS TRIM 6 SS TRIM 6 SS TRIM 10 rest 10 r	velding end 5 of valves Jing Ittings,	
DESCRIPTION	STAINLESS STEEL	CARBON STEEL	Q' TY
BODY	ASTM A351 CF8M	ASTM A216 WCB	1
END CAP	ASTM A351 CF8M	ASTM A216 WCB	2
BALL	ASTM A351 CF8M/316	ASTM A351 CF8M/316/304	1
SEAT	RP	TFE	5
GASKET	GRAP	HITE	2
UHONE I	PT	FE	2
	GRAPH	ITE	1

-1	TUDUST MASHED	GRAP	HITE	1
-2	INKUSI WASHER	PT	FE	1
7	STEM PACKING	GRAPI	HITE	1
8	GLAND	AISI	304	1
9	BELLEVILLE WASHER	AISI	301	5
10	STEM	ASTM AS	276 316	1
11	PACKING NUT	AISI	304	1
12	SPRING WASHER	AISI	304	1
13	HANDLE NUT	AISI	304	1
14	BOLT	ASTM A193 BB	ASTM A193 B7	8-12
15	HANDLE	AISI 304	ZINC PLATED STEEL	1
16	HANDLE GRIP	VINIL F	PLASTISOL	1
17	LOCK SADDLE	AISI	304	1
18	D-RING	VI	TON	1
19	STOPPOER NUT	AISI 304	CARBON STEEL	1
20	ANTI-STATIC DEVICE	ISIA	304	1-2

ISO 5211 517 Ø[ØA ØE Welghts KG
 IN
 MM
 IN
 MM

 0. 54
 13. 8
 0. 56
 14. 2

 0. 68
 17. 3
 0. 69
 17. 6
 IN IN MM IN DN IN MM IN MM ΙN MM MM IN MM IN MM ΙN MM IN MM (F) 8 10 0.43 11.0 0.39 10. 0 2. 55 65. 0 2. 75 70. 0 F04 9, 0 0, 31 140. 0 3/8 0.35 8. 0 1.47 37. 5 2. 75 70. 0 5. 51 0.55 14.0 2. 95 75. 0 2. 95 3. 14 80. 0 3. 54 75. 0 90. 0 0.51 13.0 15 20 1.1
 1. 96
 52. 0
 3. 54
 90. 0

 2. 36
 60. 0
 3. 93
 100. 0

 2. 83
 72. 0
 4. 40
 112. 0

 2. 99
 76. 0
 4. 52
 115. 0
 3/4* 0.43 11. 0 0.43 11. 0 7. 08 F04-F05 <u>1.6</u> 2.2 0. 98 25. 0 1. 24 31. 5 0. 59 15. 0 3. 54 90. 0 3. 93 100. 0 1° 1 1/4' 4.33 110.0 4.33 120.0 4.92 110. 0 <u>3.3</u> 4.6 F07 0.67 17.0 0. 55 14.0 8,46 0.63 16.0 40 125.0 38 60 41 E

BF2C15SRRF / BF2C15SXRF

Ball valve, 2-piece, split body, full bore design, firesafe and

Antistatic to API 607, BS5146, suitable for flammable fluid and gases, Water, air, gas and non corrosive chemicals.

- Body: Carbon Steel ASTM A 216 Gr WCB
- Ball & stem: 316 stainless steel
- Seats: RPTFE, TFM 1600 High Temp
- Body seals and gland packing: Graphite
- End Connections: Flanged ANSI 150 RF
- Maximum pressure rating 1,950 kpa
- Maximum temperature rating 204 degrees C
- Sizes: 15mm to 150mm

DN200~DN250

PARTS	MATERIAL						
BODY							
CAP	ASTM A351-CF8M ASTM A216-WCB						
BALL	SOLID: ASTM A351-CF8M / HOLLOW: ASTM A240-31						
SEAT	TFM1600 / RTFE						
SEAL	GRAPHITE						
STEM	ASTM A276-316						
THRUST WASHER	CTFE						
O-RING	VITON						
PACKING	GRAPHITE						
GLAND RING	AISI 304						
BELLEVILLE WASHER	AISI 301						
STEM NUT							
LOCKING WASHER							
FLAT WASHER							
HANDLE HEAD							
STOP PIN	AISI 304						
BOLT							
STUD							
NUT							
STEEL TUBE							
HANDLE SLEEVE	PVC						
HANDLE	AISI 201						
SOCKET SET SCREW	AIGI 301						
	PARTS BODY CAP BALL SEAT SEAT STEM THRUST WASHER O-RING PACKING GLAND RING BELLEVILLE WASHER STEM NUT LOCKING WASHER FLAT WASHER HANDLE HEAD STOP PIN BOLT STUD NUT STEEL TUBE HANDLE SLEEVE HANDLE SOCKET SET SCREW						

- ABOVE MENTIONED MATERIALS APPLY TO FIRE SAFE DESIGN - ISO 15848 DESIGN SHOULD REPLACE WITH PTFE SEAL & PACKING

DN	d		CLASS 150)		CLASS 300)	D4	DO	D	D4	0	Terrous (NLM)
DN	u	L	H	W		Н	W		02	n	ni	0	Torque(IN-IM)
15	15	108	85	190	140	84.5	197.5	42	36	2.75	2.75	9	5.2
20	20	117	89.5	190	152	94.5	197.5	42	36	2.75	2.75	9	8
25	24	127.5	94.2	190	165	99.5	197.5	50	42	2.75	3.5	11	12.5
32	30	140.5	97.9	190	178	105	197.5	50	42	2.75	3.5	11	12
40	38	165	120.9	235	190	124.5	247.5	70	50	3.5	4.5	14	24.5
50	50	178	129.9	235	216	129	247.5	70	50	3.5	4.5	14	32
65	64	190.5	156.3	325	241	154.5	340	102	70	4.5	5.5	17	38
80	76	203	163.3	325	282	165.5	340	102	70	4.5	5.5	17	45
100	98	229	190.9	325	305	188	340	125	102	5.5	6.5	22	55
125	125	356	232	743	-	-	-	125	102	5.5	6.5	27	160
150	150	394	230	743	403	253	743	125	102	5.5	6.5	27	250
200	200	457	312	840	-	-	-	-	140	8.5	-	36	470
250	250	533	350	1040	-	-	-	-	140	8.5	-	36	750
													unit:mm

BF2S15SRRF / BF2S15SXRF

Ball valve, 2-piece, split body, full bore design, firesafe and

Antistatic to API 607, BS5146, suitable for flammable fluid and gases,

- Water, air, gas and many chemicals.
- Body: 316 Stainless Steel ASTM A351 CF8M Ball & stem: 316 stainless steel
- Seats: RPTFE, TFM 1600 High Temp • Body seals and gland packing: Graphite
- End Connections: Flanged ANSI 150 RF
- Maximum pressure rating 1,950 kpa
- Maximum temperature rating 260 degrees C

DN15	~DN100	

ITEM	PARTS	MATER	IAL
1	BODY		
2	CAP	ASTM A351-CF8M A	ASTM A216-WCB
3	BALL	SOLID: ASTM A351-CF8M / HC	OLLOW: ASTM A240-316
4	SEAT	TFM1600	/ RTFE
5	SEAL	GRAPH	IITE
6	STEM	ASTM A27	76-316
7	THRUST WASHER	CTFE	E
8	O-RING	IOTIV	N
9	PACKING	GRAPH	IITE
10	GLAND RING	AISI 30	04
11	BELLEVILLE WASHER	AISI 30	01
12	STEM NUT		
13	LOCKING WASHER		
14	FLAT WASHER		
15	HANDLE HEAD		
16	STOP PIN	AISI 30	04
17	BOLT		
18	STUD		
19	NUT		
20	STEEL TUBE		
21	HANDLE SLEEVE	PVC	;
22	HANDLE		01
23	SOCKET SET SCREW	AISI 30	01

- ABOVE MENTIONED MATERIALS APPLY TO FIRE SAFE DESIGN - ISO 15848 DESIGN SHOULD REPLACE WITH PTFE SEAL & PACKING

DN	d		CLASS 150			CLASS 300)	D4	DO	P	D4	0	Terrous (NLM)
DIN	u	L	Н	W	L	Н	W	DI	02	n	ni	0	Torque(IN-IW)
15	15	108	85	190	140	84.5	197.5	42	36	2.75	2.75	9	5.2
20	20	117	89.5	190	152	94.5	197.5	42	36	2.75	2.75	9	8
25	24	127.5	94.2	190	165	99.5	197.5	50	42	2.75	3.5	11	12.5
32	30	140.5	97.9	190	178	105	197.5	50	42	2.75	3.5	11	12
40	38	165	120.9	235	190	124.5	247.5	70	50	3.5	4.5	14	24.5
50	50	178	129.9	235	216	129	247.5	70	50	3.5	4.5	14	32
65	64	190.5	156.3	325	241	154.5	340	102	70	4.5	5.5	17	38
80	76	203	163.3	325	282	165.5	340	102	70	4.5	5.5	17	45
100	98	229	190.9	325	305	188	340	125	102	5.5	6.5	22	55
125	125	356	232	743	-	-	-	125	102	5.5	6.5	27	160
150	150	394	230	743	403	253	743	125	102	5.5	6.5	27	250
200	200	457	312	840	-	-	-	-	140	8.5	-	36	470
250	250	533	350	1040	-	-	-	-	140	8.5	-	36	750

unit:mm

VALVE SEAT MATERIAL SELECTION GUIDE

Material	Description	Color
PTFE	The material is the basic seat material used in most ball valves. Its chemical compatibility is excellent for almost all media service applications.	White
RTFE	15% Glass Reinforced TFE. This material is offered as the standard seal in most HAITIMA valves. Chemical resistance is compatible to wrgin TFE with improved cycle life and greater pressure-temperature rating than PTFE.	Off white
CTFE	25% Carbon with 75% TFE. This material offers a wide temperature range with better cycle life than RTFE.	Black
TEM	TFM is chemically modified PTFE that fills the gap between conventional PTFE and mell-processable PFA. According to ASTM D 4894 and ISO Draft WDT 539-1.5, TFM is classified as a PTFE. Compared to conventional PTFE, TFM has lower permeability and much lower deformation under pressure (cold flow) at room and elevated temperature, Also they can be used at higher pressures.	While
PEEK	Polyether-ether-ketone-high temperature semirigid elastomer. Best suited for high pressure and temperature service. Also offers very good corrosion resistance.	Grey
DELRIN	Delrin is capable of handling extremely high pressure. Must not used for oxygen service.	Creamy white
Cavity Filler	Designed to reduce the possibility of contamination by entrapment of process fluids in the void normally found behind the ball and the valve body in conventionally designed ball valves. Ideal for application where cross contamination is a concern, such as paints and dyes.	White

Description

Exclusively designed Armstrong bellows sealed globe valve has a sealing combination featured by using double walls stainless steel bellows as the stem seal elements and graphite packing as seal accessory to prevent leakage. The finely polished planar sealing between the valve and the seat ensures a long-term reliable operation whenever the stem is moving or not. Therefore, it can display remarkable sealing characteristics at any applications.

Armstrong bellows sealed globe valves can be widely applied in the water, steam, oil and other non-corrosion systems in petrochemical, electricity, metallurgy, electronics, textile and other industries.

Connections

Screwed (NPT/BSPT), socket weld, flanged (HG20592 RF, other flanges available, please consult factory).

Bellows	Sealed Glo	be Valves		
Model	Body Material	Norm. Pressure (MPa)	Size	Connection Type
BD16	Ductile Iron	1.6	DN15~DN300	Flanged
BD25	Ductile Iron	2.5	DINIS DINSOU	
BCS16	Carbon Steel	1.6		Flanged
BCS25	Carbon Steel	2.5	DN13-DN30	
PCS40	Carbon	4.0	DN15~DN50	Screwed, SW
60340	Steel		DN15~DN300	Flanged

Design Features										
Model	BD16	BD25	BCS16	BCS25	BCS40					
Max. Allowable	2.5MPa@	4.0MPa@	2.5MPa@	4.0MPa@	6.4MPa					
Pressure	20 ℃	20 ℃	20 ℃	20 ℃	@20°C					
Max. Operating										
Pressure	1.6MPa	2.5MPa	1.6MPa	2.5MPa	4.0MPa					
Max. Allowable										
Temperature	350 ℃									
Min. Operating										
Temperature	-10℃	-10℃	-30℃	-30℃	- 30 ℃					

Pressur	e-Temperat					
Model	≤120 ℃	150 ℃	200 ℃	250 ℃	300 ℃	350 ℃
BD16	1.6MPa	1.52MPa	1.44MPa	1.28MPa	1.12MPa	0.88MPa
BD25	2.5MPa	2.43MPa	2.25MPa	2.18MPa	2.00MPa	1.75MPa
BCS16	1.6MPa	1.57MPa	1.52MPa	1.44MPa	1.28MPa	1.12MPa
BCS25	2.5MPa	2.45MPa	2.38MPa	2.25MPa	2.00MPa	1.75MPa
BCS40	4.0MPa	3.92MPa	3.80MPa	3.60MPa	3.20MPa	2.80MPa

Long-term Operation

Its compact yet rugged construction and anti-twist device on the bellows offers long, corrosion resistant service.

Double bellows sealing

It combines double walls stainless steel bellows seal with graphite packing seal.

Planar sealing

The planar sealing between the valve and the seat ensures reliable sealing and operation.

• Easy to Operate

Non-rising handwheel travels less and makes responses quicker; free opening/closing in narrow space; on/off position indicator makes operation easier.

Maintenance-free

Being the key component, double wall bellows seal keeps you free from valve leakage and maintenance.

• Wide Applications

It can be widely used under different pressures, temperatures or vibrating conditions, which makes it ideal for many applications.

Valves SECTION **Bellows Sealed Valves**

Fig. 1 Bellows Sealed Globe Valve (Flanged)

Globe Valve Physical Data (mm)						
Model	DN	D0 (φ)	D (φ)	н	L	z-φd
	15	125	95	200	130	4-φ14
	20	125	105	200	150	4-φ14
	25	125	115	210	160	4-φ14
	32	150	140	220	180	4-φ18
	40	150	150	235	200	4-φ18
	50	150	165	235	230	4-φ18
Ductile Iron BD16/BD25	65	250	185	350	290	4-φ18/8-φ18
Ductile if on BD10/BD23	80	250	200	360	310	8-φ18
	100	300	220/235	390	350	8-φ18/8-φ22
	125	300	250/270	500	400	8-φ18/8-φ26
	150	420	285/300	530	480	8-φ22/8-φ26
	200	420	340/360	590	600	12-φ22/12-φ26
	250	520	405/425	765	650	12-φ26/12-φ30
	300	520	460/485	810	750	12-φ26/16-φ30
	15	125	95	200	130	4-φ14
	20	125	105	205	150	4-φ14
Carbon Steel	25	125	115	215	160	4-φ14
BCS16/BCS25/BCS40	32	150	140	235	180	4-φ18
	40	150	150	235	200	4-φ18
	50	150	165	235	230	4-φ18
	65	250	185	355	290	8-φ18
	80	250	200	360	310	8-φ18
	100	300	235	390	350	8-φ22
Carbon Steel	125	300	270	465	400	8-φ26
BCS40	150	425	300	505	480	8-φ26
	200	425	375	600	600	12-φ30
	250	520	450	780	740	12-φ33
	300	520	515	805	850	16-φ33

Fig. 2 Bellows Sealed Globe Valve (Screwed)

Globe Valve Physical Data for Screwed Connections (mm)									
Model	DN	D0 (φ)	н	L	G				
	15	Ф100	180	90	1/2"				
	20	Ф100	180	100	3/4"				
Carbon Steel	25	φ100	192	120	1"				
BCS40	32	φ120	212	140	1-1/4"				
	40	φ120	220	170	1-1/2"				
	50	φ120	235	200	2"				

List of Materials			
Part No.	Part Name	BD16/BD25	BCS16/BCS25/BCS40
1	Body	ASTM A395 Ductile Iron	ASTM A216 WCB Cast Steel
2	Seat	Stainless Steel	Stainless Steel
3	Valve	Stainless Steel	Stainless Steel
4	Bellows	304 Stainless Steel	304 Stainless Steel
5	Gasket	Stainless Steel+Expanded Graphite	Stainless Steel+Expanded Graphite
6	Stem	420 Stainless Steel	420 Stainless Steel
7	Сар	ASTM A395 Ductile Iron	ASTM A216 WCB Cast Steel
8	Gland Packing	Expanded Graphite	Expanded Graphite
9	Handwheel	Carbon Steel	Carbon Steel

Performance Parameters															
Name of	Size	DN	DN	DN	DN	DN	DN	DN	DN	DN	DN	DN	DN	DN	DN
Parameter	Model	15	20	25	32	40	50	65	80	100	125	150	200	250	300
Flow	BD16/BD25	5	11	14	20	33	52	74	118	200	285	400	720	1130	1590
Coefficient (Kv)	BCS16/BCS25/BCS40	5	11	14	20	33	52	74	118	200	285	400	720	-	-
Valve Stem	BD16/BD25	8	10	12	14	15	18	25	28	35	45	58	65	80	94
Stroke (mm)	BCS16/BCS25/BCS40	8	10	12	14	15	18	25	28	35	45	58	65	-	-
	BD16	4.5	5	6	9	10	14	23	29	33	71	113	170	275	383
	BD25	4.5	5	6	9	10	14	26	32	38	75	118	176	290	400
Weight (kg)	BCS16/ BCS25	4.5	5	6	9	10	14	-	-	-	-	-	-	-	-
	BCS40	6	7	9	12	17	24	33	44	60	89	98	190	318	433
	BCS40(Screwed)	1.5	2	3	5	7	8	-	-	-	-	-	-	-	-

Lift Type Worm Drive Device

The worm drive device featuring high reduction ratio is able to transmit power and perform steadily. It can be widely installed on large sized globe valves serving as valve opening assisting device.

BA series worm drives are optional. See the following table for details.

Worm Drive Device Dimensions	and Weights (mm)						
Model	Worm Drive Model	Globe Valve Size	Α (φ)	В	С	D (φ)	Weight (kg) *
BD16		DN150	460	680	960	285	167
	BA-1	DN200	460	740	1000	340	224
		DN250	460	765	1260	405	329
	BA-2	DN300	460	857	1330	460	437
		DN150	460	680	960	300	167
PD25	BA-1	DN200	460	740	1000	360	224
6020		DN250	460	765	1260	425	329
	BA-2	DN300	460	857	1330	485	437
BCS40	RA_1	DN150	460	680	1095	425	152
	ВА-1	DN200	460	740	1170	425	234

Note: The weight consists of the weight of globe valve and the worm drive device.

Please indicate when ordering

 Model
 Max. Operating Pressure
 Max. Temperature
 Nom. Pressure Connection Type Options

All dimensions and weights are approximate. Use certified print for exact dimensions. Design and materials are subject to change without notice.

	DIMENSIONS UNIT: mm									
NOMINAL DIAMETER	ød	L	FLA øC	NGE n-øh	H1	H2	В	w	WEIGHT (KG)	
40(1.5")	40	33		/	60	155	205	27	2.2	
50(2")	50	43			61	158	205	28	2.7	
65(2.5')	67	46			73	169	205	51	3.4	
80(3")	79	46		/	80	180	205	67	3.8	
100(4")	101	52			93	194	265	89	4.9	
125(5")	124	56			113	207	265	113	6.8	
150(6")	147	56			126	220	265	139	8.6	
200(8")	197	56			157	275	350	191	13.1	
		DATING			2/EK 104		N16 160			

P.NO	PART NAME	MATERIAL	Q'TY	REMARK
1	BODY	FC200	1	
2	DISC	SCS13	1	
3	SEAT RING	EPDM	1	
4	MAIN STEM	SUS410	1	
5	STUB STEM	SUS410	1	
6	O-RING HOLDER	ACETAL	1	
7	0-RING	O-RING EPDM		
8	0-RING	EPDM	1	
9	0-RING	EPDM	3	
10	STOP BOLT	SS400	1	
11	BOLT/O-RING/BOLT	SS400/NBF	304 1SET	
12	INDICATOR	SS400	1	GALVANIZED
13	LEVER	ASS'Y	1	

ΝΟΤΕ S

- 1. "W" DIMENSION IS THE MINIMUM ALLOWABLE FLANGE INSIDE DIAMETER OR PIPE INSIDE DIAMETER AT THE CENTERED BODY FACE WHEN IN THE OPEN POSITION
- 2. HYDROSTATIC TEST -BODY : 15 BAR

× ød

BL301NV

Disc: 316 Stainless steel

Butterfly valve, wafer design.

- Seat: Viton
- + End Connections: wafer design to suit ANSI 150, AS2129 Table E / D
- Maximum pressure rating 1,000 kpa
- Maximum temperature rating 220 degrees C
- Sizes: 50mm to 200mm

⁻SEAT : 11 BAR

^{3.} FACE TO FACE : ISO 5752

BL302NV

Butterfly valve, lugged design.

Suitable for hot water, air, gas and many chemicals

- Body: Cast Iron
- Disc: 316 Stainless steel
- Seat: Viton
- End Connections: lugged design to suit ANSI 150
- Maximum pressure rating 1,000 kpa
- Maximum temperature rating 220 degrees C
- Sizes: 50mm to 200mm

P.NO	PART NAME	MATERIAL	Q'TY	REMARK	
1	BODY	FC200	1		
2	DISC	SCS14	1	CF8M	
3	SEAT RING	VITON	1		
4	MAIN STEM	SUS410	1		
5	STUB STEM	SUS410	1		
6	0-RING HOLDER	ACETAL	1		
7	O-RING	D-RING EPDM			
8	0-RING	EPDM	1		
9	O-RING	EPDM	1		
10	STOP BOLT	SS400	1		
11	BOLT/O-RING/BOLT	T SS400/NBR/SUS304 1S			
12	INDICATOR	SS400	GALVANIZED		
13	LEVER	ASS'Y	1		

ΝΟΤΕS

- 1. "W" DIMENSION IS THE MINIMUM ALLOWABLE FLANGE INSIDE DIAMETER OR PIPE INSIDE DIAMETER AT THE CENTERED BODY FACE WHEN IN THE OPEN POSITION
- HYDROSTATIC TEST
 BODY : 15 BAR
 SEAT : 11 BAR

3. FACE TO FACE : ISO 5752

	D	IME	ENS	S O	ΝS	1U	NIT: mm			
NOMINAL	ad	1	FL/	ANGE	ц					
DIAMETER			øС	n-h	п	в	w			
40(1.5")	40	33	98.4	4-1/2"	155	205	27			
50(2")	50	43	120.7	4-5/8"	158	205	28			
65(2.5')	67	46	139.7	4-5/8"	169	205	51			
80(3")	79	46	152.4	4-5/8"	180	205	67			
100(4")	101	52	190.5	8-5/8"	194	265	89			
125(5")	124	56	215.9	8-3/4"	207	265	113			
150(6")	147	56	241.3	8-3/4"	220	265	139			
200(8")	197	60	298.5	8-3/4"	275	350	191			
		FLANGE	RATING	: ANSI #	150					

BLWCI15SP

Butterfly valve, wafer design.

Suitable for hot water, air, gas and many chemicals

- Body: Cast Iron
- Disc: 316 Stainless steel
- Seat: PTFE
- + End Connections: wafer design to suit ANSI 150, AS2129 Table E / D
- Maximum pressure rating 1,000 kpa
- Maximum temperature rating 204 degrees C
- Sizes: 50mm to 200mm

		DIM	ΙΕΝ	SΙ	ΟΝ	S	١U	NT: mm
NOMINAL	ød	1	FL4	ANGE	LI 1	L12		147
DIAMETER	<u>¢</u> u		øС	n-øh		112	в	w
50(2")	50	43			61	158	205	28
80(3")	79	46			80	180	205	67
	FLANGE	RATING	: MULTI-	-DRILLIN	G(5K,10k	K,PN10,P	N16,150	LB)

DIMENSIONS UNIT:mm								
NOMINAL	ød		FLANGE			<u>ц</u> р		
DIAMETER	μu		ØC	n-øh	п	пи	в	w
100(4")	102	52	190.5	8-19	110	212	205	91
150(6")	154	56	241.3	8-22	155	263	265	143
FLANGE RATING : ANSI #150								

P.NO.	PART NAME	MATERIAL	Q'TY	REMARK
1	BODY	FC200	1	
2	DISC	SCS14	1	CF8M
3	SEAT	PTFE	1	
3-1	BACKUP SEAT	EPDM	1	
4	MAIN STEM	SUS410	1	
5	STUB STEM	SUS410	1	
6	0-RING HOLDER	ACETAL	1	
7	0-RING	EPDM	3	
8	0-RING	EPDM	1	
9	STOP BOLT	SS400	1	
10	BOLT/O-RING/BOLT	SS400/NBF	R/SUS	304 1SET
11	INDICATOR	SS400	1	GALVANIZED
12	LEVER	ASS'Y	1	

N O T E S

1. "W" DIMENSION IS THE MINIMUM ALLOWABLE FLANGE INSIDE DIAMETER OR PIPE INSIDE DIAMETER AT THE CENTERED BODY FACE WHEN IN THE OPEN POSITION

2. HYDROSTATIC TEST -BODY : 15 BAR -SEAT : 6 BAR

≥ p

3. FACE TO FACE : ISO 5752

BLWS15SP

Butterfly valve, wafer design.

Suitable for hot water, air, gas and many chemicals

- Body: 316 Stainless steel
- Disc: 316 Stainless steel
- Seat: PTFE
- + End Connections: wafer design to suit ANSI 150, AS2129 Table E / D
- Maximum pressure rating 600 kpa
- Maximum temperature rating 204 degrees C
- Sizes: 20mm to 200mm

		DIN	EN	VSI	ON	S		UN	T: mm
NOMINAL	NOMINAL ød	ι	FLANGE			un		and the second s	WEIGHT
DIAMETER			ØC	n-#h	H	H2	н	w	(KG)
50(2*)	50	43		1	61	158	205	28	2.7
65(2.5')	67	46		1/	73	169	205	51	3.4
80(3")	79	46		1/	80	180	205	67	3.8
100(4")	101	52		X	93	194	265	89	4.9
125(5")	124	58	1		113	207	265	113	6,8
150(67)	147	58	1		126	220	265	139	8.6
200(8")	197	56	/		157	275	350	191	13,1

P.NO	PART NAME	MATERIAL	QTY	REMARK
1	BODY	BC814	1	CFBM
2	DISC	BC814	1	CF6M
3	SEAT	PTFE	,	
3	BACKUP SEAT	EPOM	1	
3	BACKUP RING	PHENOLIC	1	
4	MAIN STEM	SUS316	1	11.0
5	STUE STEM	SUS316	1	
6	O-RING HOLDER	ACETAL	1	· · · · · · · · · · · · · · · · · · ·
7	O-RING	EPOM	2	
8	O-RING	EPDM	1	
9	O-RING	EPDM	1	1.00
10	STOP BOLT	\$\$400	2	
11	BOLT/O-RING/BOLT	\$\$400/NBP	R/SUS	304 1SET
12	INDICATOR	55400	1	GALVANIZED
13	LEVER	ASS'Y	111	

NOTES

1. "W" DIMENSION IS THE MINIMUM ALLOWABLE FLANCE INSIDE DIAMETER OR PIPE INSIDE DIAMETER AT THE CENTERED BODY FACE WHEN IN THE OPEN POSITION

2. HYDROSTATIC TEST

- -BODY : 15 BAR -SEAT : 6 BAR

3. FACE TO FACE : ISO 5752

CP460

Check valve, piston type, union cap.

Suitable for steam, water, air, gas and non corrosive chemicals

- Body & cover: Bronze B61
- Disc & Seat: 410 Stainless steel
- End Connections: Screwed BSP
- Maximum pressure rating 4,000 kpa cold, 2,000 kpa steam
- Maximum temperature rating 215 degrees C
- Sizes: 15mm to 50mm

HIDROSTATIC TEST						
BODY	900 PSI (62 BAR)					
SEAT	600 PSI (41 BAR)					

WORKING			CON	DITIC	INS		
SATURATED	STEAM	300	PSI	(21	BAR)		SUULK
WATER,	OIL	600	PSI	(41	BAR)	NUN	SHUCK

	1/2*	3/4	1	1 1/4*	1 1/2*	2″
А	75	90	106	122	135	165
В	46	52	60	69	77	94

MAXIMUM TEMPERATURE = 232 °C

6	01	IDENT. PLATE	ALUMINUM		
5	01	UNION BONNET RING	BRONZE	NBR6314/C92200	B62/C92200
4	01	BONNET	BRONZE	NBR6314/C83600	B62/C83600
З	01	DISC	ST. STEEL	NBR5601/410	A276/410
2	01	SEAT	ST. STEEL	NBR5601/410	A276/410
1	01	BODY	BRONZE	NBR6314/C83600	B62/C83600
POS.	QUANT.	DENOMINATION	MATERIAL	ABNT SPECIFICATION	ASTM SPECIFICATION

NOTE: THE DIMENSIONS ARE EXPRESSED IN MILLIMETERS.

CS3SS10B

Check valve, 3-piece, in-line spring loaded type.

- Suitable for steam, water, air, gas and most chemicals
- Body, disc & seat: 316 stainless steel
- End Connections: Screwed BSP
- Maximum pressure rating 7,000 kpa cold
- Maximum temperature rating 185 degrees C
 Sizes: 15mm to 50mm

DESCRIPTION

Being installed after the steam trap, the sight checker is a device to be used for visually checking the conditions and leakage of steam traps.

SCK sight checker functions as both sight glass and check valve.

Connections are female screwed.

Condensate pipes downstream steam traps.
•
SCK
1/2", 3/4" and DN 1"
Female screwed ISO 7/1Rp(BS21).
Horizontal or vertical (bottom to top) installation.
See IMI, installation and maintenance instructions.
SCK should be fitted at least 1m from the trap in order to protect the glass from thermal pressure or shock.

PMO – Max. operating pressure	10	bar
TMO – Max. operating temperature	150	°C
How to order: i.e. SCK DN 1/2" BSP.		

DIMENSIONS (mm)						
SIZE DN	A	В	с	D	WGT. Kgs	
1/2"	80	36	45	95	0,9	
3/4"	80	36	45	95	0,9	
1"	90	40	56	110	1,3	

MATERIALS						
POS.Nr. DESIGNATION MATERIAL						
1	Body	Bronze B62 / ASTM B148-97				
2	Cover Brass EN12165 / CuZn					
3	* Sight tube Borosilicate glass					
4	Discharge tube	Copper				
5	Ball check	Stainless steel				
6	Bolts	Seel 8.8				
7	* Gasket	Graphite				

*Available spare parts.

RD40 DN15 – DN100

DESCRIPTION The RD40 all stainless steel disc check valve has a compact design and was specially designed for use with steam and hot condensate. Connections are flanged (wafer type)

MAIN FEATURES Low pressure drop. Simple and compact design. Overall lengths according to DIN 3202 part 3-K4

OPTIONS:

USE :

Soft sealing : EPDM (E), NBR (N), VITON (V), PTFE (T). Inconel springs Saturated steam, water and other gases (Group 2) compatible with the construction

AVAILABLE MODELS : SIZES : CONNECTIONS :

INSTALLATION:

RATING:

RD 40 DN 15 to DN 100 Sandwiched between flanges as per EN 1092 or ANSI. Horizontal or vertical installation See IMI, installation and maintenance instructions. PN 25 / PN 40

LIMIT OF OPERATION:

As per EN 1092

Recommended limit of operation with soft seats (°C)						
EPDM (E) NBR (N) VITON (V) PTFE (T)						
130º	95º	180º	180º			

CE MARKING (PED - European Directive 97/23/EC)						
PN 25	PN 40	Category				
DN15 to DN40	DN15 to DN32	SEP - art. 3, paragraph3				
DN50 to DN100	DN40 to DN80	Category 1 (CE Marked)				
-	DN100	Category 2 (CE Marked)				

RD40 DN15 – DN100

	DIMENSIONS (mm)								
DN	15	20	25	32	40	50	65	80	100
D1	43	53	64	75	86	96	115	132	152
D2	50	60	70	81	91	105	126	141	167
Г	17	20	23	28	32	40	46	50	60
Kgs	0,18	0,2	0,25	0,5	0,7	1,3	1,7	2,8	4,5

	MATERIALS						
POS.	DESIGNATION	MATERIAL					
1	Valve body	CF8M / 1.4408					
2	*Disc	AISI316 / 1.4401					
3	*Spring	AISI302 / 1.4300					
4	Star	AISI316 / 1.4401					
6	* Soft seal	See options					

*Available spare parts

	Minimum opening pressures with standard spring in mbar										
D	N	15	20	25	32	40	50	65	80	100	
D.P.	•	25	25	25	27	28	29	30	31	33	
D.P.	+	23	23	23	24	25	25	26	26	27	
D.P.	*	21	21	21	21	21	21	21	21	21	
*D.P.	•	2	2	2	3	4	4	5	5	6	
* Vertic	Vertical installation without springs (bottom to top) Flow direction.										

Pressure drop, horizontal flow, standard spring (water - 20°) bar 0.1 0.2 0.2 To determine the pressure drop of other mediums the equivalent water flow volume has to be calculated: $V_w = \sqrt{\frac{Q}{1000}} \times V$ Ww = Equivalent water flow volume in m3/h; Q = Density in Kg/m3; V = Flow volume in m3/h

RD40 DN 125 – DN 200

DESCRIPTION The RD40 disc check valve has a compact design and was specially designed for use with steam and hot condensate. Connections are flanged (wafer type)

MAIN FEATURES Low pressure drop. Simple and compact design. Overall lengths according to DIN 3202 part 3-K4

OPTIONS:	Soft sealing :
	EPDM (E), NBR (N), VITON
	(V), PTFE (T).
	Inconel springs
USE :	Saturated steam, water and
	other gases (Group 2)
	compatible with the
	construction
AVAILABLE	
MODELS :	RD 40
SIZES :	DN 125 to DN 200
CONNECTIONS :	Sandwiched between flanges
	as per EN 1092 or ANSI.
INSTALLATION :	Horizontal or vertical installation
	.See IMI, installation and
	maintenance instructions.
RATING :	PN 10 / PN 40
LIMIT OF	
OPERATION:	As per EN 1092

Recommended limit of operation with soft seats (°C)								
EPDM (E) NBR (N) VITON (V) PTFE (T)								
130º	95º	180º	180º					

C	CE MARKING (PED - European Directive 97/23/EC)									
PN 10/16	PN 25	PN 40	Category							
DN125 to DN200	DN125	/	Category 1 (CE marked)							
/	DN150-DN200	DN125	Category 2 (CE marked)							
/	/	DN150-DN200	Category 3 (CE marked)							

RD40 DN 125 - DN 200

	DIMENSIONS (mm)									
DN	D1 PN10/16	D2 PN25	D2 PN40	D2 ANSI150	D2 ANSI300	L	Weight Kgs			
125	192	192	192	192	216	90	11			
150	218	226	226	218	251	106	13,5			
200	273	286	293	273	308	140	24			

	MATERIALS									
POS.	DESIGNATION	MATERIAL								
1	Valve body	S355J2G3 / 1.0570								
2	Seat	AISI316 / 1.4401								
3	*Disc	AISI316 / 1.4401								
4	*Spring	AISI302 / 1.4300								
5	Centering ring	AISI304 / 1.4301								
6	Bearing	Steel Fe Zn								
7	Star	S355J2G3 / 1.0570								
8	*Soft seal	See options								

*Available spare parts

Minimum opening pressures with standard spring in mbar									
	DN	125	150	200					
D.P.		37	40	46					
D.P.	+	22	25	28					
D.P.	*	7	10	10					
Flow directi	on.								

Vw = Equivalent water flow volume in m3/h ; Q = Density in Kg/m3 ; V = Flow volume in m3/h

CKBC1508R

Swing type, bolted cover, Class 150#.

- Suitable for steam, water, air, gas and non corrosive chemicals
- Body & Cover: Cast Steel ASTM A216 Gr WCB
- Piston: 13% Chrome stainless steel
- Seat: Stellite #6
- End Connections: Flanged ANSI 150
- Maximum pressure rating: 1,171 at 260 deg C, 1,964 kpa at -29 to +35 deg C
- Sizes: 50mm to 200mm

PART

Cove nut Cover Cover stud

Gasket

Hinge pin Hinge plug boll Hinge plug galiket Hinge Hinge nut

Body seal ring Washer Split pin Disc Body

"Catton content 0.25% max

MATERIAL

Steel Cast stell Alloy steel

Soft steel.

13% chrome tine: Steel Soft stimi Cast steel

Steel Stellite facuel Steel Steel

13% chrome steel

Casi st

A.S.T.M.

A194 Gt 2H *A216 Gt WCE A193 Gt B7

A479-410 A307B

*A218 Gr WCE A3078

A108 Gi 1020 + 51

A580-304 A217 CA15 *A216 Gr WC0

DIMENSIONS: Nominal Size mm	50	65	80	100	150	200	250	300	350	400	450	500	600		
Amm	203	218	241	292	356	495	622	699	787	864	978	976	1295	1.00	
Bener	151	163	175	210	251	296	333	352	401	430	520	564	683	11	
Approx- Weight Kg	17	22	31	50	92	135	195	285	420	.500	640	780	1490		

Swing type, bolted cover, Class 150#.

- Suitable for steam, water, air, gas and non corrosive chemicals
- Body & Cover: Stainless steel CF8M
- Disc: 316 stainless steel
- Seat: Stainless steel + Stellite #6
- End Connections: Flanged ANSI 150
- Maximum pressure rating: 1,171 at 260 deg C, 1,896 kpa at -29 to +35 deg C
- Sizes: 50mm to 200mm

PART

Cover Nut Cover Nut Cover Bolt

Gasket

Rod Pin Plug Bolt Plug Gaskot

Arm Arm Nut Split Pin Washet

Dinc Body

MATERIAL

Stainless Stren Stainless Steel Stainless Steel

Tellon

Stainless Steel Stainless Steel Tetton

Stainless Steel Stainless Steel Stainless Steel Stainless Steel

Stainless Steel Stainless Steel A351 CFMM A194-8 A193-B8

A.S.T.M

A479-316 A479-316

A351-CF6M A194-8

A580-316 A240-316

A351-CFBM A351-CFRM

Nominal Size mm	15	20	25	40	50	65	80	100	150	200	250	300	100
A mm	TOB	117	127	165	203	216	241	292	356	495	622	699	1.
Bmm	76	BUL	96	114	144	162	171	190	238	266	323	354	
Applox: Weight Hg	2	з	4	7	13	18	21	34	59	102	139	:209	

Temperatures to 1500 + F • Pressures to 10,000 psig • Abrasives • Corrosives • Coking • Slurries
 High Cycling • Bi-Directional • Intrinsically Fire Safe

OVER 80 YEARS OF FIELD PROVEN SERVICE – WITH APPLICATIONS WORLDWIDE.

PROVEN CONCEPT Starting in 1904 the unique rotating shearing disc concept was the standard for steam locomotive boiler blowdown. Following this the packaged boiler industry has also accepted the Everlasting quick opening valve where our reputation remains unchallenged. The valve handles boiler blowdown, scale, chemicals, high pressures, temperatures, and flashing condensate, they have an average life of 16 years.

Our slurry valves are installed throughout the world in processes that are abrasive, corrosive or fouling and that have high pressure, temperature or cycling. The unique self lapping metal to metal seat design provides repeated tight shutoff In severe service, while sealing improves with use.

PRINCIPAL OF OPERATION The actuator moves the stem and lever arm a guarter turn which drives the disc. The entire sealing surface of the disc is constantly in contact with the seat or pad through force exerted by colled springs. These springs allow the disc to move vertically. This compensates for thermal expansion and contraction of the valves components also overcoming the effect of any back pressure for which it was designed and prevents particles from lodging between the sealing surfaces. Differences in tangential disc to seat friction forces cause the disc to rotate on its seat

as the valve cycles, thereby shearing and wiping away any process material that may accumulate. No other valve is similar.

FEATURES AND BENEFITS

UNIQUE BOTATING SHEARING DISC - Set lapping daic, enhance wat clearing, action, outs thenugh solids, long tasting tight shut-off METAL TO METAL SEATING - abrasion resistance, wide temper adure renge 3. WIDE BAND SEAT-ING - High priminiana capability, petter sealing than industry standards, torios dishiputed over larger write, low trint with 4 FLAL PORT - struction idianise, no obstruction to tion, minimal prevenze drop. S POTATING STEM increased packing life, wide selection of actuators **6. SELF DRAINING** BODY - Reduced chance of jamming due to material entrairment, stagnation and degradation 7. BODY PURGE CONNECTIONS - Ability to frish valve cavity and internals while in operation SPRING LOADED CONNECTION BETWEEN DISC AND DRIVE - Allows disc to compensate for thermal expansion or contraction, adjusts for wear, ensures shul-off, realists back pre **B. FLAT SEATING BURFACES - Easter** 10. REPAIRABLE SEAT - Reduced story, la expension

11. STEM BEARINGS Transpr and saleway beintrugs ougr dam, schatton, reduce maintenunce 13. DESIGN SIMPLICITY VERSATLITY- Minimal path, ease of maintenunce, long source like adgetable

> THREE WAY, DIVERTING, OR CONVERGING. This valve is shown in cast configuration suitable to 300 paig. Fabricated version is available for higher pressures and temperatures.

STREAMLINED MOVING PARTS are made to move freely through the alurry with a minimum of resistence to operation. This design can also be turnilahed as a tank bottom valve.

DURABILITY AND PERFORMANCE FOR SHUT OFF AND ISOLATION APPLICATIONS

Everlasting Abrasive Service Valves

Everlasting PROCESS and BULK MATERIAL VALVES are used where existing valves or rotary feeders are repaired or replaced more than once a year. Sizes range from 1/2" to 18", vacuum to class 2500, temperatures +1500° F.

Their open body concept is self cleaning and incorporates precision flat lapped hard metal seals and discs that move in non-wedging, non-binding tashon through abrasive materials whether they are dry powders or in a slurry. Differences in tangential disc to seat friction cause the disc to rotate a few degrees with each cycle. This rotation polishes the mating surfaces improving the valves seal with each operation. HERE ARE SOME APPLICATIONS

1. REACTOR LOADING

Evertasting valves are use to replace other valves or rotary feeders for reactors that can begin its process with positive pressure then drop to a negative pressure. Pressure Equalizing valves balance the loading or let-down hoppers so the reactor valves may cycle with zero differential Pressure Equalizing valves are opened to either allow media to enter the loading hopper or the let-down hopper.

2. PNEUMATIC CONVEYING

Usually there are trains of two or more vessels that alternate continually to transport media. The vessel valves duty cycle. are often less than once a minute. The vent valve being smaller is exposed to higher than system velocities, it must resist erosion from the particulate laden atmosphere being discharged between vessel cycles. Everlastings unique totaling disc valves are being bought for mole of these systems with each day.

3. SLUARIES

Eventastings eccentric body configuration tenda to swirt the flowing media. This design was developed over 86 years ago to handle solids specifically. Other types of valves allow the media to accumulate in small clearances around the seats or between its sealing member and body causing them to jam.

In this real situation the vessel volume is 16,000 cubic feet maintained above 500 psig including mine tailings dissolved in acid that exceeds 400°F. The isolation valves are normally open and cycle closed after several months operation for change out of a modulating flash letdown valve without losing system pressure. When the isolation valves fail to seal it takes nearly a day to bleed the system and half a week to start-up. Production loss is worth a small fortune, literally and so are yours. Space age metals and ceramics used alone could not overcome the attacks of corrosion, erosion, and apglomerating media. The Everlasting Process valves combined the latest materials and its unique design to solve this problem.

4. DIVERTING

The rolating disc concept is ideal for diverting flow to storage bins or silos and to isolate pumps for maintenance. Everlasting diverties remain operating for years in 65% coal and sludge slurries. Turn them around and they converge the process from separate sources into a single stream. There are no small spaces where fines can compact to jam its components. After the customer tested a dozen other manufacturers products in a simulated system the Everlasting Diverter design was selected for use in processing abrasive, corrosive, chemical waste.

Whether your applications raquire carbon, stainless steel or space age materials, you can give your abrasives handling problem to the Everlasting 85 year old workaholic.

Everlasting CERTIFIED VALVE COMPANY, INC.

DIVERTER VALVES Switch on the fly, Dependably

EVERLASTING

Everlasting Valve Company, Inc.

The Everlasting Diverter that's built

Switch lines on-the-fly

A major cement company produced 55 ton/hour, but to switch lines they had to stop the compressor then take 15 minutes to come back to pressure. Each time the lines were switched 13.75 tons of product was not conveyed. With Everlasing Diverters there is no time lost. Are your down stream lines plugging, is the fringe bin full, do you have an off quality silo? How much are you losing with your present non-switch on the By diverters? How much are your installed diverters costing you in parts, labor and lost production?

Everlasting Diverters are Self-Cleaning, Self-Lapping and Long-Lasting

SELF-CLEANING Everlasting valves are designed with an open valve body that provides ample room for free flowing media to be displaced by the small volume disc and lever arm. The eccentric body to pipe connections cause the media to swirl in the open body. With the lateral piped to a vertical time media drops by gravity then is discharged through the straight leg with the next cycle. The closed port seat and disc surfaces are always shielded from hursh media.

SELF-LAPPING SEALING SURFACES With each cycle the flat disc freely rotates around a spring loaded rivet internal to the disc drive. Disc rotation occurs as the center of friction under the disc seeks alignment with applied force. Scratches that may develop in the wide scaling surfaces are polished away as the disc moves from one port to the other. This feature is unique to Everlasting Valve. No other

POSITIVE SHUT-OFF Machine lapping of the sealing surfaces at the factory assures tight shull off. Leak rates are less than industry standard ANSI B.16.34; MSS-SP61 for metal seated valves. Each valve is tested to assure seat and body integrity. The spring leaded disc is held firmly against the path that it travels. Having sharp edges the seat and disc shear away any deposits from their sealing surfaces. Valve may be used for Converging applications.

Everlasting BMV series valves used in diverting lines

Everlasting Valve produces a complete line of Bulk Material Valves that when used in tandem with a fabricated lateral "Y" connection becomes a Diverter that can be used to divert, mix, or completely stop any media flow. The Everlasting BMV series uses the same proven and patented rotating disc and seat design that Everlasting is known for. Dynamic spring loaded stuffing box can be re-packed with valve in place.

Everlasting Bulk Material Valve

The Everlasting Diverter and BMV are excellent in fly ash, Portland cement, kiln dust, alumina hydrate, alumina silica, calcined kaolin, sugar, titanium dioxide, ilmenite and ruile ores, pet coke, coal, catalyst and many other abrasives. Please request our booklet on the Everlasting Bulk Material Valves. Dimensions in this booklet are approximate and are used for estimating.

The bulk material value that's built to tak Everlasting

Self Cleaning Internals

Its open body configuration allows fines to move about freely preventing accumulation that causes binding of moving parts or damage to seats in other maditional designs. Medla has room to be displaced by the discs with each cycle and the eccentric body to port design promotes settled product to swirl each time the valve opens, thereby cleaning it's interior.

Sealing Surfaces Protected

The Rotating Shearing Disc concept since being introduced in 1904 has proven itself in applications where media is abrasive and erosive. The spring loaded discs are held firmly against the path they travel, then shields their scaling surfaces from exposure to any harsh process while the valve is open. Valve is bi-directional. Deposits that may form will be sheared from the sealing surfaces by sharp edges of the seat rings and rotating discs.

Shearnig action clears disc face and his pass of particulari-

Self Lapping Discs

They rotate as the center of the applied force and the centroid of friction force move toward alignment. High cycling is beneficial. Scratches that develop on the wide sealing surfaces are polished away as the valve is opened and closed, there is no similar valve.

Positive Shut Off

Machine lapping of the sealing surfaces at the factory assures tight shut off. Leak rates are less than industry standards for metal seated valves: ANSI B16.34, MSS-SP61.

Pneumatic Actuator and Valve Are Separated

Air cylinder standoff allows easy inspection of sealing means and hacilitates field packing, Dynamically loaded stuffing box can be field packed without

removing the valve from line. Special cylinder rod seal resists abrasion and tearing, and withstands temperatures to 400°f (+204°c) at point of contact.

Solf Lapping dises

Options

Air cylinder mounted proximity limit switches on single rod cylinder, or mechanical style with double ended cylinder. Electric solenoid or manually operated cylinder air valve. All NEMA classifications can be furnished to meet your specifications.

> Plant air or electric loss fall safe protection using an electro-pneumatic air reservoir system is available. Special bracketing of the air cylinder increases valve temperature rating to 750%

The Everlasting bulk material valve.

A compact valve that performs where others require repairing or replacement more than once a year.

most abrasive situations year after year

Ideally suited for dense phase pneumatic conveying and line isolation in dry powder systems.

Everlasting solves plant problems.

Ash Handling

Problem: Sealing members would erode and have to be replaced on a weekly basis.

Solution: Flapper style valves cycling once a minute wouldn't always close against large chunks of 600°f vitrified coal ash trapped between its sealing members. Their disc would erocle needing replacement on a weekly basis. The Everlasting BMV (bulk material valve) was installed providing trouble free service in this high temperature (see options), high cycling application.

Inorganics

Problem: Production is moving granular abrasives with a bulk density of over 100 lbs/ft3.

Solution: Everlasting Valves replaced transporter feed knife gate valves that developed internal and external leakage. Transporter outlets, now fitted with Everlasting Valves, replaced ball valves that suffered packing leaks. Our diverter valves have eliminated endless hours of maintenance in the finished product area that were previously spent repairing pinch valves. In each location the users enjoyed a fast pay back on their investment.

Diverter Valves

The Everlasting Diverter Valves can be switched on the fly, and no lubrication is required. The designs of each style are based on the open body Rotating Disc technology proven since 1904 in our two-way valves. The disc and seats are solid hardened alloys in the 38RC to 59RC range this provides exceptionally long life in abrasive media. These valves have performed in titanium dioxide, fly ash, Portland cement, Alumina silica and calcified Kaolin, sugar, coal and other erosive particulate. Actuators include lever, handwheel, pneumatic cylinder, the valves are flanged, and pressure and temperature ranges vary with design type.

Everlasting BMV series specifications

"Cast Iron only "Carbon Steel only"

How to order Bulk Material Valve: Figure number example: 6" BAO-SVGO

Six incle Balk Material Valve, cast iron construction, outside stuffing box, solehold valve, GO proxemity limit switches. Materials of construction stated above are standard. Mechanical and field mounted limit switches require double-ended air cylinders.

Series	Body	Opti	ons
B • BMV	A - Cast Iron C - Carbon Steel	SV - Solenoid Void GO - "GO" Proximity Switches EX - Mechanical Limit Switches (H ¹) MV - Manual Air Valve	FS - Fail-Safe Air Reservoir System HT - High Temperature (750°F) SP - Special Accessiones or Design

GABF8008N(S)

Gate valve, OS&Y, bolted bonnet, Class 800#.

- Suitable for steam, water, air, gas and non corrosive chemicals
- Body & bonnet: Forged Steel ASTM A105
- Wedge: 13% Chrome stainless steel
- Seat: ASTM A276-410 + Stellite #6
- · End Connections: Screwed NPT or socket weld
- Maximum pressure rating: 5,512 at 454 deg C, 13,780 kpa at -29 to +35 deg C
- Sizes: 15mm to 50mm

PART

hlandwheni nut: Tooth washer Name plate Hand when

Yollid sleeve Thrust washin

Eye Dolt Gland hut Gland Itange Gland

Retaining washer Gland packing

Banniet Boll Bonnel

Galikot

Stem

Sent 7ing Wedge Body

"Girbon commit (). 1/n=mo+

MATERIAL	A.S.T.M.
Catton steel Catton steel Aluminum	A563A
Mailable iron	A197
13Cr Stainless steel 13Cr Stainless steel	A582-416 A276-410
13Cr Stanless shell Carbon steel Folged steel 13Cr Stanless steel Carbon steel	A276-410 A194-2H *A105 A276-410 A283 D
Nón-asbestos	
Alloy steel Forged steel	A193-87 *A105
304 Hoop-telfon	
13Er Stainless steel	A376-410

MATERIAL

Forged steel

13Ct S/S + Stellite #6 A276-410 13Cr Stainless steel A105

A217-CA15

DIMENSIONS: Nominal	8	10	15	20	25	40	54
and a first the			1.4	1.0			
A mm	76	76	76	-86	102	117	13
B mm (open)	145	145	145	153	192	245	267
C mm	102	102	102	102	114	140	165
Approx Weight	16	16	15	20	28	5.2	8

GABC1508R

Gate valve, OS&Y, bolted bonnet, Class 150#.

- Suitable for steam, water, air, gas and non corrosive chemicals
- Body & bonnet: Cast Steel ASTM A216 Gr WCB
- Wedge: 13% Chrome stainless steel
- Seat: ASTM A105 + Stellite #6
- End Connections: Flanged ANSI 150
- + Maximum pressure rating: 1,171 at 260 deg C, 1,964 kpa at -29 to +35 deg C
- Sizes: 50mm to 200mm

A.S.T.M.

A197

A47 Gi 32510

A47 G: 32510

A479-410

A439 Type D2C

PART

Handwheel but Handwheel set screw Handwheel

Yoke sloeve let, nut Yoke sloeve

Lubricator

Spindle

Gland null Gland Itange Gland Iotowor Gland oye bolt Gland hinge pin Gland pincking

Bonnel nul Bonnel stud Bonnel

Gasket

Back seal bush Body seat ring Wedge Body

"Carbon content 0.25% max

MATERIAL

Malteable iron Steel Malleable iron

Steel Austen duct. Iron

Steel

13% chrome stile!

Steel Steel Steel chrome plated Alloy steel Steel JIC 3085

Stern Alloy sileel Cast steel

Solt steel

13% chrome steel Stellite faced 13% chrome steel Cast steel A3078 A105 A108 Gr 1020 + Cr A3078 A108 Gr 1020 Non-Asbestos

A194 Gr 2H A193 Gr 87 *A216 Gr WCB

A479-410 A108 Gr 1020 + St A217-CA15 *A216 Gr WCB

DIMENSIONS Nominal Size mm 50 65 80 100 150 200 250 300 350 500 600 400 450 A man 178 191 203 229 267 292 330 356 381 407 432 457 509 B mm (open) 367 397 458 560 763 960 1166 1369 1515 1824 1900 2124 2502 C mm 200 200 224 250 315 335 400 450 500 560 630 710 800 Approx Weight 19 33 48 kg 20 87 129 190 280 410 580 875 842 1380

GABC3008R

Gate valve, OS&Y, bolted bonnet, Class 300#.

- Suitable for steam, water, air, gas and non corrosive chemicals
- Body & bonnet: Cast Steel ASTM A216 Gr WCB
- Wedge: 13% Chrome stainless steel
- Seat: ASTM A105 + Stellite #6
- End Connections: Flanged ANSI 300
- Maximum pressure rating: 1,860 at 454 deg C, 5,100 kpa at -29 to +35 deg C
- Sizes: 50mm to 200mm

PART

Handwheel nut Handwheel set screw Handwheel

Yoko sleeve ret mut. Yoke sleeve

Lubricalion

Spinale

Glanit nut Glanit flange Glanit follower Glanit eye boll Glanit eye boll Glanit packling

Laitem Ring

Bonnet stud Bonnet

Gaskel Back seat built Body seat neg Wedge Body

"Carbon ponient 0.25% max

MATERIAL

Malicable iron Stuel Malicable iron

Steel Austen, duct inch

Steel

13% chrome steel

Steel Steel Steel chrome plaind Alky steel Street JIC 3085

13% chrimin steel

Steel Alloy steel Cast aleel

Soft steel 13% chromo steel Stellite laced 13% chrome steel Cast steel A.S.T.M A47 Gr 32510

A197

A47 G/ 32510 A439 Type D2C

A479-410

A3078 A105 A108 Gr 1020 +Cr A3078 A108 Gr 1020 Non-Asbestos

A479 410

A194 Gr 2H A193 Gr B7 'A216 Gr WCB

A479-410 A105 Gr 1020 + St A217 CA15 *A216 Gr WCB

DIMEN No Siz	ISIONS minal 9 mm	50	65	80	100	150	200	250	300	350	400	450	500	600	F
4	A mm	216	241	.283	305	403	419	457	502	762	838	914	991	1143	1.1
1	B mm (open)	405	440	500	592	816	1042	1227	1442	1588	1890	2040	2197	3078	1 2
	C mim	200	200	224	250	355	400	450	500	560	620	710	800	900	5
AD We	prox aight	28	35	50	75	145	260	323	481	682	972	1260	1611	2470	

GABS8008N(S)

Gate valve, OS&Y, bolted bonnet, Class 800#.

- Suitable for steam, water, air, gas and most chemicals
- Body & bonnet: 316L Stainless steel
- Wedge: 316L Stainless steel
- Seat: Stainless steel + Stellite #6
- End Connections: Screwed NPT or socket weld
- Maximum pressure rating: 5,930 at 454 deg C, 11,032 kpa at -29 to +35 deg C
- Sizes: 15mm to 50mm

PART

Handwheel Nul Tooth Washer Name Plate Hand Wheel

Yoke Sleeve Trinust Washer

Eye Bolt Gland Nut Gland Flange Gland **Retaining Washer**

Gland Packing

Bonnini Bolt Bonnet

Gasket

Storn

Seat Ring Wedge Body

MATERIAL	ASTM.
Carbon Steel Carbon Steel	A563A
Stainless Plate Maileable Iron	A197
13Cr Stainless Steel 13Cr Stainless Steel	A582-416 A976-450
Stainless Steel Stainless Steel Stainless Steel Stainless Steel Stainless Steel	A276-304 A194-8 A182-F304 A276-304 A276-304
Gratod	
Stainless Steel Stainless Steel	A103-88 A182-F316L
304 Houp-Tellon	
Stainless Steel	A276-316
S/S + Stellite #6 S/S + Stellite #1	A276-316 A351-CF8M

Stamless Steel

A276-316 A351-CF8M A182-F316L

DIMENSIONS Nominal 8 10 15 20 25 40. 50 Size mm 76 76 86 133 A men 76 102 117 B mm (open) 145 145 145 153 192 245 267 C mm 102 102 102 102 144 140. 165 Approx Weight kg 1.5. 1.5. 1.5 2.0 28 5.1 82

GABS1512R

Gate valve, OS&Y, bolted bonnet, Class 150#.

- Suitable for steam, water, air, gas and most chemicals
- Body & bonnet: Stainless steel CF8M
- Wedge: 316 stainless steel
- Seat: Stainless steel + Stellite #6
- End Connections: Flanged ANSI 150
- Maximum pressure rating: 1,171 at 260 deg C, 1,896 kpa at -29 to +38 deg C
- Sizes: 50mm to 200mm

 -		-	
 ы,	a I	ы	
 	-		1

Handle Null Sel Screw Hand Wheel

Stanless Steel

Stainless Steel

Yoke Sleeve Thrus/ Washer

Stem

Hinge Bolt Hinge Nul Gland Flange Packing Gland Hinge Pin

Packing

Bonnet Boll Bonnet Nul

Gasket

Bonnet Wedge Body

MATERIAL	ASTM
Steel chrome plated	A47-32510+Cr
Malleable Iron	A197
Austen duct iron Stainless Steel	A439-D2C A479-410
Stainless Steel	A479-316
Stainless Steel Stainless Steel Stainless Steel Stainless Steel Stainless Steel	A478-F304 A194-6 A351-CF8 A479-316 A479-304
Tetion	
Stainless Steel Stainless Steel	A195-B8 A194-6
Tellon	
Stainless Steel	A351-CF8M

A351 CF8M A351-CFRM

DIMENSIONS Nominal Size mm	15	20	25	40	50	65	80	100	150	200	250	300	Ē
A mm	108	117	127	165)78	191	203	229	267	292	330	356	
B mm (open)	190	196	232	283	332	381	424	529	730	934	1114	1314	0
C mm	100	100	120	140	160	180	200	250	315	355	355	450	
Approx Weight kg	12	8	6	9	13	18-	22	34	57	97	132	197	

ART "A" - GATE VALVE

Metal sealing with free disks (male/female disk) in the wedge of the gate. Practically no maintenance is required for the special closing system (metal to metal), but a perfect airtight is not assured. Pneumatic actuator, with reciprocating movement, is equipped with manual emergency knob. The pneumatic gate valve can intercept liquid fluids and gases without solid suspensions (keep into account the closing system). Standard: Connections with inner GAS ISO 228 female-female. On request: NPT connections. Control air 1/8" GAS connections. OPERATING TEMPERATURE: from -20°C to +80°C. ACTUATOR PILOT PRESSURE: Max 8 bar. VERSIONS AND SIZES GAS threaded connection DA: 3/4" - 1" - 1"1/4 - 1"1/2 - 2" - 2"1/2 - 3" - 4" SANC: 3/4" - 1" - 1"1/4 - 1"1/2 - 2" - 2"1/2 - 3" SANO: 3/4" - 1" - 1"1/4 - 1"1/2 - 2" NPT connection 3/4" - 1" - 1"1/4 - 1"1/2 - 2" - 3" DA: SANC: 3/4" - 1" - 1"1/4 - 1"1/2 - 2" - 3" SANO: 3/4" - 1" - 1"1/4 - 1"1/2 - 2" ANODIZING TREATMENT ON OUTSIDE DETAILS MADE IN ALUMINIUM

GL012

Globe valve, union bonnet, Steam.

Suitable for steam, water, air, gas and most chemicals

- Body & bonnet: Bronze B62
- Disc & Seat: Stainless steel ASTM A276-410
- End Connections: Screwed BSP
- + Maximum pressure rating: 2,100 kpa at 217 deg C, 4,100 kpa at -29 to +38 deg C
- Sizes: 15mm to 50mm

	1/2'	3/4	1'	1 1/4*	1 1/2"	2*
А	75	90	106	122	135	165
В	145	162	175	206	232	261
ΦC	67	72	82	92	102	122

HIDROSTATIC TEST									
BODY	900 PSI (62 BAR)								
SEAT	600 PSI (41 BAR)								

WORKING				DITIC	NS		
SATURATED	STEAM	300	PSI	(21	BAR)		SHULK
WATER,	OIL	600	PSI	(41	BAR)	INUN	SHUCK

MAXIMUM TEMPERATURE = 232 °C

NOTE	THE	DIMENSIONS ARE EVANESSED			
POS.	QUANT.	DENOMINATION	MATERIAL	ABNT SPECIFICATION	ASTM SPECIFICATION
1	01	BODY	BRONZE	NBR6314/C83600	B62/C83600
2	01	SEAT	ST. STEEL	NBR5601/410	A276/410
З	01	PLUG DISC	ST. STEEL	NBR5601/410	A276/410
4	01	SUPPORT. WASHER	BRASS	NBR5023	B16/C36000
5	01	UNION BONNET RING	BRONZE	NBR6314/C92200	B61/C92200
6	01	BONNET	BRONZE	NBR6314/C83600	B62/E83600
7	02	PACKING	PTFE		
8	01	GLAND	BRASS	NBR6188/C37700	B124/C37700
9	01	PACKING NUT	BRONZE	NBR6314/C83600	B62/C83600
10	01	STEM	BRASS	NBR6188/C37700	B124/C37700
11	01	HANDWHEEL	ALUMINUM		B85/S12A
12	01	IDENT. PLATE	ALUMINUM		
13	01	NUT	ST. STEEL	NBR5601/304	A276/304

NOTE: THE DIMENSIONS ARE EXPRESSED IN MILLIMETERS.

GLBF8008N(S)

Globe valve, OS&Y, bolted bonnet, Class 800#.

- Suitable for steam, water, air, gas and non corrosive chemicals
- Body & bonnet: Forged Steel ASTM A105
- Disc: 13% Chrome stainless steel
- Seat: ASTM A276-410 + Stellite #6
- . End Connections: Screwed NPT or socket weld
- Maximum pressure rating: 5,512 at 454 deg C, 13,780 kpa at -29 to +35 deg C
- Sizes: 15mm to 50mm

C	~	J.		D
	(
	5	ן ב	स्	
	A		5	
E	JL_ Th	E		F
	1	Z	V	-

PART

Handwheel //ul Handwheel washer Name plate Hand wheel

YONG DEST

Eye bolt Gland nut Gland flange Gland Retaining washor

Gland packing

Bonnet polt

Bonniel Gasket

Stem Disc

Seat Hitidy

"Gargion wastless (C 25% max

	A.S.T.M.
	A563A A263 D
	A197
steel	A582-416
steel	A276-410 A194-24 'A105
steel	A276-410 A263 D

MATERIAL

Carbon steel

Carbon steel

Malleable imn

13Cr Stainless

13Cr Stainless

Carbon steel

Folged steel

Carbon steel

Non-asbestos

Alloy steel

Forged steel

304 Floop-telian

Stallite #6/Equiv

Forbed steel

13Cr Stamless steel

13Cr Stainless steel

13Cr Stainless

Aluminum

A193:BT *A105

A276-410 A217-CA15

1A L05

DIMENSIONS: Nominal Size mith 8 10 15 20 25 40 50 Amm 76 75 76 36 102 152 172 B nim (open) 149 149 149 157 190 552 267 C mm 102 102 102 102 114 140 165 Approx: Weight 1.8 29 kg 1.8 1.8 21 62 97

GLBC1508R

Globe valve, OS&Y, bolted bonnet, Class 150#.

- Suitable for steam, water, air, gas and non corrosive chemicals
- Body & bonnet: Cast Steel ASTM A216 Gr WCB
- Disc: 13% Chrome stainless steel
- Seat: ASTM A105 + Stellite #6
- End Connections: Flanged ANSI 150
- + Maximum pressure rating: 1,171 at 260 deg C, 1,964 kpa at -29 to +35 deg C
- Sizes: 50mm to 300mm

PART

Handwheel nul Washer Handwheel

Yoke Bush Spindle

Gland Nul Gland Ilange Gland eye bolt Gland follower Gland hinge pin Gland packing

Bonnet nut Bonnet Bonnet stud

Gasket

Back seal oush

Disc ret nut Disc

Body seat ring Body

*Camer conient 0.25% max.

MATERIAL

Steel Malisable iron

Austen, duct iron 13% chrome steel

Steel Steel Alloy steel Steel chrome platod Steel JIC 3085

Steel Cast steel Alloy steel

Solt stire!

13% chilome steel

13% chitomenteel 13% chitomenteel

Stellile laced Cast steel A108 Gr 1020 Non-Asbestos A194 Gr 2H

A.S.T.M.

A307B

A197

A307B

A307B

A105

*A216 Gr WCB A193 Gr B7

A439 Typ= D2C A479-410

A108 Gr 1020 + Gr

A479-410

A479-410 A217 CA15

A108 Gr 1020 + SII *A216 Gr WCB

GLBC3008R

Globe valve, OS&Y, bolted bonnet, Class 300#.

- Suitable for steam, water, air, gas and non corrosive chemicals
- Body & bonnet: Cast Steel ASTM A216 Gr WCB
- Disc: 13% Chrome stainless steel
- Seat: ASTM A105 + Stellite #6 •
- End Connections: Flanged ANSI 300 .
- Maximum pressure rating: 1,860 at 454 deg C, 5,100 kpa at -29 to +35 deg C
- Sizes: 50mm to 300mm

A.S.T.M.

A307B

A197.

PART

HandWheel nut Washer Handwheel

Yoke bush Spiridle

Gland Nut Gland flange Gland eye boll. Gland follower Gland hinge pin Gland packing

Lanlern Ring

Bonnet nut Bonnel Bannet stud

Gasket

Back seat buth

Disc ret rut Disc

Body seat ring Body

"Carbon content 0.25% max.

MATERIAL

Steel Steel Malleable ron

Austen, duct iron 13% chrome steel

Steel Steel Alloy sten! Steel chrome plated Steel JIC JOBS

13% chrome steel

Steel Cast sluel Alloy steel

Soft steel

13% chiome steel

13% chrome steel 13% chrome steel

Stellite faced Cast steel

A3078 A108 Gr 1020 ± Cr A108 Gr 1020 Non-Asbestos A479-410

A439 Type D2C

A479-410

A3078

A105

À194 Gr 2H "A216 Gr WCB A193 Gr B7

A479-410

A479-410 A217 CA15

A108 GH 1020 + Stl *A216 Gr WCB

GLBS8008N(S) Globe valve, OS&Y, bolted bonnet, Class 800#.

- Suitable for steam, water, air, gas and most chemicals
- Body & bonnet: 316L Stainless steel
- Disc: 316L Stainless steel
- Seat: Stainless steel + Stellite #6
- End Connections: Screwed NPT or socket weld
- Maximum pressure rating: 5,930 at 454 deg C, 11,032 kpa at -29 to +35 deg C
- Sizes: 15mm to 50mm

A * 11

PART

PART	MATERIAL	A.S.I.M.
Handwheet Nut, Handwheet Washer Name Plate	Carbon Steel Carbon Steel Stainless Plate	A563 A A283 D
Hand Wither	Malleable Iron	A197
Yoke Bush	13Cr Stainless Steal	A582.416
Eye Bolt Gland Nur Gland Pange Gland Rotaining Washim	Stanless Steel Stanless Steel Stainless Steel Stanless Steel Stanless Steel	A276-304 A194-8 A182-F304 A276-304 A276-304
Gtand Packing	Grafoil	
Bonnet Bolt Bonnet	Steinless Steel Stainless Steel	A193/88 A182-F316L
Gasket	304 Hopp-Tellon	
Stem	Stainless Steel	A270-310
Timo Svist Body	S/S + Stollite #8 Stantess Steel Stantess Steel	A351-CP8M A182-F316L A182-F316L

LAST TRANSFE

DIMENSIONS Nominal Size mm	8	io	15	20	25	40	50
A mm	76	76	76	88	102	152	172
B mm (apen)	149	749	149	157	190	225	267
C mm	102	102	102	102	114	140	165
Approx Weight kg	1.8	1.8	18	21	29	6.2	9.7

ART "DV" SHUTTER ANGLE VALVE FOR STEAM AND HIGH TEMPERATURE

Angle valve at 45° with flat shutter closing . SEAL: PTFE. Seal in PTFE energized with stainless steel spring on the stem. Special gaskets for high temperature on the pneumatic side. Perfect airtight. Long life even with high operating frequencies. Pneumatic actuator with reciprocating piston movement. It is equipped with a NUT which, turning the cylinder by 360°, allows the desired positioning of air side connection. Connections with inner GAS ISO 228 thread female-female. On request with NPT connections. Control air 1/8" GAS connections. **ALLOWABLE TEMPERATURES** Operating temperature: from -20°C to +200°C ACTUATOR PILOT PRESSURE. Max 8 bar. For steam please refer to the Differential pressure and Satured Steam Charts. VERSIONS AND SIZES

DA: 1/2" - 3/4" - 1" SANC: 1/2" - 3/4" - 1" - 1"1/4 - 1"1/2 - 2" - 2"1/2 - 3" SANO: 1/2" - 3/4" - 1"

ANODIZING TREATMENT ON OUTSIDE DETAILS MADE IN ALUMINIUM

It is <u>not subject</u> to the "Water Hammer" if the fluid pass through the valve in the direction of the arrow printed on the body (under the actuator). With these conditions the tightness is guaranteed up to the pressures shown in the Differential Pressure Chart.

MINIMUM PRESSURE REQUIRED TO OPEN NC VERSION											
G	1/2"	3/4"	1"	1"1/4	1"1/2	2"	2"1/2	3"			
BAR	4	4	5	5	5	5	5	5			

4

UW

Solenoid valve, light pattern, normally closed.

Suitable for water, air, gas and oil

- Body & bonnet: Brass
- Diaphragm & Disc: NBR · Coil: DIN
- Available voltages: 240vAC, 110vAC and 24vDC
- End Connections: Screwed BSP
- Maximum pressure rating: 1,000 kpa cold up to 25mm, 500 kpa 32mm to 50mm
- Sizes: 15mm to 50mm

Contract of	MATERAIL									
PARTS	MATERAIL									
Bady.	I orge lines (Cast Branze									
Cull	Special Cooper Wire (H)									
Care	Stalillese Steel									
XVME	Elbididan Eleci									
Soring	Stainves Stop									
Plug	NBR VIIce, Silicon									
Disphrages	Willie, Writer, Stillicon									

-		PPE		-	FLUID	BAL DESING	TING PRESSURE	BITT. PARTICIP	DISE	HSION	0 (193.10) pg 0 (193.10) (193.	TELK
214	meen.	SADE.	CY	ORTICE	TRIPP.C.	A18	WATER	LIGHT DIL	L	H		Otti
	UW-10	BAR*	24	ASmer	-SC + NHD	5.7	0.5	0.5	70	100	:03	\$.9
	UW-16	1/2*	45	15.097	162 1002	46-7	0.45	0-5	70	110	167	0.0
•	UW-20	S/4*	0.0	20 mm	150 - 100	41.7	0+5	0-5	73	4:12	:53	1.0
•	UW-25	12	12	25 691	190 - 2810	0.7	0.0	0.6	733	108	50	3,8
•	UW-35-1	1 114"	24	35 m2	(50) = NRC	0-T	0.5	0-5	125	140	58	5.2
•	UW-40-1	11/2*	20	40 mir	-50 - 840	B-7	0.5	3.5	125	140	.58	3.5
	UW-50-1	24	48	00 mm	-50360	0-#	0.5	0.5	407	170	58	5.4

SUS

Solenoid valve, stainless steel construction, heavy pattern. Suitable for steam, water, air, gas and most chemicals

- Body & bonnet: 316 stainless steel
- Plug: PTFE

- Core needle, tube & Spring: Stainless steel
- Available voltages: 240vSC, 110vAC and 24vDC
- End Connections: Screwed BSP
- Maximum pressure rating: 1,500 kpa cold, 1,035 kpa steam

-	MATERAIL		-
PARTS	MATERAIL	2.04	
Riddy	TIFEM		303-
Co.8	Special Dopper With (H)		SUG-
Cate	Stainiass Steel		SUS-
Tuba	Stainings Steel		SUS-
Sérit g.	Stalaless Steel		508-
Plut	21FE		SUS-
Banna/Nul	PTFE	-	_
Fieldin	4336		

-	and the second	FIPE		1.0.00	FLUID	MAX. OPE	BATING P	RELEURE	DIFE. HOFICH	DINIE	NSION	dis s	WEIGHT
0.04	MODEL	BIZE	OK.	ORFICE	TEMP.C	WATER	***	STEAM	LIGHT OIL	L	H	10 X2 40 45 45 45 45	That
	3109-12#316	1/21	4.0	37.000	-SC - 1650	0.510	0.5-10	0.5-10	5 2-10	82	129	N.C.	15.4
	SUG-20#316	3/4"	6.0	17 000	56-1150	0.5-10	0.8-10	0.6-10	0.6-10	101	129	41	1.8
•	SUS-25#316	11	12	22 990	-90 - 1440	0.5-10	0.5-10	0.5+10	0.5-10	100	134	49.	1.8
٠	SUS-354516	11/4"	12	50 mm	-50-1850	0.5-10	0.5+10	0.5-10	5.5+10	121	155	46	2.8
•	BU8-46#316	11/2"	18	co em	-50 - 1650	0.5-10	0.5-10	0.5-10	0.5-10	170	140	41	2.9
•	BUE-SC#316	2'	40	50 imm	-sc inte	0.5-10	0.8-10	0.5-10	6.5-10	168	175	46	5.6

US

Solenoid valve, heavy pattern, normally closed.

Suitable for steam, water, air, gas and most non corrosive chemicals

- Body & bonnet: Bronze
- Plug: PTFE + 15% GF
- Core needle, tube & Spring: Stainless steel
- Available voltages: 240vAC, 110vAC and 24vDC

Special Cescer Way (H)

End Connections: Screwed BSP

MATERAIL

MATERALL

Gast Brenze

Stabiluse Steel

Sintolyne Stanl

Stainless Steel

PTPE + 15%GF PTEE

Bravs

- Maximum pressure rating: 1,500 kpa cold, 1,035 kpa steam
- Sizes: 15mm to 50mm .

MARTS

Body

Coll Cure Seets

Tube

Perg

Spring

Baren

Pistus

004	Harris	PER	-	OWNER	FLUID	MAK DIR	RATING P	HERRICHE	OIFT, NOTION	DIVE	HEION	(mini)	MUCH
	HODEL.	9628	24	OWNICE	TEMPIC	WATER		STEAN	HEAVY GIL	L		D	(14)
	US-15	1/2*	4,6	17 m/m	-612 - 116:50	0.5-15	0.5.15	3.5-10	11.6-110	112	490	56	1.7
	US-20	2/0+	.0	17 0101	40 - 1890	0.5-10	9.5.12	3.5-19	0.5-10	82	128	58	1.7
	US-25	17	42	22 mm	#U-1117C	0.5.15	9-6-12	3.6-10	01-10	-91	120	56.	24
	US-38	1.174*	19	-30 mm	-00-1mm	1.10	11.15	1.40	1-10	110	244	36	3.1
	US-40	1 1/22	沒	30 mm	AG - Leit	1.49	1.15	81.62	1-10	110	144	36	1.1
	US-50	·2*	48	an erra .	-90 - 1850	1-10	1115	8.50	1-10	163	179	90	3.2

Actuation

ARMSTRONG PRODUCT CATALOGUE

SECTION

5

Actuation 5

RACK & PINION ALUMINUM ACTUATORS

CARATTERISTICHE E VANTAGGI

- 1. Progettati secondo le norme NAMUR VDI/VDE 3845 e ISO 5211, la serie MAX-AIR utilizza lo stesso corpo e testate nelle configurazioni semplice e doppio effetto.
- L'angolo standard di rotazione è 90°. Sono disponibili, a ri-chiesta, anche le versioni 120°, 135°, 150° e 180°. L'MT15 (UT15) e unità superiori sono dotate di serie di un doppio registro (Brevetto Internazionale) che consente una registrazione di ± 10° sia in apertura che in chiusura.
- 3. La chiave femmina del pignone è, nella configurazione standard, un Doppio Quadro; a richiesta può essere offerta come Doppio-D, con foro tondo e chiavetta o progettata secondo le esigenze del cliente.
- I pistoni ed il pignone sono dotati di bussole e pattini per impedire un contatto diretto con il corpo dell'attuatore.
- 5. L'altezza del pignone (NAMUR H= 30) consente di effettuare manovre manuali di emergenza senza interferire con l'indicatore e di utilizzare un'unica staffa per il montaggio degli accessori.
- 6. I pistoni della serie MT sono dotati di chiavella di sicurezza per garantire l'antiesplulsione del pignone e anodizzati per anticorrosione.
- 7. Indicatore esterno aperto/chiuso nella dotazione standard, disponibile per tutte le rotazioni.
- 8. Le molle, realizzate in acciaio speciale e con verniciatura anticorrosione, sono premontate solo con materiale tecnopolimero.

SOLO PER SERIE UT

9. La flangia inferiore consente da un lato di bloccare (dispositivo anti-espulsione) il pignone e dall'altro garantisce una maggiore flessibilità nel montaggio in quanto in essa è possibile inserire dadi in AISI 304 (esecuzione standard) o viti in AISI 304 (a richiesta) posizionati secondo le norme ISO oppure, a richiesta, secondo dimensioni desiderate dal cliente.

FEATURES & BENEFITS:

- 1. Designed according to Namur VDI/VDE 3845 and ISO 5211 standard, the MAX-AIR series utilizes the same body and end caps for double acting and spring return units.
- The standard angle of rotation is 90°. Additional travel rota-tions of 120°, 135°, 150° and 180° are available. MT15 (UT15) and upper sizes feature as standard a double travel stop (International Patent) which allows ± 10° stroke adjustment both in the closing and opening phase of the actuator stroke.
- 3. The female pinion drive is standard with a double square output drive, and optional with a double-D drive, keyed drive and designs to meet your specific requirements.
- Pistons and pinion are equipped with wear pads and bearings to isolate them from the housing and support them for high cycle applications.
- The pinion teeth are engaged the full length and stroke of the piston. The pinion height NAMUR H30 allows manual override 5. without disturbing the indicated positions and using the same bracket size to mount accessories on all the series
- 6. MT series pistons feature a keyway as anti-blowout system and anodized for corrosion resistance.
- 7. External open/close indicator as standard, available for all the rotations.
- 8. Epoxy coated special steel springs are pre-loaded with nonmetallic materials. The stainless steel end cap fasteners are extra long to allow for spring relaxation. All parts are corrosion resistant.

ONLY FOR UT SERIES

 The "patent pending" bottom plate design, unique to MAX-AIR, secures a captive pinion (anti-blowout system) and permits flexibility in mounting by retaining AISI 304 nuts (standard) or AISI 304 bolts (optional) in either dual ISO patterns, or to customer dimensions.

Testate e pistoni: I pistoni sono in alluminio pressofuso ed anodizzati o verniciati come trattamento anti corrosione. Le testate sono realizzate in alluminio pressofuso con verniciatura epossidico

End caps and pistons: Die-cast aluminium pistons are anodized or epoxy powder coated for corrosion resistance; Die-cast aluminium end caps are epoxy powder coated.

Pattino guida:

In tecnopolimero Ampia area di contatto Elevata durata Ottima scorrevolezza

Bearing pad: Techno-polymer Large contact area High performance Long life resistance

Corpo: Il corpo è in alluminio estruso (6063 o 6005). Superfici interne lappate per ridurre gli attriti e aumentare la durata delle guarnizioni. Anodizzazione esterna/interna per migliore protezione alla corrosione Opzionale anodizzazione dura, PTFE, verniciatura epossidica o nichelatura chimica.

Body: Extruded aluminium body (6063 or 6005) is internally machined to exact specifications and lapped to reduce frictions and to increase the life of seals and skates. All internal and external surfaces are anodized for corrosion resistance. Options: hard anodizing with PTFE coating, epoxy powder coated units, electroless nickel plating.

Pignone: In acciaio al carbonio con nichelatura chimica (Acciaio inossidabile a richiesta).

Pinion: Electroless nickel coated carbon steel Pinion (stainless steel available on request).

Guarnizioni: La configurazione standard prevede l'impiego di guarnizioni Buna-N, che consentono un utilizzo dell'attuatore a temperatura da -20°Ca 80°C. Temperature più elevate possono essere raggiunte utilizzando guarnizioni in Viton e i pattini guida e le bussole in tecnopolimero (120°C continui e 150°C ciclici). Le basse temperature (-50°C) sono ottenibili con le guarnizioni in silicone.

Seals: Temperature range from -20°C to 80°C (-10°F to 176°F) with standard Buna-N nitrile seals. Higher temperature with optional Viton seals and techno-polymer piston guides and bearings: 120°C (250°F) continuous and 150°C (300°F) cyclic. Lower temperature available with silicones seals -50°C (-55°F).

Indicatore: OPEN/CLOSED tridimensionale standard in tecnopolimero. A richiesta indicatore con inserti intercambiabili per rotazioni a 180°.

Indicator: OPEN/CLOSED standard in techno-polymer. On request, indicator with changeable inserts for 180° rotation

Cartucce molla: Le molle sono realizzate in acciaio per molle e verniciate con vernice anti-corrosione

Spring cartridges: Springs are carbon steel and coated for corrosion resistance.

Disponibili GRANI SPECIALI per regolazione completa della corsa Available extended travel stopos for FULL STROKE adjustment

INDICATORE: OPEN/CLOSED tridimensionale standard in tecnopolimero per 90°. Indicatore con inserti intercambiabili per rotazioni a 180°.

INDICATOR: OPEN/CLOSED standard in techno-polymer for 90°. Indicator with changeable inserts for 180° rotation

DOPPIO REGISTRO BREVETTATO

Gli attuatori Max-Air sono dotati di un doppio registro (Brevetto Internazionale) che consente di regolare, attraverso il grano e l'asta inseriti nella testata, la corsa dell'attuatore di ± 10° - IL PIU'AMPIO SUL MERCATO - sia nella fase di apertura che di chiusura. La corsa dell'attuatore può pertanto variare da 70° a 110°. Il grano e l'asta sono stati progettati per assorbire la massima coppia nominale dell'attuatore e i carichi massimi associati alle diverse

velocità di funzionamento. Inoltre per garantire una maggiore resistenza dei pistoni sia l'asta che il grano di registro agiscono nella parte in cui essi hanno il maggior spessore di materiale. La **Regolazione** sia per le unità con apertura antioraria che oraria è ottenuta agendo dall'esterno sul grano (MAX) e sull'asta (0°) di registro per qumentare o ridurre la rotazione.

BI-DIRECTIONAL PATENTED DOUBLE TRAVEL STOP

Max-Air actuators feature a bi-directional travel stop (InternationalPatent). Side located stops allow a ± 10° adjustment -BEST IN THE MARKET - in both closing and opening directions, so guarantee a range of adjustment between 70° and 110° of actuator stroke.

Travel stops are designed to absorb the maximum rated torque of the actuator and the maximum impact load associated with

recommended speed stroke. To increase pistons resistance both travel stops arrest the pistons in their part with the largest mass of material.

Adjustment of the counter clockwise and clockwise rotation is accomplished by turning the respective left (MAX) and right stop (0°) adjustment screws to increase or reduce output rotation.

SCOTCH-YOKE ACTUATORS

CARATTERISTICHE E VANTAGGI

1. Design stagno

Grazie alla presenza di OR su corpo e testate, la serie SY è stagna e protetta da ingressi di acqua rendendola idonea per applicazioni interne ed esterne

2. ISO e NAMUR Standard

La serie SY è dotata di attacchi inferiori per collegamento alla valvola secondo ISO 5211.

L'uscita dello stelo e la foratura di fissaggio superiori secondo NAMUR ed identici su tutti gli attuatori della serie SY, consentono un semplice montaggio di accessori quali box fine corsa e posizionatori 3. Lubrificazione & Resistenza all'usura

Tutti gli attuatori della serie SY hanno di serie il doppio registro che consente regolazione sia in apertura che in chiusura ed una effettiva corsa da 80° a 100°

4. Efficienza & Durata

L'asta di guida e del pistone hanno un trattamento superficiale che garantisce, in combinazione con pattini e boccole in materiale auto lubrificante, un'alta resistenza all'usura e lungo ciclo di vita.

5. Resistenza alla Corrosione

Il trattamento superficiale delle aste e il materiale auto lubrificante di pattini e boccole, garantiscono il massimo trasferimento di energia direttamente allo stelo della valvola; le molle precompresse minimizzano i carichi radiali sull'asta del pistone incrementando ulteriormente l'efficienza dell'attuatore e la sua durata.

6. Design Modulare

Ogni attuatore della serie SY è dotato nella versione standard di 3 strati interni ed esterni di verniciatura per una superiore resistenza alla corrosione. In particolare la superficie interna del cilindro ha una protezione in PTFE che oltre a garantire un'eccellente resistenza alla corrosione è auto lubrificante per un migliore scorrimento e resistenza all'usura

7. Sicurezza del Modulo delle Molle

Tutti gli attuatori Max-Air sono progettati considerando la sicurezza come priorità massima. La serie SY è dotata di serie di uno speciale dispositivo di blocco in modo tale che il modulo delle molla possa essere rimosso dal corpo centrale solo quando le molle sono completamente distese. Questa importante caratteristica previene possibili danni e infortuni per un'improvvisa estensione delle molle. Valvola di Ritegno Integrata

 Valvola di Ritegno Integrata Una valvole di ritegno è integrata nel design degli attuatori SY per evitare un'eccessiva pressurizzazione e ingresso di materiale o acqua nell'unità. Questo previene rotture dell'attuatore e aumenta la vita dello stesso.

FEATURES & BENEFITS:

1. Water tight Design

O Rings are sized to exact specifications creating a water tight design and making the SY series suitable for indoor and outdoor applications

2. ISO and NAMUR standard

The SY series actuators bottom interface meets ISO 5211 standard for an easy valve connection.

The top-works dimensions, both for shaft height and drilling, are according to NAMUR and identical on all SY actuators, allowing easy and standard accessories assembly

 Self-Lubricating & Wear Resistance Each SY actuator has been engineered with bi-directional travel stops which allow for total travel adjustment between 80° and 100°

4. Efficiency & High Cycle Bearings

The guide rod and piston rod have an advanced surface treatment providing superior wear resistance. All SY series actuators have been designed to be completely self-lubricating, requiring no further lubrication, ensuring maximum wear resistance and long cycle life

5. Corrosion Resistance

Each SY unit comes standard with a minimum of three progressive stages of internal and external coating for corrosion resistance. The inner lining of the cylinder wall is coated in infused PTFE, the reby enhancing internal corrosion resistance and self-lubrication.

6. Modular Design

The Max-Air ŠY series scotch yoke actuator has a highly efficient and interchangeable modular design (air cylinder, power drive, spring pack and override module) providing for easy field modification and serviceability.

7. Safety Lock - Safe Spring Module

All Max-Air actuators have been engineered with safety as its highest priority. The SY series actuators features a specially designed safety lock mechanism so that the spring module can only be removed from the power module when the spring is fully decompressed. This important safety feature prevents accidental release of spring tension. The spring lock mechanism safety retains the spring module under load, and prevents the module from being removed when the actuator is under load conditions.

8. Integral Check Valve

An integral check valve is incorporated in incorporated into the design of the SY series actuator to prevent over pressurizing and foreign material from getting inside the unit. This prevents premature break down and increases the life of the actuator.

TECHNOPOLYMER ACTUATORS

La serie di attuatori in Tecnopolimero MAX-AIR da oltre 13 anni viene utilizzata nel mondo per applicazioni negli ambienti più aggressivi. La serie è ora anche disponibile in **POLIPROPILENE** diventando così la miglior scelta per prestazioni, caratteristiche tecniche e costo per ambienti corrosivi. For more than 13 years, the Max-Air line of **thermoplastic actuators** has been installed worldwide in the most arduous environments. The series is now also available in **GLASS-REINFORCED POLYPROPYLENE** becoming the most effective choice for your corrosion resistance applications.

CARATTERISTICHE E VANTAGGI

- Progettati secondo NAMUR VDI/VDE 3845 e ISO 5211, la serie MAX-AIR utilizza lo stesso corpo e testate per Doppio e Semplice Effetto.
- Pignone in acciaio al carbonio nichelato (in acciaio inox a richiesta – di serie per la versione in Polipropilene).
- La flangia inferiore consente da un lato di bloccare (dispositivo anti-espulsione) il pignone e dall'altro garantisce una maggiore flessibilità nel montaggio in quanto in essa è possibile inserire dadi in AISI 304 (esecuzione standard) o viti in AISI 304 (a richiesta) posizionati secondo le norme ISO oppure, a richiesta, secondo dimensioni desiderate dal cliente.
- Alimentazione con aria (possibilmente lubrificata), olio idraulico, acqua emulsionata, min 2 Bar – max 8 Bar.
- Temperature standard di funzionamento: -20°C +80°C.

FEATURES & BENEFITS:

- Designed according to Namur VDI/VDE 3845 and ISO 5211 standard, the MAX-AIR series utilizes the same body and end caps for double acting and spring return units.
- Carbon steel nickel plated pinion (stainless steel as option and standard for Polipropilene series).
- The bottom plate design, unique to MAX-AIR, secures a captive pinion (anti-blowout system) and permits flexibility in mounting by retaining AISI 304 nuts (standard) or AISI 304 bolts (optional) in either dual ISO patterns, or to customer dimensions.
- Supply: air (lubricated if possible), hydraulic oil or water, min 2 Bar (30 PSI) and max 8 Bar (120 PSI).
- Standard working temperature: -20°C +80°C (-4°F +176°F).

12V / 24V

Model	Torque	Speed	Motor	Motor	Speed	12	2V DC/A	NC	24	IV DC/A	NC
No.	(lbin.)	(90°)	Power	12V	24V	Run	Start	Lock	Run	Start	Lock
M10	310	15 s	10W	3600/min	3600/min	0.5A	3.0A	3.0A	0.6A	0.8A	1.4A
M15	443	20 s	10W	3600/min	3600/min	0.5A	3.0A	3.0A	0.7A	0.8A	1.4A
M20	797	15 s	70W	1800/min	1800/min	3.4A	5.0A	8.5A	3.0A	5.0A	13.0A
M30	1328	22 s	70W	1800/min	1800/min	3.4A	5.0A	8.5A	3.0A	5.0A	13.0A
M40	3540	16 s	180W	1800/min	1800/min	12.0A	8.5A	30.0A	6.0A	8.0A	30.0A
M50	4420	22 s	180W	1800/min	1800/min	13.0A	8.5A	30.0A	6.5A	8.0A	30.0A
M60	5735	28 s	180W	1800/min	1800/min	14.0A	8.5A	30.0A	7.5A	8.0A	30.0A

Single-Phase

Model	Torque	Spee	d (90°)	Motor	Motor	Speed	110	V Curr	ent	220V-240V Current			
No.	(lbin.)	60 Hz	50 Hz	Power	60 Hz	50 Hz	Run	Start	Lock	Run	Start	Lock	
M10	310	12 s	13 s	10W	3600/min	3000/min	0.5A	1.5A	0.6A	0.3A	1.0A	0.5A	
M15	443	20 s	24 s	10W	3600/min	3000/min	0.5A	1.5A	0.6A	0.3A	1.0A	0.5A	
M20	797	15 s	17 s	40W	1720/min	1450/min	1.3A	3.0A	1.8A	0.5A	1.5A	0.9A	
M25	1062	8 s	10 s	40W	1720/min	1450/min	1.0A	3.0A	1.8A	0.5A	1.5A	0.9A	
M30	1328	22 s	26 s	40W	1720/min	1450/min	1.0A	3.0A	1.8A	0.5A	1.5A	0.9A	
M40	3540	16 s	18 s	120W	1720/min	1420/min	1.3A	3.1A	3.6A	0.6A	1.5A	1.8A	
M50	4420	22 s	25 s	120W	1720/min	1450/min	1.5A	3.0A	3.6A	0.7A	1.5A	1.8A	
M60	5735	28 s	31 s	120W	1720/min	1450/min	1.8A	3.0A	3.6A	0.8A	1.5A	1.8A	

Three-Phase

Model	Torque	Spee	d (90°)	Motor	Motor	Speed	220	V Cur	rent	380	V Cur	rent	440	V Cur	rent
No.	(lbin.)	60 Hz	50 Hz	Power	60 Hz	50 Hz	Run	Start	Lock	Run	Start	Lock	Run	Start	Lock
M20	797	15 s	17 s	40W	1720/min	1450/min	0.6A	1.8A	1.1A	0.3A	1.0A	0.7A	0.4A	1.3A	0.7A
M25	1062	8 s	10 s	40W	1720/min	1450/min	0.6A	1.8A	1.1A	0.3A	1.0A	0.7A	0.4A	1.3A	0.7A
M30	1328	22 s	26 s	40W	1720/min	1450/min	0.6A	1.8A	1.1A	0.3A	1.0A	0.7A	0.4A	1.3A	0.7A
M40	3540	16 s	18 s	120W	1720/min	1450/min	1.0A	3.0A	3.5A	0.7A	2.2A	2.0A	0.8A	2.5A	2.0A
M50	4420	22 s	25 s	120W	1720/min	1450/min	1.0A	3.0A	3.5A	0.7A	2.2A	2.0A	0.8A	2.5A	2.0A
M60	5735	28 s	31 s	120W	1720/min	1450/min	1.0A	3.0A	3.5A	0.7A	2.2A	2.0A	0.8A	2.5A	2.0A

Modulating Control Board for M20 ~ M60

Modulating Control Board for M10, M15

	Output Torque (Ibin.)	Cycle Time (sec.)	Duty Cycle (%)	Optional Ext. Ext. Duty Cycle (%)*	Ext. Duty Cycle Time (sec.)	Lock Rotor Current (amp.)
M10	310	12	25	75	15	0.6
M15	443	20	25	75	24	0.6
M20	797	15	25	75	15	1.8
M25	1063	8	25	-	-	1.8

* For 75% duty cycle, please request wiring diagram from the factory

						Dime	nsion	s (Inc	hes)					
Model	A	В	С	D	Е	F	G	н	I	м	N	S	Flange Type	Weight (lbs)
M10	4.25	4.80	4.25	6.10	0.59	0.31	0.55	1.97	M6	6	1	1/2	F03 / F05	4.40
M15	4.25	4.80	4.25	7.99	0.63	-	0.67	2.76	M8	4	1	1/2	F07	6.60
M20	7.87	12.99	7.87	10.04	1.18	4.92	0.87	2.76	M8	4	2	1/2	F07	24.40
M25	6.06	6.30	6.06	7.56	1.18	-	0.87	2.76	M8	4	1	1/2	F07	9.90

* For 75% duty cycle, please request wiring diagram from the factory

					I	Dimer	sions	s (Incl	nes)					
Model	Α	В	С	D	Е	F	G	н	I	м	N	S	Flange Type	Weight (lbs)
M30	7.87	12.99	7.87	10.04	1.18	4.92	0.87	2.76	M8	4	2	1/2	F07	24.40
M40	11.81	14.96	9.21	12.40	1.57	7.68	1.42	4.02	M10	4	2	1/2	F10	48.40
M50	11.81	14.96	9.21	12.40	1.57	7.68	1.42	4.02	M10	4	2	1/2	F10	48.40
M60	11.81	14.96	9.21	12.40	1.57	7.68	1.42	4.02	M10	4	2	1/2	F10	48.40

M-20 & M-60 12V/24V DC **Two Positions**

Modulating Control Board for M20 ~ M60

* ATTENTION: TURN POWER OFF BEFORE CHANGING THE FOLLOWING SETTINGS:

S1,2: INPUT SIGNAL SELECT

" 4~20mA " set 1-ON / 2-OFF " 1~5V " set 1-OFF / 2-OFF " 2~10V " set 1-OFF / 2-ON

S3,4,5: OUTPUT SIGNAL SELECT

"2-10V" set 3-ON / 4-OFF / 5-ON "4-20mA" set 3-OFF / 4-ON / 5-OFF

- S6: Valve is fully-open when the input signal is 4mA, 2V or 1V and valve is fully-closed when the input signal is 20mA, 10V or 5V, set 6-ON Valve is fully-closed when the input signal is 4mA, 2V or 1V and valve is fully-open when the input signal is 20mA, 10V or 5V, set 6-OFF
- **S7,8:** POSITION SELECT (when the feedback signal fails)

"valve fully-closed" set 7-OFF / 8-ON "valve fully-open" set 7-ON / 8-OFF "valve stops" set 7-ON / 8-ON

SW1~0: Sensitivity Switch

When switch to "1", the 0~90° can be divided up around 80 times movement When switch to "0", the 0~90° can be divided up around 17 times movement The sensitivity decreases 7 times movement by sectors from SW1 to SW2, SW2 to SW3, SW3 to SW4 and so on

SUPPLIED VOLTAGE: 24V DC/AC, 110V/220V AC 1-PH WORKING TEMP.: -10°C ~ +60°C

TROUBLE SHOOTING

Conditions	Possibilities	Solutions
Motor Does Not Operate	 Is the supplied power and voltage correct? Any blisters on the capacitor? Are the gear trains free? 	 Checking by meter If so replace Remove motor to check
Motor Stops Running	 Is power supply short circuited? Any foreign objects in flow stream? 	 Check wiring Check for obstructions
Unable to Fully Open/Close	 Loose/Misaligned cam? Bent valve stem? 	1. Adjust/Tighten using spanner
	3. Mechanical stop adjustment incorrect?	 Replace valve stem Check position of stops
Valve Stops Operating When Motor is Running	 Gear worn out? Sleeve adapter worn out or broken? Broken valve stem or actuator transmission shaft? 	 Replace gear Replace sleeve adapter Replace valve stem or actuator transmission shaft
Abnormal Control for Operating Two or More Actuators Simultaneously	1. Controlling circuit connects in tandem or parallel?	1. Please refer to the wiring diagram
Motor Overheats	 Is the voltage correct? Is valve too tight to operate? High working frequency? Is motor stem or bearing binding? 	 Checking by meter Replace valve Check duty cycle Replace the binding parts
Abnormal On/Off Angle on 3-Phase Voltage	1. Wrong phase wiring?	1. Change phase wiring
Occasional On/Off Actuator Failure	1. Simultaneous input power on/off	1. Check if the selection switch is normal

LIMIT SWITCH BOX

Disponibili ATEX II 3D e ATEX II 2GD ATEX II 3D ATEX II 2GD available

La serie di Box Fine Corsa MAX-AIR rappresenta una nuova generazione nei box indicatori per gli attuatori. Costruiti in diversi materiali e con diversi gradi di protezione, rappresentano la miglior scelta anche per ambienti nocivi

Semplicità regolazione Cammes

La posizione degli interruttori può essere cambiata in modo semplice grazie alla presenza di cammes con zigrinatura a passo fine, che possono pertanto essere regolate manualmente ed in modo indipendente senza il bisogno di attrezzi, in modo elettricamente sicuro in quanto il cablaggio delle morsettiere e dei fine corsa sono isolate.

Design Compatto

I box indicatori della Max-Air hanno un design compatto e dimensioni contenute, minimizzando gli ingombri complessivi dell'assieme valvola + box.

Semplicità di collegamento

I box MAX-AIR sono equipaggiati con uno o due ingressi M20x1.5 (1/2" NPT a richiesta) e morsettiera angolata per facilitare il cablaggio.

Staffe di Montaggio

Fornite come standard in tecnopolimero o acciaio inossidabile, si adattano alla foratura NAMUR sul corpo dell'attuatore, 80 mm per 30 mm. Le staffe consentono l'accoppiamento del Box Indicatore con attuatori aventi pignoni sporgenti NAMUR h = 30 mm e h = 20 mm, quest'ultima grazie all'utilizzo di una prolunga in tecnopolimero. Disponibile inoltre una nuova staffa universale in acciaio inossida-

bile, aggiustabile, che consente il montaggio su NAMUR 80x30 H30 e H20 e 130x30 H50.

Indicatore Tridimensionale

Consente una chiara lettura ed identificazione dello stato corrente della valvola. Disponibile anche per valvole a 3 vie (L o T) o a freccia.

The MAX-AIR series of Limit Switch Boxes represent a completely new dimension in limit switches for actuators. Manufactured in various materials, these very compact units are the best choice for the most arduous environments.

Quick Set Cams

The operating position of the switches can be easily changed by adjusting the high resolution spline cams manually and independently with the need for additional tools. The cams are spring backed and will not be affected by normal vibration.

Compact Design

The Max-Air switch box is a very compact limit switch box, thereby allowing maintenance of a smaller valve envelope size.

Easy Wiring

MAX-AIR boxes are equipped as standard with one or two conduit entries, M20x1.5 (1/2" NPT on request) and angled terminal strip to allow for easy wiring.

Mounting Bracket

Each Max-Air box comes standard with mounting bracket either in techno-polymer or stainless steel for NAMUR top-mounting hole spacing 80 mm per 30mm. The bracket allows the use of standard NAMUR stem height 30 mm and also 20 mm with a techno-polymer coupling.

mer coupling. Now available also a new adjustable UNIVERSAL bracket that allows to mount the switch box onto NAMUR 80x30 H30 and H20 and 130x30 H50.

High Visibility Indicator

The Max-Air box comes standard with a high visibility beacon, offering clear location of the current valve position. Now available for 3 way indication (L or T) or arrow shape.

SPECIAL INDICATORS for Aluminium & stainless steel LSB

Nuova staffa universale in acciaio inox New stainless steel universal bracket

BS42

Sensori di prossimità

Proximity sensors

BE41 2 Fine corsa meccanici

2 Mechanical switches

NAMUR SOLENOID VALVE Disponibili in versione ALTA TEMPERATURA Available in HIGH TEMPERATURE **EV61 IP65** ATEX II 3GD EV61X EExia ATEX II 2G EV71 INTRINSICALLY SAFE EExm ATEX II 2GD EV81 **EXPLOSION PROOF** EV91 EXPLOSION PROOF NEMA 7 VP PILOTA PNEUMATICO PNEUMATIC PILOT ACCESSORI ACCESSORIES

CARATTERISTICHE E VANTAGGI

- Progettate secondo le NORME NAMUR VDI/VDE 3845 Funzionamento universale a 3 vie/2 posizioni oppure 5 vie/2 posizioni con una piastrina inclusa (per la 3/2)
- Alimentazione e scarichi filettati ¼" GAS
- Dispositivo per il comando manuale standard, tipo PUSH
- Grado di protezione IP65 come standard, a richiesta:
 - Certificate ATEX II 3 G D
 - A sicurezza intrinseca EExia ATEX approved
 - Antideflangrante EExm ATEX approved
- Antideflangrante NEMA 7
 Varianti: ogni elettrovalvola è disponibile in versione monostabile, bistabile o a 3 Posizioni (centri aperti, centri chiusi e centri in pressione)

FEATURES & BENEFITS:

- Design according NAMUR VDI/VDE 3845
- Universal application 3/2 or 5/2 ways selectable with a plate included (for 3/2)
- Port sizes: pressure in and exhaust 1/4" GAS (optional 1/4" NPT)
- Manual override as standard, PUSH type
- Manual override as standard, PUSH type Protection class IP65 as standard (according to IEC 144 with connector and O Ring). Available: ATEX II 3 G D approved "Intrinsically safe EExia" ATEX approved "Explosion proof EExm" ATEX approved "Explosion proof NEMA 7" Multiple and the standard of the standa

- Multiple configurations: each valve is available in single coil, dual coil and 3 position configuration (open centers, closed centers, or center in pressure).

Tutte le EV disponibili anche BISTABILI All configurations shown are available with DUAL COILS

Actuation 5

ROTARY VALVE POSITIONERS

I posizionatori **MAX-AIR** sono unità a semplice e doppio effetto con segnale in entrata 4-20 mA e 3-15 PSI per il controllo proporzionale di attuatori rotanti. Il Posizionatore opera sulla base del principio di equilibrio delle forze. L' apparecchio confronta il segnale proveniente dall'unità regolante con l'angolo di rotazione dello stelo inviando un segnale amplificato che agisce sulle camere dell'attuatore. Disponibile anche in versione Antideflagrante EEx md certificato ATEX II 2 G

Max-Air offers both single & Double Acting Valve Positioners, with input signals of 4-20 mA and 3-15 psi configurations, for proportional control of rotary actuators. The Positioners operate on the force-balance principal by comparing the standard signal transmitted from a pneumatic or an Electro-Pneumatic device and the angular rotation of the operating stem, and conveys a Positioning amplified pressure to the valve actuator. Available also in explosion proof EEx md version ATEX II 2 G approved

TRASMETTITORE DI POSIZIONE

POSITION TRANSMITTER

Emme Technology offre un trasmettitore di posizione (PTMO1) ed un trasmettitore di posizione con fine corsa interni (PTMO2)

Max-Air offers a stand-along direct mount Position Transmitter (PTM01) and a stand-alone Position Transmitter with internal Limit Switches (PTM02).

AVAILABLE POSITIONER MODELS

POSIZIONATORE PNEUMATICO CON MANOMETRI PNY01 – 3-15 PSI, MTG Universale

POSIZIONATORE ELETTRO-PNEUMATICO CON MANOMETRI PEY01 – 4-20 mA, MTG Universale

PEYO2 – 4-20 mA, MTG Universale, Anti-deflangrante EEx md PEYO4 – 4-20 mA, MTG Universale, LS PEYO5 – 4-20 mA, MTG Universale, LS+PTM

POSIZIONATORE ELETTRO-PNEUMATICO IN ACCIAIO INOSSIDABILE CON MANOMETRI

Legenda LS= Fine Corsa, PTM= Trasmettitore di posizione

PNEUMATIC POSITIONERS WITH GAUGES PNY01 – 3-15 PSI, Universal MTG

ELECTRO-PNEUMATIC POSITIONER WITH GUAGE PEY01 – 4-20 mA, Universal MTG PEY02 – 4-20 mA, Universal MTG, Explosion proof EEx md PEY04 – 4-20 mA, Universal MTG, LS PEY05 – 4-20 mA, Universal MTG, LS+PTM

STAINLESS STEEL ELECTRO-PNEUMATIC POSITIONERS

Legend LS= Limit Switch, PTM= Position Transmitter

SMART

POSIZIONATORE SMART A sicurezza Intrinseca EEx ia Certif. ATEX II 2 G

SMART

SMART POSITIONERS Intrinsically Safe EEx ia - ATEX II 2 G approved

POSIZIONATORE SMART IN ACCIAIO INOSSIDABILE

SMART POSITIONERS – STAINLESS STEEL

POSIZIONATORE SMART ANTI DEFLAGRANTE EEx d IIB T6 Certificato ATEX II 2 G

Smart Positioners – Opzioni disponibili Trasmettitore di posizione per Smart Protocollo Hart per Smart Fine corsa per Smart

SMART POSITIONERS – EXPLOSION PROOF EEx d IIB T6 ATEX II 2 G Approved

> Smart Positioners – Optional Features Smart Position Transmitter Adder Smart Hart Protocol Adder Smart Limit Switch Adder

NOTA L'utilizzo di un filtro regolatore è raccomandato per un miglior e duraturo funzionamento del posizionatore!

NOTE Important Suggestion: Use of filter regulator is the key to long life performance!

DECLUTCHABLE GEAR BOX with unlocking system for emergency control

CARATTERISTICHE E VANTAGGI

- Riduttore manuale di dimensioni contenute e leggero in peso Dotato di flangia integrata con foratura secondo ISO5211 per il montag-gio diretto dell'attuatore Riduttore con doppio quadro secondo norme ISO 5211, anche per accop-piamento diretto di steli delle valvole a 45°
- Costruiti in ghisa
- Ampio range di coppe disponibili, da 300 Nm a 6000 Nm

FEATURES & BENEFITS:

- Small in volume, light weight Equipped with integral mounting flange according to ISO5211 for an easy and cost effective actuator assembly Double Square connection according to ISO 5211, allowing for easy and direct mounting also for valves with square stem at 45° Made in Cast Iron

- Wide torque range from 300 Nm to 6000 Nm

Riduttori disponibili anche per Alta e Bassa Temperatura

Declutch able gear boxes also available in High and Low Temperature

ACCESSORI

ACCESSORIES

Hot Water

ARMSTRONG PRODUCT CATALOGUE

SECTION

6

Water Heaters and Water Temperature Controls ID Charts

Water Heaters and Accessories											
Illustration	Туре	Fluid	Connection Type	Max. Allow. Press.	TMA °F	Bo Mate	dy erial	Model	Max. Oper. Press.	Connection Size	Located on Page
	Clean-In-Place Scale Removal System	Rite-Qwik				Teflon Coate (Put	ed Cast Iron mp)				m or
		Scale	NPT	Atmospheric	140	Polypropyl	ene (Tank)	CIP	Atmospheric	1"	lal.co
		oonom				PVC (Pipe	e & Hose)				ternation
	Flo-H₂O™ Water to Wate Instantaneous	Boiler	NPT			Bro (Val	nze Ive)	40	125	2" Boiler 2" Domestic 1-1/4" Recirc.	armstrongin esentative.
	Water Heater (Single-Walled Plate and Fram Exchanger)	Water and Domestic	NPT	125 psi	200	Brass (Stainles (Heat Excha	Piping) ss Steel nger Plates)	70	125	2-1/2" Boiler 2" Domestic 1-1/4" Recirc.	website at a istrong repr
		Water	NPT			Cast Iron	(Actuator)	100	125	3" Boiler 3" Domestic 1-1/4" Recirc.	tse visit our ur local Arm
	Flo-H₂O™ Water to Wate Instantaneous	Boiler	NPT			Bro (Val	nze ve)	40	125	2" Boiler 2" Domestic 1-1/4" Recirc.	mation, plea contact yo
	Water Heater (Double-Walled Plate and Fram	Water and Domestic	NPT	125 psi	200	Brass (Stainles (Heat Excha	Piping) ss Steel nger Plates)	70	125	2-1/2" Boiler 2" Domestic 1-1/4" Recirc.	itional infor
	2.Konangor)	Water	NPT			Cast Iron	(Actuator)	100	125	3" Boiler 3" Domestic 1-1/4" Recirc.	For adc
	MS-6 Noiseless Heater	Steam	NPT	100 psi	190	304 Stain	less Steel	MS-6	100	1/2", 3/4", 1", 1-1/4", 1-1/2", 2"	549
Flo-Direct®							1		1		
Illustration	Type	Fluid	Con	in. Type	Bo	dv Material	Mode		Gas Conn.	Water Conn.	
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Gas	Water		.,					
m	Flo-Direct						1000		1"	1"	
l ent	Water Heater						1500		1"	1"	
				NPT			3000		1-1/2"	1-1/2"	
			NET				5000		2"	2-1/2"	524
		Natural Gas	NPI		Sta	inless Steel	7000		2	3	
		and watel			-		11000		2-1/2 2"	3 /"	
				ANOL 150			15000		ა ე"	4	
				Flanged			18000		ა ე"	4	
			Buttweld				25000		<u>л</u> "	6"	
VED Pump Package			Duttwold				20000		т	0	
Illustration	Type	Fluid	Con	ın. Type	Ro	dv Material	Model		Water	Conn.	
inustration	iyhe	Tutu	Gas	Water		uy material	Mouch		Inlet	Outlet	
	VFD						VFD-50)	1-1/2"	2"	
	Pump Package			NPT		Cont Iron /	VFD-10	0	3"	2 1/2"	531
		Water	Flanned		Rr	onze Fitted	VFD-17	5	3"	3"	
				ANSI 150# Flanged			VFD-25	0	3"	4"	

Water Heaters and Water Temperature Controls ID Charts

	Flo-Rite-Temp™										
	Illustration	Туре	Fluid	Connection Type	Max. Allow. Press.	TMA °F	Body Material	Model	Max. Oper. Press.	Connection Size	Located on Page
		Flo-Rite-Temp Steam to Water		NDT				415	125	1" Water	
		Instantaneous Water Heater					Bronze	415	15	2" Steam	
	_	(Single-Walled		NPT			(Valve)	535	125	1-1/2" Water	
		Excitatiget)	Steam		150 psi (Steam)				15	2-1/2" Steam	
			and Water	NPT	225 nsi	300		665	125	2" Water	
			Water		(Water)		Carbon Steel Shell		15	3" Steam	
				NPT (Water)			Brass Tube Bundle		125	3" Water	
				ANSI 150 (Steam)			(Heat Exchanger)	8120	15	4" Steam	ttive.
		Flo-Rite-Temp Steam to Water		NDT				416DW	125	1" Water	senta
		Instantaneous Water Heater		NPT			Bronze	415000	15	2" Steam	epre
		(Double-Walled		NDT			(Valve)	535DW	125	1-1/2" Water	ng r
	Å A.	Exchanger)	Steam		150 psi (Steam)			333077	15	2-1/2" Steam	nstro
			and	NPT	(0104111) 005 poi	300		665DW	125	2" Water	l Arr
			vvaler		(Water)		Carbon Steel Shell	000011	15	3" Steam	loca
				NPT (Water)			with Copper Tube Bundle (Heat Exchanger)	8120DW	125	3" Water	ict your
				(Steam)					15	4" Steam	conta
		Flo-Rite-Temp Steam to Water Instantaneous	-Rite-Temp am to Water tantaneous ter Heater ngle-Walled, Stainless el Wetted Steam ts) and Water		150 psi (Steam)				125	2" Water	I.com or
		Water Heater (Single-Walled, All Stainless Steel Wetted Parts)		NPT		300	316 Stainless Steel (Valve) Carbon Steel Shell with 316L	665 SS	15	3" Steam	iternationa
				NPT (Water)	225 psi (Water)	300	With 316L Stainless Steel Tube Bundle (Heat Exchanger)	9120 55	125	2" Water	mstrongin
				ANSI 150 (Steam)				0120 33	15	4" Steam	isite at ar
		Flo-Rite-Temp		NDT				44007	225	1-1/4" Water	web.
		Steam to Water		NPT				44251	150	2" Steam	t our
		Heat Exchanger		NDT			Cast Iron	FEOCT	225	1-1/2" Water	e visi
			Steam		150 psi (Steam)		(Stainless Optional) (Head)	JJ231	150	2-1/2" Steam	lease
			and	NPT	(Oteani)	375	Carbon Steel Shell with Admiralty Brass	662ST	225	2" Water	on, p
			vvalei		(Water)		Tube Bundle (Stainless Optional)		150	3" Steam	mati
				NPT (Water)			(Heat Exchanger)	862ST	225	3" Water	al infor
				(Steam)					150	4" Steam	dditior
		Flo-Rite-Temp with The Brain						415	125	1" Water	ora
		and Complete Building						-10	15	2" Steam	
		Automation		NPT				535	125	1-1/2" Water	
		Solution (BASIS)	Steam		150 psi (Steam)		Bronze (Valve) Carbon Steel Shell		15	2-1/2" Steam	
			and Water		225 nei	300	with Admirality	665	125	2" Water	
			**0101		(Water)		(Heat Exchanger)		15	3" Steam	
				NPT (Water)			(Heat Exchanger)	8120	125	3" Water	
				(Steam)					15	4" Steam	

Industrial Sanitation, Safety & Process Control ID Charts

STEAMIX [®] Hose Sta	tions and Mixing	Units											
Illustration	Туре	Connections NPT	Body Material	Model	Max. Flow Rate gpm	Max. Inlet Press. psig	Check Valves	Flow Controls	Hose Rack	Spray Nozzle	Shutdown Feature	Hose	Located on Page
<u>h</u> ra	Steam & Water			VE/VES				•	•		٠		
			Bronze/	2030/2030S							•		
		3/4"	Nickel	2031/2031S	9*	150		•			•		539
	Steam & Water		Plated	2032/2032S				•	•		•		
	TIUSE Station			2033/2033S				•	•	٠	•	•	
Hot & Cold Hose Sta	tions and Mixing	Units											
	Hot & Cold Water Mixing Unit			3031/3031S			Canhu	•			٠		
	Hot & Cold	2//	Chrome Plated	3032/3032S	04+	150	Sonity	•	•		•		
	Station	3/4	Brass	3033/3033S	24	150		•	•	•	٠	٠	540
				3401			•	٠			•		
				3403			٠	•	•	•	•	•	
Steam/Water Mixing	Valves												
	Steam/Water Mixing Valves	1" x 1-1/4"		A55	19*			•					ative.
		1-1/2"	Chrome Plated Brass	566	62*	100		•					represent
8	Noter Temperature Mixing Un			TS202	86*			•					mstrong
MegaMix™ Water T	emperature Mixin	g Unit											al Ar
	Electronically Actuated Water	3/4" x 1"		E20W	36**						٠		ur loc
	Temperature	1" x 1-1/4"		E25W	56**	145					•		ct yo
	Mixing Units	1-1/2" x 1-1/2"	Stainless	E40W	88**						•		conta
		2" x 2-1/2"	01661	E50W	213**						•		n or c
		3" ASME B16.5 Class 150 Flg.		E80W	644**	232					•		nal.cor
MegaMix™ Steam/V	Vater Temperatur	e Mixing Unit											natio
	Electronically Actuated Steam/Water	1" x 1-1/4"		E25S	36**						٠		t rong inter
	Temperature Mixing Units	1-1/2" x 1-1/2"	Stainless Steel	E40S	60**	145					٠		e at arms
		2" x 2-1/2"		E50S	119**						٠		ır website
Accessory Products	Week de			1			1		1				isit ou
	Washdown Equipment & Accessories	3/4"	Stainless Steel	F/SMCD Cabinet Assembly	—	_	•	•	•	•	•	•	ation, please vi
((🚳) 📇		1/2"		038 Spray Nozzle	16					•			form
		3/4" x 1/2"	See Specification	035 Washdown Hose	_	150						•	lditional in
		3/4"	Enameled Steel/ Stainless Steel	047 Hose Reel	—								For ac

▲ Possible additions for VE units. *Valve only at 100°F **Cold Water Capacity @ 20 psi drop.

† 45 psi pressure drop to open outlet

2-year warranty on mixing unit wetted components.

to a desired temperature and locked. Discourages adjustments by unauthorized personnel.

Steamix[®] - Steam & Water Hose Stations - Standard

Steamix - Standard

The Steamix – Standard series is supplied fully assembled and pressure tested in the following configurations.

Steamix Model 2030 - is a steam/water mixing valve of brass/stainless steel construction.

Steamix Model 2031 - is a steam/water mixing valve of brass/stainless steel construction. The valve is supplied as standard with 3/4" inlet union connections with integral strainers, an outlet ball valve for flow control and an outlet dial thermometer.

Steamix Model 2032 - is a steam/water mixing valve of brass/stainless steel construction. The valve is supplied as standard with 3/4" inlet union connections with integral strainers, an outlet ball valve for flow control and an outlet dial thermometer. The unit is supplied installed on a stainless steel hose rack.

Steamix Model 2033 (shown) - is supplied as above and also includes 25 feet of "safety yellow" washdown hose, a rubber cushioned spray nozzle with, swivel adapter and a stainless steel nozzle hook.

Steamix[®] - Steam & Water Hose Stations - Premium

Steamix - Premium

The Steamix – Premium series is supplied fully assembled and pressure tested in the following configurations.

Steamix Model 2031P - is a steam/water mixing valve of brass/stainless steel construction. The valve is supplied as standard with integral inlet supply risers comprising 3/4" Y-type strainers and 3/4" ball valves cross-linked by a stainless steel bridge piece and lever for simultaneous on/off control of both inlet supplies. The unit is supplied with stainless steel dual scale top mount Thermometer and Inlet Check Valves.

Steamix Model 2032P - is a steam/water mixing valve of brass/stainless steel construction. The valve is supplied as standard with integral inlet supply risers comprising 3/4" Y-type strainers and 3/4" ball valves cross-linked by a stainless steel bridge piece and lever for simultaneous on/off control of both inlet supplies. The unit is supplied with a stainless steel hose rack. Stainless Steel dual scale top mount Thermometer and Inlet Check Valves.

Steamix Model 2033P (shown) - is a steam/water mixing valve of brass/stainless steel construction. The valve is supplied as standard with integral inlet supply risers comprising 3/4" Y-type strainers and 3/4" ball valves cross-linked by a stainless steel bridge piece and lever for simultaneous on/off control of both inlet supplies. The unit is supplied with a stainless steel hose rack. Stainless Steel dual scale top mount Thermometer and Inlet Check Valves.

Steamix Model 2033P also includes 25 feet of "safety yellow" washdown hose rated, low-heat-transfer polymer spray nozzle with trigger guard, swivel adapter and a stainless steel nozzle hook.

Steamix[®] - Steam & Water Hose Stations - Stainless Steel

Steamix - Stainless Steel

The Steamix – Stainless Steel series is supplied fully assembled and pressure tested in the following configurations.

Steamix Model 2030SS - is a steam/water mixing valve of Type 304 stainless steel construction.

Steamix Model 2031SS - is a steam/water mixing valve of Type 304 stainless steel construction. The valve is supplied as standard with all stainless steel (SS) integral inlet supply risers comprising 3/4" Y-type strainers and 3/4" ball valves cross-linked by a stainless steel bridge piece and lever for simultaneous on/off control of both inlet supplies. Stainless Steel dual scale top mount Thermometer and Stainless Steel Inlet Check Valves.

Steamix Model 2032SS - is a steam/water mixing valve of Type 304 stainless steel construction. The valve is supplied as standard with all stainless steel (SS) integral inlet supply risers comprising 3/4" Y-type strainers and 3/4" ball valves cross-linked by a stainless steel bridge piece and lever for simultaneous on/off control of both inlet supplies. The unit is supplied with a stainless steel hose rack. Stainless Steel dual scale top mount Thermometer and Stainless Steel Inlet Check Valves.

Steamix Model 2033SS (shown) - is a steam/water mixing valve of Type 304 stainless steel construction. The valve is supplied as standard with all stainless steel (SS) integral inlet supply risers comprising 3/4" Y-type strainers and 3/4" ball valves cross-linked by a stainless steel bridge piece and lever for simultaneous on/off control of both inlet supplies. The unit is supplied with a stainless steel hose rack. Stainless Steel dual scale top mount Thermometer and Stainless Steel inlet Check Valves.

The STEAMIX Model 2033SS also includes 25 feet of "safety yellow" washdown hose, SS rubber cushioned spray nozzle with SS swivel adapter and a stainless steel nozzle hook.

Digital-Flo[™] Instantaneous Hot Water • Shell & Tube • Plate & Frame

Digital-Flo[™] Instantaneous Hot Water

Armstrong blends revolutionary digital water temperature control technology with instantaneous heat exchanger design to deliver Digital-Flo[™], an industry changing series of water heaters.

Digital-Flo Instantaneous Water Heaters refine hot water system temperature accuracy to a level previously deemed unattainable. By constantly monitoring the digital re-circulating valve (DRV 80) inlet hot, inlet cold and system return water temperatures, Digital-Flo previews the hot water system dynamics to increase the speed of response to changes in demand.

Capable of maintaining +/- 2°F/1°C temperature at system draw off between 0 and 165GPM, Digital-Flo delivers a "plug and play" hot water generation packaged solution which places efficiency, energy savings and legionella risk reduction at the forefront of hot water system design, operation and maintenance.

Armstrong Digital Technology

- Powered by low voltage electronics
- Faster response times eliminate the need for pneumatic controls
- Programmable high/low temperature alert function
- Programmable hot water system safety shutdown
- Component self-diagnostics
- Performance monitoring, data logging and reporting
- Integral building management system connectivity
- Simplified system commissioning

Armstrong Heat Exchange Technology

- Constant steam pressure prevents stall no pump trap
- Low surface temperature option for hard water applications
- Instantaneous No Storage
- Water raised above Legionella survival temperature

Digital Steam/Water - Shell & Tube

Digital Steam/Water - Plate & Frame Digital Water/Water - Plate & Frame

All dimensions and weights are approximate. Use certified print for exact dimensions. Design and materials are subject to change without notice.

Digital-Flo[™] Shell & Tube Heat Exchanger

Digital Shell	Digital Shell & Tube													
				Wa	ter Side		Steam Si	de						
Model	Part Number	Certified Drawing	Connections (2.3	@ 7.5 ft/sec m/s)	Flow @ 7.5 ft/sec (2.3 m/s)	Conne	ections	Canacity @ 15 nci (1 har)						
			Hot/Cold	Recirc.	Capacity @ 100°F (55°C) Delta T	Steam Inlet	Condensate Outlet	Capacity @ 13 psi (1 bai)						
D535	D21983	CD2493	1.5" (40 mm)	1" (25 mm)	41.3 gpm (9.4 m3/hr)	2.5" (63.5 mm)	1" (25 mm)	2,185 lb/hr (991 kg/hr)						
D535 P	D21981	CD2499	2" (50 mm)	1" (25 mm)	73.4 gpm (16.7 m3/hr)	2.5" (63.5 mm)	1" (25 mm)	3,883 lb/hr (1,761 kg/hr)						
D665	D21979	CD2494	2" (50 mm)	2" (50 mm)	73.4 gpm (16.7 m3/hr)	3" (80 mm)	1.25" (32 mm)	3,883 lb/hr (1,761 kg/hr)						
D665 P	D21722	CD2500	3" (80 mm)	2" (50 mm)	165.2 gpm (37.5 m3/hr)	3" (80 mm)	1.25" (32 mm)	8,741 lb/hr (3,965 kg/hr)						
D8120	D21977	CD2495	3" (80 mm)	2" (50 mm)	165.2 gpm (37.5 m3/hr)	4" (102 mm)	2" (50 mm)	8,741 lb/hr (3,965 kg/hr)						
D8120 P	D21640	CD2501	3" (80 mm)	2" (50 mm)	165.2 gpm (37.5 m3/hr)	4" (102 mm)	2" (50 mm)	8,741 lb/hr (3,965 kg/hr)						

Digital Shell &	Tube Double V	Vall						
				Wa	ter Side		Steam Si	de
Model	Part Number	Certified Drawing	Connections (2.3	@ 7.5 ft/sec m/s)	Flow @ 7.5 ft/sec (2.3 m/s)	Conne	ctions	Canaaity @ 15 nai (1 har)
		g	Hot/Cold	Recirc.	Capacity @ 100°F (55°C) Delta T	Steam Inlet	Condensate Outlet	Gapacity @ 13 psi (1 bai)
D535 DW	D21984	CD2496	1.5" (40 mm)	1" (25 mm)	41.3 gpm (9.4 m3/hr)	2.5" (63.5 mm)	1" (25 mm)	2,185 lb/hr (991 kg/hr)
D535 DW-P	D21982	CD2502	2" (50 mm)	1" (25 mm)	73.4 gpm (16.7 m3/hr)	2.5" (63.5 mm)	1" (25 mm)	3,883 lb/hr (1,761 kg/hr)
D665 DW	D21980	CD2497	2" (50 mm)	2" (50 mm)	73.4 gpm (16.7 m3/hr)	3" (80 mm)	1.25" (32 mm)	3,883 lb/hr (1,761 kg/hr)
D665 DW-P	D22000	CD2503	3" (80 mm)	2" (50 mm)	165.2 gpm (37.5 m3/hr)	3" (80 mm)	1.25" (32 mm)	8,741 lb/hr (3,965 kg/hr)
D8120 DW	D21978	CD2498	3" (80 mm)	2" (50 mm)	165.2 gpm (37.5 m3/hr)	4" (102 mm)	2" (50 mm)	8,741 lb/hr (3,965 kg/hr)
D8120 DW-P	D21975	CD2504	3" (80 mm)	2" (50 mm)	165.2 gpm (37.5 m3/hr)	4" (102 mm)	2" (50 mm)	8,741 lb/hr (3,965 kg/hr)

Maximum Allowable Steam Pressure = 15.0 psi (1 bar), Maximum Allowable Water Pressure = 150 psi (10 bar), Maximum Allowable Setpoint = 158°F (70°C)

Digital-Flo[™] Shell & Tube Heat Exchanger

Dimensions and Weight										
Model		Weight								
	A	В	C	D	E					
D535	20.0 (508)	43.4 (1103)	45.0 (1143)	67.0 (1702)	81.2 (2062)	804				
D535 DW	20.0 (508)	43.4 (1103)	45.0 (1143)	76.7 (1947)	87.4 (2220)	1080				
D535 P	20.0 (508)	76.1 (1933)	45.0 (1143)	67.0 (1702)	84.6 (2149)	1234				
D535 DW-P	20.0 (508)	76.1 (1933)	45.0 (1143)	76.7 (1947)	84.8 (2154)	1317				
D665	30.0 (762)	45.4 (1154)	57.0 (1448)	80.0 (2032)	100.7 (2558)	1094				
D665 DW	30.0 (762)	45.4 (1154)	57.0 (1448)	88.7 (2252)	101.5 (2578)	1373				
D665 P	30.0 (762)	73.3 (1863)	57.0 (1448)	80.0 (2032)	100.3 (2547)	1835				
D665 DW-P	30.0 (762)	73.3 (1863)	57.0 (1448)	88.7 (2252)	100.2 (2545)	1892				
D8120	34.0 (864)	46.8 (1189)	57.0 (1448)	83.5 (2121)	112.8 (2865)	1507				
D8120 DW	34.0 (864)	46.8 (1189)	57.0 (1448)	77.8 (1976)	113.7 (2888)	1550				
D8120 P	34.0 (864)	75.9 (1929)	57.0 (1448)	83.5 (2121)	104.5 (2654)	3011				
D8120 DW-P	34.0 (864)	75.9 (1929)	57.0 (1448)	77.8 (1976)	98.8 (2509)	3050				

Standard Components

- Thermometers
- DRV80 Digital Recirculating Valve
- Steam Trap
- Automatic Hot Water Safety Shut Off Valve
- Sight Flow Indicator

- Check Valves
- Inlet Strainer(s)
- Isolation Valves
- Air Vent

Digital-Flo[™] Plate & Frame Steam/Water Heat Exchanger

Digital Plate & Frame Steam to Water											
Model				Secor	ıdary Side	Primary Side					
	Part Number	Certified Drawing	Connections @ 7.5 ft/sec (2.3 m/s)		Flow @ 7.5 ft/sec (2.3 m/s)	Connections		Conssitu @ 15 noi (1 hou)			
			Hot/Cold	Recirc.	Capacity @ 100°F (55°C) Delta T	Steam Inlet	Condensate Outlet	Capacity @ 15 psi (1 bal)			
D1S	D27593	CD2508	1" (25 mm)	1" (25 mm)	18.4 gpm (4.2 m3/hr)	2.5" (63.5 mm)	1" (25 mm)	973 lb/hr (441 kg/hr)			
D2S	D27594	CD2509	1.5" (40 mm)	1" (25 mm)	41.3 gpm (9.4 m3/hr)	3" (80 mm) 1.5" (40 mm)		2,185 lb/hr (991 kg/hr)			
D3S	D27595	CD2510	2" (50 mm)	2" (50 mm)	73.4 gpm (16.7 m3/hr)	3" (80 mm)	1.5" (40 mm)	3,883 lb/hr (1,761 kg/hr)			
D4S	D27596	CD2511	3" (80 mm)	2" (50 mm)	165.2 gpm (37.5 m3/hr)	6" (153 mm)	2" (50 mm)	8,741 lb/hr (3,965 kg/hr)			

Digital Plate & Frame Steam to Water Double Wall											
Model				Secor	ndary Side	Primary Side					
	Part Number	Certified Drawing	Connections @ 7.5 ft/sec (2.3 m/s)		Flow @ 7.5 ft/sec (2.3 m/s) Conn		ctions	Conssitu @ 15 psi (1 hor)			
			Hot/Cold	Recirc.	Capacity @ 100°F (55°C) Delta T	Steam Inlet	Condensate Outlet	Sapaony © 13 psi (1 bal)			
D1S DW	D27603	CD2518	1" (25 mm)	1" (25 mm)	18.4 gpm (4.2 m3/hr)	2.5" (63.5 mm)	1" (25 mm)	973 lb/hr (441 kg/hr)			
D2S DW	D27604	CD2519	1.5" (40 mm)	1" (25 mm)	41.3 gpm (9.4 m3/hr)	3" (80 mm)	1.5" (40 mm)	2,185 lb/hr (991 kg/hr)			
D3S DW	D27605	CD2520	2" (50 mm)	2" (50 mm)	73.4 gpm (16.7 m3/hr)	3" (80 mm)	1.5" (40 mm)	3,883 lb/hr (1,761 kg/hr)			
D4S DW	D27606	CD2521	3" (80 mm)	2" (50 mm)	165.2 gpm (37.5 m3/hr)	6" (153 mm)	2" (50 mm)	8,741 lb/hr (3,965 kg/hr)			

Maximum Allowable Steam Pressure = 15.0 psi (1 bar), Maximum Allowable Water Pressure = 150 psi (10 bar), Maximum Allowable Stepoint = 158°F (70°C)

Digital-Flo[™] Plate & Frame Steam/Water Heat Exchanger

Dimensions and Weight										
Model		Weight								
	A	В	C	D	E					
D1S*	66.0 (1676)	50.7 (1288)	62.8 (1595)	62.8 (1595)	24.0 (610)	Consult Factory				
D2S*	66.0 (1676)	50.7 (1288)	62.8 (1595)	69.0 (1752)	24.0 (610)	Consult Factory				
D3S*	66.0 (1676)	50.7 (1288)	62.8 (1595)	77.0 (1956)	24.0 (610)	Consult Factory				
D4S*	78.0 (1981)	50.7 (1288)	63.5 (1613)	87.0 (2210)	24.0 (610)	Consult Factory				

*Consult factory for Double Wall (DW) dimensional changes.

Standard Components

- Thermometers
- DRV80 Digital Recirculating Valve
- Steam Trap
- Automatic Steam Safety Shut Off Valve
- Sight Flow Indicator

- Check Valves
- Inlet Strainer(s)
- Isolation Valvves

Digital-Flo[™] Plate & Frame Water/Water Heat Exchanger

Digital Plate & Frame Water to Water											
				Seco	ndary Side	Primary Side					
Model Part		Certified	Connections @ 7.5 ft/sec (2.3 m/s)		Flow @ 7.5 ft/sec (2.3 m/s)	Connections		Canaaity @ 50°E (27, 9°C) Dalta T			
		-	Hot/Cold	Recirc.	Capacity @ 100°F (55°C) Delta T	Boiler Inlet	Boiler Outlet				
D1W	D27598	CD2513	1" (25 mm)	1" (25 mm)	18.4 gpm (4.2 m3/hr)	1.5" (40 mm)	1.5" (40 mm)	36.8 gpm (8.4 m3/hr)			
D2W	D27599	CD2514	1.5" (40 mm)	1" (25 mm)	41.3 gpm (9.4 m3/hr)	2" (50 mm)	2" (50 mm)	82.6 gpm (18.7 m3/hr)			
D3W	D27600	CD2515	2" (50 mm)	2" (50 mm)	73.4 gpm (16.7 m3/hr)	3" (80 mm)	3" (80 mm)	146.8 gpm (33.3 m3/hr)			
D4W	D27601	CD2516	3" (80 mm)	2" (50 mm)	165.2 gpm (37.5 m3/hr)	3" (80 mm)	3" (80 mm)	330.4 gpm (75.0 m3/hr)			

Digital Plate & Frame Water to Water Double Wall											
				Seco	ndary Side	Primary Side					
Model	Part Number	Certified Drawing	Connections @ 7.5 ft/sec (2.3 m/s)		Flow @ 7.5 ft/sec (2.3 m/s)	Connections		Canaaity @ 50°E (27 0°C) Dalta T			
			Hot/Cold	Recirc.	Capacity @ 100°F (55°C) Delta T	Boiler Inlet	Boiler Outlet	Capacity @ 30 T (27.0 C) Delta T			
D1W DW	D27608	CD2523	1" (25 mm)	1" (25 mm)	18.4 gpm (4.2 m3/hr)	1.5" (40 mm)	1.5" (40 mm)	36.8 gpm (8.4 m3/hr)			
D2W DW	D27609	CD2524	1.5" (40 mm)	1" (25 mm)	41.3 gpm (9.4 m3/hr)	2" (50 mm)	2" (50 mm)	82.6 gpm (18.7 m3/hr)			
D3W DW	D27610	CD2525	2" (50 mm)	2" (50 mm)	73.4 gpm (16.7 m3/hr)	3" (80 mm)	3" (80 mm)	146.8 gpm (33.3 m3/hr)			
D4W DW	D27611	CD2526	3" (80 mm)	2" (50 mm)	165.2 gpm (37.5 m3/hr)	3" (80 mm)	3" (80 mm)	330.4 gpm (75.0 m3/hr)			

Maximum Allowable Boiler Water Temperature = 250°F (121°C), Maximum Allowable Water Pressure = 150 psi (10 bar), Maximum Allowable Setpoint = 158°F (70°C)

Digital-Flo[™] Plate & Frame Water/Water Heat Exchanger

Dimensions and Weight										
Model		Weight								
	A	В	C	D	E					
D1W*	66.0 (1676)	50.7 (1288)	62.8 (1595)	62.8 (1595)	24.0 (610)	Consult Factory				
D2W*	66.0 (1676)	50.7 (1288)	62.8 (1595)	69.0 (1752)	24.0 (610)	Consult Factory				
D3W*	66.0 (1676)	50.7 (1288)	64.3 (1633)	77.0 (1956)	24.0 (610)	Consult Factory				
D4W*	78.0 (1981)	50.7 (1288)	67.4 (1711)	87.0 (2210)	24.0 (610)	Consult Factory				
	•		•	•	•					

*Consult factory for Double Wall (DW) dimensional changes.

Standard Components

- Thermometers
- DRV80 Digital Recirculating Valve
- Primary Side Pump
- Sight Flow Indicator

- Check Valves
- Inlet Strainer(s)
- Isolation Valves

Digital-Flo[™] Shell & Tube Steam/Water Packaged Solutions

Using quality Armstrong components, Armstrong Digital-Flo[™] Heat exchangers can be packaged to meet your specific requirements. Armstrong can configure a solution for virtually any application. Best of all, Armstrong Digital-Flo Water Heating Packaged Solutions are supplied fully assembled, pressure tested and performance guaranteed.

Hot water system assessments, full turn-key installation, system optimization and financing options are also available. Contact your Armstrong representative for more information.

Modulating Steam Pressure

Shell & Tube Packaged Solutions Performance Matched Options

Low Surface Temperature -Modulated Steam Pressure

Pre-piped Steam Modulation Assembly

Carbon Steel (Standard) or 316L Stainless Steel Shell

Copper/Brass (Standard) or 316 Stainless Steel Pipe, Valve and Fittings

Mechanical or Electric Condensate Pumps

Digital-Flo[™] Plate & Frame Steam/Water Packaged Solutions

Plate & Frame Packaged Solutions Performance Matched Options

Gasketed (Standard) or Braised Plate and Frame Module

Pre-piped Pressure Reducing Station

BrainScan[™] - Web-Enabled and BAS Compatible - Hot Water System Monitoring

Constant Steam Pressure

Modulating Steam Pressure

Plate & Frame Packaged Solutions Performance Matched Options

Low Surface Temperature -Modulated Steam Pressure

Double Wall Plate and Frame Module

Copper/Brass (Standard) or 316 Stainless Steel Pipe, Valve and Fittings

Mechanical or Electric Condensate Pumps

Water Heating & Water Temperature Control • Feed Forward • Digital

Armstrong[•]

Flo-Rite-Temp® Instantaneous Steam/Water Heater

Steam/Water Heaters

Steam/water heaters are typically classified as instantaneous, semi-instantaneous and tank-type. Temperature control can be defined as either feed-forward or feedback.

Feedback systems are error-driven and rely upon an outlet or downstream thermostatic temperature-sensing device to detect a temperature change requirement and then modulate the steam to effect the heat exchange in an attempt to recover the heater set-point. Feedback systems are reactive, and a significant concern is their speed of response to system and application temperature control requirements.

Tank-Type Steam/Water Heaters (feedback)

Tank-type steam/water heaters typically include a temperature sensing element or coil immersed in a storage vessel with a separate, remote steam control valve. As a function of their integral and often significant storage capability, the poor response times often associated with the relationship of temperature-sensing device and steam control valve are less of an issue.

Tank-Type Steam/Water Heaters are a less attractive option for the following reasons:

- · They consume a large amount of valuable mechanicalroom real estate.
- · Identified as amplification and colonization points for Legionella bacteria.
- Significant leak potential over time.
- Tank repair is difficult, and tank replacement often requires mechanical room/building structural modifications.
- · They consume energy to heat and maintain what is effectively a reserve hot water supply.
- · Separate steam control valves, requires ongoing maintenance.
- · Thermostatic element/sensors have a tendency to wear and eventually rupture under a heavy cycle load.
- . They are slow to recover and may run out of hot water during peak load periods.

Tankless Instantaneous Steam/Water Heaters (feedback)

Tankless instantaneous steam/water heaters, often referred to as shell and tube heat exchangers, do not include hot water storage capacity. These models will rely upon either an outlet or downstream temperature-sensing element with a separate steam control valve.

Tankless Instantaneous Steam/Water Heaters are a less attractive option for the following reasons:

- Lag time from message (thermostat) to action (control valve) creates thermal lag and a resulting temperature swing
- · Modulating steam supply can cause condensate evacuation issues, resulting in damage from water hammer and tube bundle corrosion.
- A cycling phenomenon during low- or no-demand periods will cause premature wear to the thermostatic element. Thermostats typically fail in an open position, making overheated, scald-temperature water available to the system.

High-maintenance feedback systems with large storage tank may leak, corrode or rupture a thermostatic control.

Feedback instantaneous systems may suffer from lag time, tube bundle corrosion and problems with thermostatic element deterioration.

Semi-Instantaneous Steam/Water Heaters (feedback)

Semi-instantaneous steam/water heaters typically include lower-capacity storage, with an integral steam control valve to deliver the heat exchange through an internally positioned element or coil.

Semi-Instantaneous Steam/Water Heaters are a less attractive option for the following reasons:

- Poor low-flow temperature control creates an accumulation tank requirement.
- Accumulation tank creates recovery-time issues at peak demand.
- Heating element/coil in generation/accumulation tank is susceptible to failure and cross contamination.
- Accumulation tanks have been identified as amplification and colonization points for Legionella bacteria.
- Although a lower-cost option, semi-instantaneous steam/ water heaters are a higher-maintenance selection.
- Semi-instantaneous steam/water heaters have a shorter service life before replacement than other choices.

Flo-Rite-Temp[®] Instantaneous Steam/Water Heaters (feed-forward)

Flo-Rite-Temp[®] feed-forward instantaneous steam/water heaters offer a simple yet time-proven alternative to traditional feedback instantaneous, semi-instantaneous and tank-type steam-heating methods.

By eliminating the temperature sensing feedback element and relying upon the actual hot water system demand requirement within the system or application, feed-forward systems respond rapidly and are extremely accurate.

Flo-Rite-Temp[®] Feed-Forward Instantaneous Steam/ Water Heater is a more attractive option for the following reasons:

- The constant, non-modulating steam pressure within the shell eliminates cycling wear and tear.
- The system demand or flow feed-forward activation eliminates the requirement for either a steam control valve

or supplementary thermostatic control device.

- Flo-Rite-Temp[®] delivers a consistent outlet temperature (+/-4°F of set-point) with no thermal lag and resulting temperature swing.
- Flo-Rite-Temp[®] is extremely safe because the mixing unit will position to cold water flow upon failure of the primary operating component.

Semi-instantaneous water heaters are subject to poor recovery time at peak demand, inadequate low-flow temperature control and shorter service life.

Flo-Rite-Temp® instantaneous steam/water heaters can easily do the work of a storage tank unit many times its size—at lower installed cost and with minimum maintenance. Even the largest capacity Flo-Rite-Temp® requires only 13.5 ft² (4.1 m²) of floor space.

Flo-Rite-Temp® Instantaneous Steam/Water Heater

The Flo-Rite-Temp® instantaneous Steam/Water heater has a unique feed forward design which features a differential pressure diaphragm actuated mixing unit integral to a shell and tube heat exchanger.

The Flo-Rite-Temp® mixing unit manages the water flow through the heat exchanger based upon downstream hot water demand and eliminates the requirement for a modulating steam control valve.

Operating on constant low pressure (2-15PSI) steam, the Flo-Rite-Temp® mixing unit supplies water to the heat exchanger where it is overheated and then returned to the mixing unit for proportional re-mixing with cold water to a pre-set outlet temperature.

Speed of response

The differential pressure diaphragm within the mixing unit rapidly responds to a change in system demand and significantly reduces the lag times typically associated with feed back/modulating steam control valve systems.

Failure Safe

The Flo-Rite-Temp® mixing units diaphragm actuated design can be described as "failure safe" because in the event of a diaphragm failure the mixing unit will fail with a cold bias and will not allow hot water to exit the heat exchanger.

Temperature Control and User Safety

Capable of controlling outlet temperatures +/- 4F, this principal of operation offers the additional relevant benefit of reducing the waterborne bacterial content of the water during the overheating process. In addition, with no water storage requirement, Flo-Rite-Temp® water heaters are a sensible selection as a component of a broader system design initiative for Legionella risk reduction.

Ease of Maintenance

Accessible "non helical" admiralty brass straight tubes inside the carbon steel shell available mechanical cleaning and visual inspection. Non modulating constant steam pressure ensures condensate drainage and removes the potential for water hammer damage and corrosion. There in no steam control valve to maintain and typically no supplemental condensate return equipment required.

Ease of Installation

No storage tank, small footprint, access via a standard doorway and pre-piped packaged solutions reduce installation time, space and expenditure.

85

Μ in mm

12-3/8 314

190

229

280

Flo-Rite-Temp® Instantaneous Steam/Water Heater

Model 665 and 8120 Valve

2,159 5-3/4 146 11-3/4 299

Dimen	sions																						
Madal	1	4	B	;	C		D		E		F		G		Н			J	K			L	I
NUUEI	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in
415	54	1,372	4-1/2	114	7-1/2	190	7	178	4-1/2	114	3-5/16	84	3	76	7	178	6	152	6-1/4	159	50	1,270	7-1/2
535	67-1/2	1,715	5-1/4	133	8-5/8	219	9	229	5-9/16	141	4	102	3-11/16	94	7-7/8	200	7	178	7-1/2	191	62	1,575	9
665	82	2,083	5-3/4	146	10-3/8	264	10-3/8	264	6-5/8	168	4-5/8	117	4-9/16	116	9-1/4	235	8	203	8-3/4	222	74	1,880	11

6

152 8-7/8

Connecti	Connections and Weights												
		Connections		Weight									
Model	1	2	3										
	in (mm)	in (mm)	ib (mm)	lb	kg								
415	1 (25) NPT	3/4 (20) NPT	2 (50) NPT	133	60								
535	1-1/2 (40) NPT	1 (25)NPT	2-1/2 (65) NPT	235	107								
665	2 (50) NPT*	1-1/4 (32) NPT	3 (80) NPT	358	162								
8120	3 (80) NPT*	2 (50) NPT	4 (100) 150# ANSI	585	265								

12

305 8-5/8 219

Specifications			
Application	Steam Supply	Water Supply	Maximum Water
	Pressure	Pressure	Pressure Drop
Steam to Water	2 - 15 psig	20-150 psig	10 psig
	(0.14 - 1.0 bar)	(1.4 - 1.0 bar)	(0.7 bar)

225 9-1/2 241 8 203 9-1/2 241 74 1,880

NOTE: Reusable insulation wraps available.

*665 and 8120 connections for water inlet and outlet are on opposite sides of the valve body.

Materials							
Body	Valve	Valve Seats	Diaphragm	Heat Exchanger Shell	Heat Exchanger Tubles	Tube Sheets	Tube Bundle End Cap
Bronze	(415) 303 Stainless Steel w/ Teflon Inserts	(415/535) 303 Stainless Steel	Viton [®] GF Reinforced	Carbon Steel ASTM SA 106-B	5/8" 16 BWG	Brass	Brass
	(535/665/8120) Brass	(665/8120) Brass	w/Nomex® Fiber	ASME "U" Stamped	Autilitally Diass		

NOTE: Units are NSF-61 certified.

Water Heater Installation Detail

The Flo-Rite-Temp[®] models identified in the submittal table below are provided, as standard, with an Armstrong steam trap and thermostatic air vent (shaded). All other items indicated, are shown for water heater installation detail only. For pre-piped packaged Flo-Rite-Temp[®] water heater assemblies, refer to pages 14-26.

For submittal drawing refer to:									
Model 415	Single Wall	S5640							
Model 415DW	Double Wall	S5641							
Model 535	Single Wall	S5642							
Model 535 DW	Double Wall	S5643							
Model 665	Single Wall	S5644							
Model 665DW	Double Wall	S5645							
Model 665SS	Stainless Steal	S5646							
Model 8120	Single Wall	S5647							
Model 8120DW	Double Wall	S5648							
Model 8120SS	Stainless Steel	S5649							

Flo-Rite-Temp[®] Instantaneous Steam/Water Heater Double Wall

Model 665DW and 8120DW Valve

Model 415DW and 535DW Profile

The DW (double wall) version of the Flo-Rite-Temp® instantaneous water heater uses a double-wall tube to provide positive separation of the steam and water in the heat exchanger. The area between the walls of the tubes vents to atmosphere so you can detect tube failure without cross-contaminating either the steam or water. The Flo-Rite-Temp® DW is well suited for all hot water applications where steam is available and plumbing codes or safety requirements prevent the heating medium and the potable water supply from being cross-contaminated.

Specifications			
Application	Steam Supply	Water Supply	Maximum Water
	Pressure	Pressure	Pressure Drop
Steam to Water	2 - 15 psig	20 - 150 psig	10 psig
	(0.14 - 1.0 bar)	(1.4 - 10.3 bar)	(0.7 bar)

Connections and Weights												
		Connections		Tube Dund	la Damawal	Weight						
Model	1	2	3	Tupe Bund	ie Removai							
	in (mm)	in (mm)	in (mm)	in	mm	lb	kg					
415DW	1 (25) NPT	3/4 (20) NPT	2 (50) NPT	75	1,905	199	90					
535DW	1-1/2 (40) NPT	1 (25) NPT	2-1/2 (65) NPT	75	1,905	270	122					
665DW	2 (50) NPT*	1-1/4 (32) NPT	3 (80) NPT	87	2,210	444	201					
8120DW	3 (80) NPT*	2 (50)	4 (100) 150# ANSI	75	1,905	665	302					

*665 and 8120 connections for water inlet and outlet are on opposite sides of the valve body.

Materials						
Body	Valve	Valve Seats	Diaphragm	Heat Exchanger Shell	Heat Exchanger Tubes	Tube Sheets*
Ducana	(415DW) 303 Stainless Steel w/Teflon Inserts	(415DW/535DW) 303 Stainless Steel	Viton [®] GF	Carbon Steel	5/8" Copper Inner Tube	Steam Side Steel
DIOIIZE	(535DW/665DW/812DW) Brass	(665DW/8120DW) Brass	w/ Nomex® GF	ASME "U" Stamped	Outer Tube	Water Side Brass

*There is an open vent to atmosphere between the tube sheets to detect tube failure.

Dimensi	imensions																							
Model	A		В		C		D		E		F		G		Н			l	K			L	M	
Mouer	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
415DW	76-1/8	1,934	4-1/2	114	7-1/2	191	7	178	4-1/2	114	3-3/8	86	3-3/4	95	10-1/2	267	6	152	6-7/8	175	75	1,905	7-1/2	190
535DW	77-3/8	1,965	5-1/4	133	8-5/8	219	9	229	5-9/16	141	4	102	4-1/4	108	11-1/2	292	7	178	8-1/8	206	75	1,905	9	229
665DW	90-5/8	2,302	5-3/4	146	10-3/8	264	10-3/8	264	6-5/8	168	7-3/4	121	5	127	11-3/4	298	8	203	9-3/4	248	87	2,210	11	280
8120DW	79-7/8	2,029	5-3/4	146	11-3/4	198	12	305	8-5/8	219	6	152	8-3/4	222	12-5/8	321	8	203	11-5/8	295	75	1,905	12-3/8	314

Flo-Rite-Temp® Instantaneous Steam/Water Heater Single Wall and Double Wall Sizing Chart

Water	and Ste	am Ca	pacitie	es						n	r	1								
Inlot	Sat					Standard				Inlat	Sat				N	letric				
Tomn	Tomn	Hot \	Water	Capaci	ties*		Steam C	apacities	;	Tomn	Tomn	Hot	Water C	Capacit	ies*		Steam (Capacitie	es	
Temp.	iemp.	S	Steam F	Pressur	re		Steam F	ressure		remp.	iemp.	9	Steam P	ressure	;		Steam	Pressure	Э	Model
	1		ps	sig			ps	ig		Ì			ba	ır				bar		WOUCI
۰F	۰F	2	5	10	15	2	5	10	15	l∘c	°C	0.14	0.35	0.7	1	0.14	0.35	0.7	1	
			ar	m			lbs	/hr			-		m ³	/h			k	a/h		
		17	18	20	20	714	767	839	901			3.8	4.1	4.5	4.5	323	347	379	407	415
		37	40	43	43	1.543	1.657	1.814	1.946			8.4	9.1	9.8	10.2	697	749	820	880	535
	120	69	74	80	80	2 855	3 067	3 356	3 601		49	15.7	16.8	18.2	18.2	1 290	1 386	1 517	1.628	665
		142	145	145	145	5.680	6,160	6,760	7.160			32.2	32.9	32.9	32.9	2.576	2,794	3.066	3,248	8120
		15	16	17	18	681	734	807	868	1		3.4	3.6	3.8	4.1	308	332	365	392	415
		32	34	37	39	1.472	1.587	1.743	1.876			7.3	7.7	8.4	8.8	665	717	788	848	535
	130	58	63	68	73	2 723	2 936	3 226	3 472		54	13.2	17.3	15.4	16.6	1.230	1.327	1.458	1.569	665
		112	122	136	145	5.040	5,490	6.120	6.705			25.4	27.7	30.9	32.9	2.286	2,490	2,776	3.041	8120
		12	13	15	16	646	700	773	835			2.7	3.0	3.4	3.6	292	316	349	377	415
		27	29	32	34	1.397	1.513	1.671	1.804			6.1	6.6	7.3	7.7	631	684	755	815	535
40	140	50	54	59	63	2 585	2 799	3 091	3.338	4	60	11.3	12.2	13.3	14.3	1.168	1.265	1.397	1.509	665
		88	97	109	120	4.400	4.850	5.450	6.000			20.0	22.0	24.7	27.2	1,996	2,200	2,472	2.722	8120
		9	10	11	12	572	627	702	765			2.0	2.3	2.5	2.7	259	283	317	346	415
		20	22	24	26	1.235	1.355	1.517	1.652			4.5	5.0	5.5	5.9	558	612	686	747	535
	160	37	40	45	48	2.286	2.508	2.806	3.057		71	8.4	9.1	10.2	10.9	1.033	1.134	1.268	1.382	665
		69	83	89	95	4,140	4.980	5.340	5.700			15.6	18.8	20.2	21.6	1.878	2.259	2,422	2.585	8120
		5	5	6	7	344	386	441	487			1.1	1.1	1.4	1.6	156	175	200	221	415
	100	12	13	15	16	861	966	1,104	1,219			2.7	3.0	3.4	3.6	390	438	501	553	535
	180	23	26	29	32	1,663	1,866	2,134	2,355		82	5.2	5.9	6.6	7.3	754	846	968	1.068	665
		43	47	52	59	3,010	3,290	3,640	4,130			9.7	10.7	11.8	13.4	1,363	1,492	1,651	1.873	8120
	1	19	20	20	20	692	745	816	877			4.3	4.5	4.5	4.5	313	337	369	396	415
		41	44	45	45	1.495	1.609	1.764	1.896			9.3	10.0	10.2	10.2	676	727	797	857	535
	120	76	80	80	80	2,767	2,977	3,264	3,508		49	17.3	18.2	18.2	18.2	1,251	1,346	1,475	1,586	665
		145	145	145	145	5,740	6,090	6,580	7,035			32.2	32.2	32.2	32.2	2,603	2,762	2,985	3,191	8120
		16	17	19	20	660	712	785	846	1		3.6	3.8	4.3	4.5	298	322	355	382	415
	130	34	37	40	43	1,425	1,539	1,695	1,827		-	7.7	8.4	9.1	9.8	644	696	766	826	535
		64	68	75	80	2,637	2,848	3,137	3,381		54	14.5	15.4	17.0	18.2	1,192	1,287	1,418	1,528	665
		127	138	145	145	5,080	5,520	6,120	6,760			28.8	31.3	32.2	32.2	2,304	2,504	2,776	3,066	8120
		13	14	16	17	626	679	752	813			2.9	3.2	3.6	3.8	283	307	340	367	415
50	140	29	31	34	37	1,352	1,467	1,624	1,756	10	60	6.6	7.0	7.7	8.4	611	663	734	794	535
50	140	54	58	64	68	2,502	2,715	3,005	3,250	10	00	12.2	13.2	14.5	15.4	1,131	1,227	1,358	1,474	665
		99	108	121	134	4,455	4,860	5,445	6,030			22.5	24.5	27.5	30.4	2,021	2,204	2,470	2,735	8120
		10	11	12	13	553	608	682	744			2.3	2.5	2.7	3.0	250	275	308	336	415
	160	21	23	25	28	1,194	1,313	1,473	1,607		71	4.7	5.2	5.7	6.4	540	593	665	726	535
	100	39	42	47	51	2,210	2,429	2,725	2,974			8.9	9.5	10.7	11.6	999	1,098	1,232	1,344	665
		76	90	95	102	4,180	4,950	5,225	5,610			17.2	20.4	21.6	23.1	1,896	2,245	2,370	2,545	8120
		5	6	6	7	332	373	428	473			1.1	1.4	1.4	1.6	151	169	194	214	415
	190	12	14	16	17	831	934	1,071	1,185		82	2.7	3.2	3.6	3.9	377	424	486	537	535
	100	24	27	30	33	1,605	1,805	2,069	2,289		02	5.4	6.1	6.8	7.5	728	819	938	1,037	665
		49	55	63	72	3,185	3,575	4,095	4,680			11.1	12.5	14.3	16.3	1,445	1,622	1,857	2,123	8120
		18	19	20	20	638	690	762	822			4.1	4.3	4.5	4.5	288	312	344	372	415
	130	38	41	45	45	1,378	1,491	1,646	1,777		54	8.7	9.3	10.2	10.2	623	674	744	803	535
	100	70	76	80	80	2,550	2,760	3,046	3,288			15.9	17.3	18.2	18.2	1,152	1,247	1,377	1,486	665
		145	145	145	145	5,110	5,465	6,090	6,510			32.2	32.2	32.2	32.2	2,318	2,524	2,762	2,953	8120
		15	16	17	19	605	658	729	790			3.4	3.6	3.8	4.3	273	297	330	357	415
	140	32	34	38	40	1,307	1,421	1,576	1,708		60	7.3	7.7	8.6	9.1	591	642	712	772	535
	140	58	63	69	75	2,418	2,629	2,917	3,160		00	13.2	14.3	15.7	17.0	1,093	1,188	1,318	1,428	665
60		111	123	137	145	4,440	4,920	5,480	6,080	16		25.2	27.9	31.1	32.2	2,014	2,232	2,486		8120
		10	11	13	14	533	588	661	723	10		2.3	2.5	2.9	3.2	241	266	299	327	415
	160	22	24	27	30	1,152	1,270	1,428	1,561		71	5.0	5.5	6.1	6.8	521	574	645	706	535
	100	41	45	50	55	2,132	2,349	2,642	2,889			9.3	10.2	11.3	12.5	964	1,062	1,194	1,306	665
		85	99	104	115	4,250	4,950	5,200	5,750			19.3	22.5	23.6	26.1	1,928	2,245	2,359	2,608	8120
		5	6	7	7	320	360	414	459			1.1	1.4	1.6	1.6	145	163	188	208	415
	180	13	14	16	18	800	902	1,037	1,150		82	3.0	3.2	3.6	4.1	363	409	470	522	535
		25	28	32	35	1,546	1,743	2,004	2,221			5.7	6.4	7.3	7.9	701	791	909	1,007	665
		59	67	80	90	3,540	4,020	4,800	5,400			13.4	15.2	18.1	20.4	1,606	1,823	2,177	2,449	8120

*Units may be piped in parallel when desired capacities exceed that of a single unit.

NOTES: Minimum water temperature increase is 60°F (33°C). Consult factory if less than 60°F (33°C) increase is required or a set temperature below 120°F (49°C) is required.

Flo-Rite-Temp[®] Instantaneous Steam/Water Heater Stainless Steel

The Flo-Rite-Temp® SS is a compact, steam to water, instantaneous water heater with all wetted metal parts of type 316 stainless steel. Because of its construction materials, this heater is well-suited for heating most corrosive liquids, such as demineralized, deionized or reverse osmosis water commonly used by manufacturers of electronic equipment, pharmaceutical and food.

Features

- Feed-forward control provides accurate temperature control on demand even when demand fluctuates abruptly.
- Feed-forward operation ensures that the heater will fail safely in the closed (cold) position to prevent overheating.
- Straight, non-U-bend tube bundle with removable end cover provides for easy tube cleaning along with the capability to visually inspect all tubes.
- Constant steam pressure on heat exchanger at all times means positive condensate evacuation, avoiding damage to the exchanger due to water hammer.

- Heavy duty 5/8" tubes of 16 gauge 316L stainless steel ensure long life and maintainability backed up by a 10-year tube bundle warranty against workmanship and material defects.
- Control valve is mounted integral to the heat exchanger, thus eliminating intermediate piping leaks.

Specifications												
Application	Steam Supply Pressure	Water Supply Pressure	Maximum Water Pressure Drop									
Steam to Water	2 - 15 psig (0.14 - 1.0 bar)	20 - 150 psig (1.4 - 10.3 bar)	10 psig (0.7 bar)									

Materials	laterials												
Body	Valve	Valve Seats	Diaphragm	Heat Exchanger Shell	Heat Exchanger Tubes	Heat Exchanger Tube Sheets							
Т-3	316 Stainless	Steel	Viton [®] GF Reinforced w/ Nomex [®] Fiber	Carbon Steel (Standard) T-316 Staineless Steel (Optional)	T-316L Stanless Steel	T-316 Stainless Steel							

Dimensi	Dimensions and Weights																
Madal			Dimensions									Connections					
MOD	ei	A	В	C	D	E	F	G	H	J	K	L	1	2	3	W	eignt
665 SS	in	82-3/4	5-3/4	10-3/8	10-3/8	6-5/8	4-3/4	5-1/2	9-1/4	8	8-3/4	74	2 NPT	1-1/4 NPT	3 NPT	lb ka	335
	mm	2,102	146	264	264	168	121	140	235	191	222	1,880	50	32	80	ĸy	152
8120 SS	in	90	5-3/4	10-3/8	10-3/8	8-5/8	8-1/8	8-7/8	9-1/2	8	14-1/2	74	2 NPT	2 NPT	4 150# ANSI	lb ka	670
	mm	2,286	146	264	264	219	156	225	203	368	1,880	50	50		100	кg	298

Flo-Rite-Temp® Instantaneous Steam/Water Heater Stainless Steel Sizing Chart

Capaci	ties and	Stear	n Loac	ls																	
						Standard									N	letric		Steam Capacities Steam Pressure bar 0.35 0.7 1 kg/h 826 904 970 1,860 1,981 701 869 935 1,469 1,638 1,794 754 833 899 1,298 1,459 1,606 503 563 664 355 1,348 1,459 1,606 503 563 664 35 1,548 1,654 437 500 521 1,636 1,645 1,654 477 1,645 1,645 1,771 <th colspan<="" th=""><th></th></th>		<th></th>	
Inlat	Set Temp. °F	Hot	Water	Capaci	ties*		Steam C	apacities		Inlat	Sat	Hot	Water (Capacit	ies*		Steam (Capacitie	es		
Tomn		Steam Pressure			Steam F	Pressure		Tomn	Temn		Steam P	ressure	e		Steam	Pressure	е	Model			
oF		psig				ps	ig		°C	10111p. ℃		ba	ar				bar		mouer		
l .		2	5	10	15	2	5	10	15	ľ	ľ	0.14	0.35	0.7	1	0.14	0.35	0.7	1		
			gr	m			lbs	/hr					m ³	^y /h			k	g/h			
	120	41	44	47	51	1,695	1,821	1,993	2,138		49	9.3	10	10.7	11.6	769	826	904	970	665 SS	
	120	84	89	97	103	3,351	3,720	4,100	4,368			19.1	20.2	22	23.4	1,520	1,687	1,860	1,981	8120 SS	
	130	35	37	41	43	1,617	1,743	1,915	2,061		54	7.9	8.4	9.3	9.8	733	791	869	935	665 SS	
		66	72	80	86	2,974	3,239	3,611	3,956			15	16.4	18.2	19.5	1,349	1,469	1,638	1,794	8120 SS	
40	140	30	32	35	37	1,535	1,662	1,836	1,982	4	60	6.8	7.3	7.9	8.4	696	754	833	899	665 SS	
		52	57	64	71	2,596	2,862	3,216	3,540	11.8	11.8	12.9	14.5	16.1	1,178	1,298	1,459	1,606	8120 SS		
	160	17	18	19	21	1,011	1,110	1,242	1,353		71	3.9	4.1	4.3	4.8	459	503	563	614	665 SS	
		44	48	53	5/	2,726	2,990	3,346	3,646			10	10.9	12	12.9	1,237	1,356	1,518	1,654	8120 55	
	180	12	13	15	1/	860	964	1,103	1,217		82	2.7	3	3.4	3.9	390	437	500	552	665 55	
		32	35	40	44	2,316	2,598	2,971	3,280			7.3	1.9	9.1	10	1,051	1,1/8	1,348	1,488	8120 55	
	120	45	48	53	56	1,643	1,768	1,938	2,083		49	10.2	10.9	12	12.7	/45	802	8/9	945	665 55	
		91	97	105	113	3,300	3,550	3,892	4,183			20.7	22	23.8	25.7	1,497	1,010	1,765	1,897	8120 99	
	130	38	41	44	47	1,500	1,091	1,802	2,007		54	0.0	9.3		10.7	1 250	1 477	840 1.606	910	000 33	
		/5	01	89	95	2,997	3,257	3,740	4,031			7.0	18.4	20.2	21.0	1,309	701	1,696	1,828	0120 33	
50	140	52	64	30 71	70	1,400	2 867	2 2 1 2	2 558	10	60	12.0	1.1	16.1	9.3	1 102	1 300	1 457	1 61/	8120 55	
		17	10	21	23	2,020	2,007	1 206	1 316			30	14.5	10.1	52	1,152	1,300	5/7	507	665 99	
	160	46	51	56	61	2 635	2 806	3 2/10	3 545		71	10 /	116	127	13.0	1 1 1 0 5	1 31/	1 /7/	1 608	8120 55	
		12	14	16	18	830	993	1 070	1 183			27	3.2	3.6	4 1	376	423	485	537	665 \$\$	
	180	33	37	42	47	2 235	2 5 1 3	2 882	3 188		82	7.5	8.4	9.5	10.7	1 014	1 1 1 4 0	1 307	1 446	8120 SS	
		51	55	60	64	1,590	1 713	1 883	2 027			11.6	12.5	13.6	14.5	721	777	854	919	665 SS	
	120	71	104	122	130	3.247	3.500	3.846	4.139		49	16.1	23.6	27.7	29.5	1.473	1.588	1.745	1.877	8120 SS	
		42	45	49	53	1.514	1.639	1.808	1.952			9.5	10.2	11.1	12	687	743	820	885	665 SS	
	130	86	92	100	108	3,093	3,347	3,694	3,988		54	19.5	20.9	22.7	24.5	1,403	1,518	1,676	1,809	8120 SS	
	440	35	37	41	44	1,436	1,561	1,732	1,876			7.9	8.4	9.3	10	651	708	786	851	665 SS	
60	140	66	73	81	87	2,620	2,903	3,233	3,703	16	60	15	16.6	18.4	19.8	1,188	1,317	1,466	1,680	8120 SS	
	160	18	20	22	24	943	1,040	1,170	1,279		71	4.1	4.5	5	5.5	428	472	531	580	665 SS	
	100	49	54	60	65	2,543	2,801	3,151	3,445		1	11.1	12.3	13.6	14.8	1,154	1,271	1,429	1,563	8120 SS	
		13	1/	17	10	700	901	1.035	1 1/18			3	3.2	30	13	362	100	460	521	665 SS	
	180	35	30	44	49	2 152	2 4 27	2 701	3 093		82	79	89	10	11 1	976	1 101	1 266	1 402	8120 SS	
		55	39	44	43	2,132	2,421	2,191	3,033			1.5	0.5			3/0	1,101	1,200	1,403		

*Units may be piped in parallel when desired capacities exceed that of a single unit.

NOTES: Minimum water temperature increase is 60°F (33°C). Consult factory if less than 60°F (33°C) increase is required or a set temperature below 120°F (49°C) is required.

SECTION

6

Flo-Rite-Temp® Instantaneous Steam/Water Heater

Non-Recirculating Hot Water Systems

Pre-Piped Single Temperature

Flo-Rite-Temp[®] Instantaneous Steam/Water Heaters-Non Recirculating Hot Water Systems feature four single heat exchanger and four double (parallel) heat exchanger pre-piped single temperature packaged assemblies.

Parallel heat exchangers offer increased flow rates and/ or system redundancy within the same footprint and allows for tube bundle and control valve servicing while the water heater remains online.

Flo-Rite-Temp® Pre-Piped Single Temperature Systems are fully assembled and include the following installation components:

- Steam Trap
- Air Vent
- Thermometers
- CIP connection port
- Flow Control/Isolation Valves

Ideal for both new construction and retrofit installation within an existing building infrastructure. Flo-Rite-Temp[®] Pre-Piped Single Temperature Systems are designed to fit through a standard 32" doorway (Model 8120 36" doorway).

SECTION

6

Flo-Rite-Temp® Instantaneous Steam/Water Heater

Non-Recirculating Hot Water Systems

Pre-Piped Single Temperature

Armstrong Flo-Rite-Temp[®] Instantaneous Steam/Water Heater pre-piped packages are available in standard configurations per the specification matrix on page 26.

Customized Hot Water System Solutions are our specialty. Multiple orientations, configurations and options are available.

Hot Water System Solutions which include condensate recovery, circulating pumps, additional mixed water temperature controls/loops and varied other components can be application engineered specifically to meet the projects requirements. Additionally, where appropriate, Armstrong can integrate engineering services, turn key installation and project management, system assessment and optimization along with energy conservation measure (ECM) capability through Armstrong Service Incorporated.

Flo-Rite-Temp® Instantaneous Steam/Water Heater

Non-Recirculating Hot Water Systems

Pre-Piped Single Temperature (P-P)

Flo-Rite-Temp® Instantaneous Steam/Water Heater for Non-Recirculating Hot Water Systems feature four heat exchanger options offered as pre-piped single temperature packaged assemblies.

Flo-Rite-Temp® Pre-Piped (P-P) Single Temperature Systems are fully assembled and include the following installation components:

- · Steam Trap
- Air Vent
- · Thermometers
- CIP connection port
- Flow Control/Isolation Valves

Ideal for both new construction and retrofit installation within an existing building infrastructure. Flo-Rite-Temp® Pre-Piped (P-P) Single Temperature Systems are designed to fit through a standard 32" doorway (Model 8120 36" doorway). Armstrong Flo-Rite-Temp® Instantaneous Steam/Water Heater pre-piped packages are available in standard configurations per the specification matrix on pages 26.

Customized Hot Water System Solutions are our specialty. Multiple orientations, configurations and options are available.

Hot Water System Solutions which include condensate recovery, circulating pumps, additional mixed water temperature controls/loops and varied other components can be application engineered specifically to meet the projects requirements.

For submittal drawing refer to:						
Model 415P-P	Single Wall	S5453				
Model 415DWP-P	Double Wall	S5499				
Model 535P-P	Single Wall	S5454				
Model 535DWP-P	Double Wall	S5500				
Model 665P-P	Single Wall	S5455				
Model 665DWP-P	Double Wall	S5501				
Model 8120P-P	Single Wall	S5456				
Model 812DWP-P	Double Wall	S5502				

Flo-Rite-Temp [™] Instan	Flo-Rite-Temp™ Instantaneous Steam/Water Heater									
Madal	Entering Water	Outlet Temperature								
Wouer	Temperature	120	130	140	160	180				
	40	20	18	16	12	7				
415P-P	50	20	20	17	13	7				
	60	-	20	19	14	7				
	40	45	39	34	26	16				
535P-P	50	45	43	37	28	17				
	60	-	45	40	30	18				
	40	80	73	63	48	32				
665P-P	50	80	80	68	51	33				
	60	-	80	75	55	35				
	40	145	145	120	95	59				
8120P-P	50	145	145	134	102	72				
	60	-	145	145	115	90				

NOTE: All flow rates in gallons per minute and using 15 PSIG steam.

Flo-Rite-Temp® Instantaneous Steam/Water Heater

Non-Recirculating Hot Water Systems

Parallel/Redundant Pre-piped Single Temperature (PP-P)

Flo-Rite-Temp® Instantaneous Steam/Water Heater for Non-Recirculating Hot Water Systems feature four heat exchanger options offered as pre-piped parallel single temperature packaged assemblies.

Flo-Rite-Temp® Pre-Piped (P-P) Parallel (P) Single Temperature Systems are fully assembled and include the following installation components:

- Steam Trap
- · Air Vent
- · Thermometers
- · CIP connection port
- · Flow Control/Isolation Valves

Ideal for both new construction and retrofit installation within an existing building infrastructure. Flo-Rite-Temp® Pre-Piped (P-P) Parallel (P) Single Temperature Systems are designed to fit through a standard 32" doorway (Model 8120 36" doorway).

Armstrong Flo-Rite-Temp® Instantaneous Steam/Water Heater pre-piped packages are available in standard configurations per the specification matrix on page 26.

Customized Hot Water System Solutions are our specialty. Multiple orientations, configurations and options are available.

Hot Water System Solutions which include condensate recovery, circulating pumps, additional mixed water temperature controls/loops and varied other components can be application engineered specifically to meet the projects requirements.

For submittal drawing refer to:						
Model 415PP-P	Single Wall	S5457				
Model 415DWPP-P	Double Wall	S5503				
Model 535PP-P	Single Wall	S5458				
Model 535DWPP-P	Double Wall	S5504				
Model 665PP-P	Single Wall	S5459				
Model 665DWPP-P	Double Wall	S5505				
Model 8120PP-P	Single Wall	S5460				
Model 812DWPP-P	Double Wall	S5506				

If unit is operated in parallel then double flow rate given for total available capacity.

Flo-Rite-Temp [™] Insta	Flo-Rite-Temp™ Instantaneous Steam/Water Heater									
Madal	Entering Water	Outlet Temperature								
woder	Temperature	120	130	140	160	180				
	40	20	18	16	12	7				
415PP-P	50	20	20	17	13	7				
	60	-	20	19	14	7				
	40	45	39	34	26	16				
535PP-P	50	45	43	37	28	17				
	60	-	45	40	30	18				
	40	80	73	63	48	32				
665PP-P	50	80	80	68	51	33				
	60	-	80	75	55	35				
	40	145	145	120	95	59				
8120PP-P	50	145	145	134	102	72				
	60	-	145	145	115	90				

NOTE: All flow rates in gallons per minute and using 15 PSIG steam.

SECTION

Flo-Rite-Temp® Instantaneous Steam/Water Heater

Recirculating Hot Water Systems

Pre-Piped Single Temperature

Flo-Rite-Temp® Instantaneous Steam/Water Heaters for Recirculating Hot Water Systems feature four single heat exchanger and four double (parallel) heat exchanger pre-piped single temperature packaged assemblies.

Parallel heat exchangers offer increased flow rates and/ or system redundancy within the same footprint and allows for tube bundle and control valve servicing while the water heater remains online.

Flo-Rite-Temp[®] Pre-Piped Single Temperature Systems are fully assembled and include the following installation components:

- · Steam Trap
- Air Vent
- Thermometers
- CIP connection port
- Flow Control/Isolation Valves
- Thermostatic Diverting Valve*

Ideal for both new construction and retrofit installation within an existing building infrastructure. Flo-Rite-Temp® Pre-Piped Single Temperature Systems are designed to fit through a standard 32" doorway (Model 8120 36" doorway).

Flo-Rite-Temp[®] Instantaneous Steam/Water Heaters Recirculating Hot Water Solutions-for single temperature systems feature an integral thermostatic diverting valve which maintains re-circulating hot water temperatures during zero system draw off "idling" periods.

Flo-Rite-Temp® Instantaneous Steam/Water Heater

Recirculating Hot Water Systems

Pre-Piped Single Temperature

Armstrong Flo-Rite-Temp[®] Instantaneous Steam/Water Heater pre-piped packages are available in standard configurations per the specification matrix on page 26.

Customized Hot Water System Solutions are out specialty. Multiple orientations, configurations and options are available.

Hot Water System Solutions which include condensate recovery, circulating pumps, additional mixed water temperature controls/loops and varied other components can be application engineered specifically to meet the projects requirements.

Additionally, where appropriate, Armstrong can integrate engineering services, turn key installation and project management, system assessment and optimization along with energy conservation measure (ECM) capability through Armstrong Service Incorporated.

Recirculating Hot Water Systems

Pre-Piped Single Temperature (P-PR)

Flo-Rite-Temp[®] Instantaneous Steam/Water Heater for Recirculating Hot Water Systems feature four heat exchanger options offered as pre-piped single temperature packaged assemblies.

Flo-Rite-Temp[®] Pre-Piped (P-P) Recirculating (R) Single Temperature Systems are fully assembled and include the following installation components:

- Steam Trap
- Air Vent
- Thermometers
- CIP connection port
- Flow Control/Isolation Valves
- Amot Thermostatic Diverting Valve

Ideal for both new construction and retrofit installation within an existing building infrastructure. Flo-Rite-Temp® Pre-Piped (P-P) Recirculating (R) Single Temperature Systems are designed to fit through a standard 32" doorway (Model 8120 36" doorway).

Armstrong Flo-Rite-Temp[®] Instantaneous Steam/Water Heater pre-piped packages are available in standard configurations per the specification matrix on pages 26.

Customized Hot Water System Solutions are our specialty. Multiple orientations, configurations and options are available.

Hot Water System Solutions which include condensate recovery, circulating pumps, additional mixed water temperature controls/loops and varied other components can be application engineered specifically to meet the projects requirements.

For submittal drawing refer to:							
Model 415P-PR	Single Wall	S5468					
Model 415DWP-PR	Double Wall	S5514					
Model 535P-PR	Single Wall	S5469					
Model 535DWP-PR	Double Wall	S5515					
Model 665P-PR	Single Wall	S5470					
Model 665DWP-PR	Double Wall	S5516					
Model 8120P-PR	Single Wall	S5471					
Model 812DWP-PR	Double Wall	S5517					

Flo-Rite-Temp [™] Instantaneous Steam/Water Heater									
Madal	Entering Water	Outlet Temperature							
Model	Temperature	120	130	140	160	180			
	40	20	18	16	12	7			
415P-PR	50	20	20	17	13	7			
	60	-	20	19	14	7			
	40	45	39	34	26	16			
535P-PR	50	45	43	37	28	17			
	60	-	45	40	30	18			
	40	80	73	63	48	32			
665P-PR	50	80	80	68	51	33			
	60	-	80	75	55	35			
	40	145	145	120	95	59			
8120P-PR	50	145	145	134	102	72			
	60	-	145	145	115	90			

NOTE: All flow rates in gallons per minute and using 15 PSIG steam.

Recirculating Hot Water Systems

Parallel/Redundant Pre-Piped Single Temperature (PP-PR)

Flo-Rite-Temp® Instantaneous Steam/Water Heater for Recirculating Hot Water Systems feature four heat exchanger options offered as pre-piped parallel single temperature packaged assemblies.

Flo-Rite-Temp[®] Pre-Piped (P-P) Parallel (P) Recirculating (R) Single Temperature Systems are fully assembled and include the following installation components:

- Steam Trap
- · Air Vent
- Thermometers
- CIP connection port
- Flow Control/Isolation Valves
- Amot Thermostatic Diverting Valve

Ideal for both new construction and retrofit installation within an existing building infrastructure. Flo-Rite-Temp® Pre-Parallel (P) Piped (P-P) Recirculating (R) Single Temperature Systems are designed to fit through a standard 32" doorway (Model 8120 36" doorway).

Armstrong Flo-Rite-Temp[®] Instantaneous Steam/Water Heater pre-piped packages are available in standard configurations per the specification matrix on page 26.

Customized Hot Water System Solutions are our specialty. Multiple orientations, configurations and options are available.

Hot Water System Solutions which include condensate recovery, circulating pumps, additional mixed water temperature controls/loops and varied other components can be application engineered specifically to meet the projects requirements.

For submittal drawing refer to:						
Model 415PP-PR	Single Wall	S5472				
Model 415DWPP-PR	Double Wall	S5518				
Model 535PP-PR	Single Wall	S5473				
Model 535DWPP-PR	Double Wall	S5519				
Model 665PP-PR	Single Wall	S5474				
Model 665DWPP-PR	Double Wall	S5520				
Model 8120PP-PR	Single Wall	S5475				
Model 812DWPP-PR	Double Wall	\$5521				

Flo-Rite-Temp [™] Instantaneous Steam/Water Heater										
Madal	Entering Water			Outlet Temperature						
Wouer	Temperature	120	130	140	160	180				
	40	20	18	16	12	7				
415PP-PR	50	20	20	17	13	7				
	60	-	20	19	14	7				
	40	45	39	34	26	16				
535PP-PR	50	45	43	37	28	17				
	60	-	45	40	30	18				
	40	80	73	63	48	32				
665PP-PR	50	80	80	68	51	33				
	60	-	80	75	55	35				
	40	145	145	120	95	59				
8120PP-PR	50	145	145	134	102	72				
	60	-	145	145	115	90				

If unit is operated in parallel then double flow rate given for total available capacity.

NOTE: All flow rates in gallons per minute and using 15 PSIG steam.

Recirculating Hot Water Systems

Pre-Piped Tempered Water

Flo-Rite-Temp® Instantaneous Steam/Water Heaters-Recirculating Hot Water Systems feature four single heat exchanger and four double (parallel) heat exchanger pre-piped tempered water packaged assemblies.

Parallel heat exchangers offer increased flow rates and/ or system redundancy within the same footprint and allows for tube bundle and control valve servicing while the water heater remains online.

Flo-Rite-Temp® Pre-Piped Tempered Water Systems are fully assembled and include the following installation components:

- · Steam Trap
- Air Vent
- Thermometers
- · CIP connection port
- Flow Control/Isolation Valves
- DRV 80 "The Brain" Digital Recirculating Valve

Ideal for both new construction and retrofit installation within an existing building infrastructure. Flo-Rite-Temp[®] Pre-Piped Single Temperature Systems are designed to fit through a standard 32" doorway (Model 8120 36" doorway).

Flo-Rite-Temp[®] Instantaneous Steam/Water Heaters-Recirculating Hot Water Solutions-for tempered water systems feature DRV 80 "The Brain".

DRV 80 delivers +/- 2F temperature control for systems which experience diverse user draw-off between 0-150GPM. DRV80 is provided as standard with an integral mixed water outlet sensor/transmitter and remote set point adjustment capability for "plug and play" communication via PC, LAN or resident Building Automation System (BAS).

More information on DRV 80 is detailed on page 27.

Flo-Rite-Temp® Instantaneous Steam/Water Heater

Recirculating Hot Water Systems

Pre-Piped Tempered Water

Armstrong Flo-Rite-Temp® Instantaneous Steam/Water Heater pre-piped packages are available in standard configurations per the specification matrix on page 26.

Customized Hot Water System Solutions are our specialty. Multiple orientations, configurations and options are available.

Hot Water System Solutions which include condensate recovery, circulating pumps, additional mixed water temperature controls/loops and varied other components can be application engineered specifically to meet the projects requirements.

Additionally, where appropriate, Armstrong can integrate engineering services, turn key installation and project management, system assessment and optimization along with energy conservation measure (ECM) capability through Armstrong Service Incorporated.

Recirculating Hot Water Systems

Pre-Piped Tempered Water (P-PTW)

Flo-Rite-Temp[®] Instantaneous Steam/Water Heater for Recirculating Hot Water Systems feature four heat exchanger options offered as pre-piped tempered water packaged assemblies.

Flo-Rite-Temp[®] Pre-Piped (P-P) Tempered Water (TW) Systems are fully assembled and include the following installation components:

- Steam Trap
- Air Vent
- Thermometers
- CIP connection port
- Flow Control/Isolation Valves
- DRV 80 Digital ReCirculating Valve "The Brain" (DMC 1)

Ideal for both new construction and retrofit installation within an existing building infrastructure. Flo-Rite-Temp® Pre-Piped (P-P) Tempered Water (TW) Systems are designed to fit through a standard 32" doorway (Model 8120 36" doorway).

Armstrong Flo-Rite-Temp[®] Instantaneous Steam/Water Heater pre-piped packages are available in standard configurations per the specification matrix on page 26.

Customized Hot Water System Solutions are our specialty. Multiple orientations, configurations and options are available.

Hot Water System Solutions which include condensate recovery, circulating pumps, additional mixed water temperature controls/loops and varied other components can be application engineered specifically to meet the projects requirements.

For submittal drawing refer to:		
Model 415P-PTW-EMC1	Single Wall	S5476
Model 415DWP-PTW-EMC1	Double Wall	S5522
Model 535P-PTW-DMC1	Single Wall	S5477
Model 535DWP-PTW-DMC1	Double Wall	S5523
Model 665P-PTW-DMC1	Single Wall	S5478
Model 665DWP-PTW-DMC1	Double Wall	S5524
Model 8120P-PTW-DMC1	Single Wall	S5479
Model812DWP-PTW-DMC1	Double Wall	S5525

*Note – Maximum temperature outlet set-point on digital recirculating valve is 160°F.

Flo-Rite-Temp [™] Instant	aneous Steam/Water H	eater							
Madal	Entering Water	Outlet Temperature							
Wouer	Temperature	120	130	140	160	180*			
	40	20	18	16	12	7			
415P-PTW-EMC1	50	20	20	17	13	7			
	60	-	20	19	14	7			
	40	45	39	34	26	16			
535P-PTW-DMC1	50	45	43	37	28	17			
	60	-	45	40	30	18			
	40	80	73	63	48	32			
665P-PTW-DMC1	50	80	80	68	51	33			
	60	-	80	75	55	35			
	40	145	145	120	95	59			
8120P-PTW-DMC1	50	145	145	134	102	72			
	60	-	145	145	115	90			

NOTE: All flow rates in gallons per minute and using 15 PSIG steam.

Flo-Rite-Temp® Instantaneous Steam/Water Heater

Recirculating Hot Water Systems

Parallel/Redundant Pre-Piped Tempered Water (PP-PTW)

Flo-Rite-Temp® Instantaneous Steam/Water Heater for Recirculating Hot Water Systems feature four heat exchanger options offered as pre-piped parallel tempered water packaged assemblies.

Flo-Rite-Temp[®] Pre-Piped (P-P) Parallel (P) Tempered Water (TW) Systems are fully assembled and include the following installation components:

- Steam Trap
- Air Vent
- Thermometers
- CIP connection port
- · Flow Control/Isolation Valves
- DRV 80 Digital ReCirculating Valve "The Brain" (DMC 1)

Ideal for both new construction and retrofit installation within an existing building infrastructure Flo-Rite-Temp® Parallel (P) Pre-Piped (P-P) Tempered Water (TW) Systems are designed to fit through a standard 32" doorway (Model 8120 36" doorway).

Armstrong Flo-Rite-Temp® Instantaneous Steam/Water Heater pre-piped packages are available in standard configurations per the specification matrix on page 26.

Customized Hot Water System Solutions are our specialty. Multiple orientations, configurations and options are available.

Hot Water System Solutions which include condensate recovery, circulating pumps, additional mixed water temperature controls/loops and varied other components can be application engineered specifically to meet the projects requirements.

For submittal drawing refer to:		
Model 415PP-PTW-EMC1	Single Wall	S5480
Model 415DWPP-PTW-EMC1	Double Wall	S5526
Model 535PP-PTW-DMC1	Single Wall	S5481
Model 535DWPP-PTW-DMC1	Double Wall	S5527
Model 665PP-PTW-DMC1	Single Wall	S5482
Model 665DWPP-PTW-DMC1	Double Wall	S5528
Model 8120PP-PTW-DMC1	Single Wall	S5483
Model 8120DWPP-PTW-DMC1	Double Wall	S5529

If unit is operated in parallel then double flow rate given for total available capacity.

Flo-Rite-Temp™ Instantaneous Steam/Water Heater											
Madal	Entering Water	Outlet Temperature									
Wouer	Temperature	120	130	140	160	180					
	40	20	18	16	12	7					
415PP-PTW-EMC1	50	20	20	17	13	7					
	60	-	20	19	14	7					
	40	45	39	34	26	16					
535PP-PTW-DMC1	50	45	43	37	28	17					
	60	-	45	40	30	18					
	40	80	73	63	48	32					
665PP-PTW-DMC1	50	80	80	68	51	33					
	60	-	80	75	55	35					
	40	145	145	120	95	59					
*8120PP-PTW-DMC1	50	145	145	134	102	72					
	60	-	145	145	115	90					

NOTE: All flow rates in gallons per minute and using 15 PSIG steam.

*NOTE: If a 8120PP-PTW-DMC1 is selected for parallel operation, a second DRV 80 is recommended to increase the flow rate.

Flo-Rite-Temp® Instantaneous Steam/Water Heater

Specification Matrix

Flo-Rite-Temp® water heaters are available in four base models each sized with a prefix that denotes the shell size in inches (4", 5", 6" and 8") and a suffix that denotes the flow rate at a 100°F temperature rise (15 gpm, 35 gpm, 65 gpm and 120 gpm).

Each Flo-Rite-Temp® model's heat exchanger is single wall construction as standard but is optionally available as a Double Wall (suffix DW).

Each Flo-Rite-Temp® model is supplied as a shell and tube style heat exchanger with integral mixing valve/head and is also available as a pre-piped "Packaged Solution" (suffix P-P).

Flo-Rite-Temp® Packaged Solutions are also available with a second heater (parallel, suffix PP-P) and third heater (triplex, suffix Trip) for increased flow capacity, redundant installation or both.

Flo-Rite-Temp® Packaged Solutions are supplied for either point of use "dead-leg" applications or can be factory piped for a recirculating hot water system in either a standard configuration with a thermostatic diverting valve (suffix R) or as a Tempered Water system (suffix TW).

Flo-Rite-Temp® Packaged Solutions designated as Tempered Water Systems (TW) include an on board Digital Mixing Center (suffix DMC) which features DRV 80 "The Big Brain®

Higher flow Flo-Rite-Temp® Packaged Solutions and Systems designed with built-in redundancy can include two DRV 80. The model code (DMC) always includes a trailing suffix which identifies the number of Digital Mixing Valves (DMC 1, DMC 2, etc.) The Digital Mixing Center can be assembled with a recirculation pump with a "2" in the model number following the DMC/(DMC 12 only).

Flo-Rite-Temp® Packaged Solutions fitted as DMC include a 4-20mA connection as standard on the DRV80. The 4-20mA connection provides the capability to access and transmit the water temperature output from the valves integral Mixed Outlet Water Sensor and allows Remote Set Point adjustment capability for "plug and play" system communication via PC, LAN or resident Building Automation System.

BrainScan® a Digital Hot Water Management System Console can be added by adding the suffix BrainScan with a hyphen. Flo-Rite-Temp® packaged systems fitted as DMC can connect BrainScan® directly to the serial port on the DRV 80.

When Integrated accordingly BrainScan® provides 3 levels of system interrogation options (see page 28) and is configured for most building automation systems which use BacNet[™], LonWorks[™] and ModBus protocols. BrainScan[®] also avails LAN and Web Browser connectivity options.

Flo-Rite-Temp® Instantaneous Steam/Water Heater

Digital Water Temperature Control

Flo-Rite-Temp® Pre-Piped (P-P) Single, Parallel (P) Recirculating (R) Single and Multiple Temperature Systems are available with a DRV 80 Digital Recirculating Valve. The DRV 80 "The Brain" is supplied pre-piped as an integral component to the Water Heater assembly in the form of a Digital Mixing Center (DMC).

Model DMC 1 features a single DRV 80 pre-piped and pressure tested complete with isolation valves, strainers, mixed return flow indicator, check valves, thermometers and an optionally selected system circulating pump for systems which experience diverse user draw-off from 0 to 150 GPM.

Remote Control, System Monitoring, System Interrogation and Data Logging

Model DMC 1 is provided as standard with an integral Mixed Outlet Water sensor and Remote Set Point Adjustment capability for "plug and play" system communication via PC, LAN or resident Building Automation System.

Model DMC1 offers an integral relay point for connection to a selected accessory component such as a pump on/ off switch, to activate/deactivate a solenoid or to enable an audible alarm etc.

Model DMC1 is supplied as standard with integral Hot Water & Cold Water/System Return Water sensors and a serial connection data port which enables communication to third party system hardware via an accessory component called BrainScan®.

BrainScan®

BrainScan® is an optionally selected Digital Hot Water Management System from Armstrong complete with custom configured software. BrainScan® connects to the integral serial connection data port on DRV 80 and enables a direct onward connection to Building Automation Systems which utilize BacNet[™], Lonworks[™] and ModBus protocols, a communication capability with other Building Automation Systems which connect via an RS485 port and an Ethernet port for Web access.

Operational Specifications

The enhanced accuracy possible with DRV80 digital technology, combined with its data input/output communication capability equals:

- Accurate control of blended water drawn from the system at a point of use typically within +/-2°F at draw off points a minimum of 5m downstream of mixing valve during consistent system demand periods
- Operational water pressure of 10 -150 psig
- Minimum valve inlet to outlet temperature differential requirement (system recirculation temperature loss) of 2°F

- · Automatic shutoff of hot water flow upon cold water inlet supply failure
- Automatic shutoff of hot water flow in the event of a power failure
- Maintain a consistent system "idling" temperature and control Temperature Creep without the use of a manual throttling device or balance valve.
- System shall not require a temperature activated pump shut-off device (aquastat).
- Programmable set point range of 100-160°F (37-71°C) plus full hot/full cold
- · Ability to thermally disinfect at recommended temperatures
- Programmable 1st level hi/lo temp alarm display
- Programmable temperature error level for safety shutdown

Technical Specifications

- 100-240 V Power supply (12 V DC output)
- 2 x 4-20 mA current loop interfaces: Input: Setpoint Selection
- **Output: Measured Blend Temperature** Relay output: Contacts
- Error Relay: Activated in alarm or error mode Serial Connection Data Port
- Stainless Steel Construction

DMC 1

Supplied as a pre-plumbed, pressure-tested and mounted to an enameled steel frame comprising:

- 1 ea: DRV 80 Digital Recirculation System Controller
- 3" inlet/outlet piping with flanged connections
- ٠ System isolation valves,
- Inlet strainers
- Mixed return flow indicator
- Check valves
- Thermometers

DMC 12

As above with system circulating pump.

Hot Water System Monitoring

BrainScan[™]

BrainScan™ is a Digital Hot Water Management System optionally supplied with DRV80 Digital Recirculating Valves and DRV80 based Digital Mixing Centers.

BrainScan™ is factory configured to engage with either a Local Area Network (LAN), a third party Building Automation System (BAS) or an Internet Service Provider (ISP) to enable the DRV80's integral monitoring features.

Standard BrainScan[™] configurations include hardware and software options which include on screen system graphics which are compatible with most standard Building Automation System open protocols.

All of the standard alarm conditions and error messages available through the DRV80 are also available through BrainScan[™]. BrainScan[™] is available in three (3) different configuration packages as described below:

BrainScan[™] 1

Includes remote hot water supply, cold/recirculation water supply and blended water outlet temperature readings. Also gives the ability to remotely change blended water outlet temperature setpoint. Included with all BrainScan™ options is the valve/system graphic.

BrainScan[™] 2

Provided as BrainScan[™] 1 with hot water supply, cold water supply and blended water outlet pressure transmitters.

BrainScan[™] 3

Provided as BrainScan[™] 2 with blended water outlet and recirculation return flow meters. These can be used to calculate water usage.

Technical Specifications

- BrainScan[™] utilizes the SoM-5282 System Module as the processing engine and uClinux as the operating system
- BrainScan[™] accommodates a socket for a protocol translator module that is capable of communicating with BacNet[™], LonWorks[™] and ModBus
- · Standard ethernet port available to bring system on to the internet via a secured HTTP network server
- · System displays "real time" values as well as stored data to be downloaded by the facility into their preferred program
- Data storage and exporting is done via XML formatted files, written every 15 minutes

Hot Water Flo-Rite

Hot Water System Monitoring

BrainScan™

Flo-Direct[®] Complete Thermal Exchange Gas Fired Water Heater

${\sf Flo-Direct}^{\ensuremath{\mathbb{R}}}$ Complete Thermal Exchange Gas Fired Water Heater

Armstrong Flo-Direct CTE gas fired water heaters offer a complete range of high efficiency, compact, all stainless steel water heaters which are remarkably dependable, simple in design and operation, and suitable for a wide variety of hot water applications.

The Flo-Direct CTE gas fired water heaters often deliver fuel savings as high as 30-60% when compared to steam/water heating systems. Standard operating capacities are between 1 million and 16 million BTU per hour.

With a small footprint, 99.7% or greater high heat value (110% low heat value) heat transfer efficiencies*, remarkable dependability, ease of maintenance, and the ability to operate well with poor water quality, Armstrong Flo-Direct CTE gas fired water heaters are the product of choice for companies seeking to achieve Energy Conservation Measure (ECM) and Reduced Carbon Footprint objectives.

Primary Markets include:

Food Process Industries

- Washdown
- Batch Production
- Vessel Filling
- Tank Cleaning
- Bottle Warming

Concrete Plants

• Pre-Heated Water for batch production

Space Heating

- Greenhouses Re-Circulated HW for general space heating
- Light Manufacturing/Warehouses Re-Circulated HW for general space heating

General Industry

· Boiler Make-Up Water

Customized Hot Water System Solutions are our specialty. Multiple orientations, configurations and options are available.

Hot Water System Solutions which include transfer pumps, storage tanks variable frequency drive (VFD) pump skidpackaged solutions, hose stations, circulating pumps, downstream digital water temperature controls/loops with BAS/ DDC interface along with a multitude of performance matched components can be application engineered specifically to meet the projects requirements.

Additionally, where appropriate, Armstrong can integrate engineering services, turn key installation, project management, system assessment and optimization along with energy conservation measure (ECM) capability through Armstrong Service Incorporated.

Flo-Direct Complete Thermal Exchange Gas-Fired Water Heaters deliver unrivaled Performance and Efficiency.

Incoming water is introduced into the top of the water heater through a series of calibrated dispersion nozzles. Cold water travels down through a bed of multifaceted stainless steel packing rings (Pall Rings) which break the water into smaller and smaller droplets.

A burner is mounted on top of the unit, firing downward through a centrally located flame tube. The flame tube is cooled by incoming cold water, and all of the fuel gasses are consumed within this flame tube. The design allows all combustion to take place within a dry and cool environment, and produces very low levels of nitrous oxide (NO) and carbon monoxide (CO).

Heat from the flame enters the lower chamber from the bottom of the flame tube, and travels slowly upward through the packing rings. Efficient heat transfer occurs as the descending water comes in contact with the rising hot gasses as both pass through the bed of packing rings in opposite directions.

This "rain" of hot water then falls into the lower chamber and is pumped out to a storage tank. Water temperatures up to 185°F are available within two minutes after the unit starts.

Outlet water temperature is set with a value controlling the incoming water flow. More incoming water results in cooler outlet water temperatures, and less incoming water produces hotter outlet water temperatures.

The products of combustion are vented out of the top of the unit, and this exhaust is typically within a few degrees of incoming water temperature.

Features

- CTE Compliant
- · Meets multiple global water quality standards
- · No internal moving parts
- Low-temperature exhaust
- 99.7% or greater high heat value efficiency
- Water treatment not required
- Stainless steel construction
- Takes up minimal floor space
- Ten year warranty on structure/two years on all other components

Engineered Solutions

Armstrong can provide integrated engineering, turnkey installation and project management services. Additionally, Armstrong can perform system assessments and optimizations and identify Energy Conservation Measures (ECMs).

Flo-Direct[®] Complete Thermal Exchange Gas Fired Water Heater

CTE Technology

Developed from direct contact water heating science which was first introduced more than two decades ago, Complete Thermal Exchange (CTE) technology has revolutionized high efficiency water heating methods. Today CTE enjoys a proven record and has rapidly become the new standard in high efficiency water heating and energy savings.

While traditional direct contact water heating can offer significant energy savings when compared to a conventional steam boiler system, the Armstrong Flo-Direct CTE gas fired water heater offers an unparalled, 99.7% high heat value (110% approx. low heat value) efficiency rating* throughout each phase of its operation cycle.

The sustained operational efficiency of Flo-Direct CTE gas fired water heaters creates the most energy efficient method of hot water production currently available.

No Scale Build-Up

The Flo-Direct CTE gas fired water heater's unique design prevents scale build-up because there are no "hot spots" internally or externally, and because calcium is prevented from completely falling out of suspension during operation. As a result, the mineral content of the influent water and the effluent water will be equal.

Armstrong Flo-Direct CTE gas fired water heaters achieve CTE Standards

The Flo-Direct CTE direct contact water heaters, meet five standards not available with the older designs and traditional methods of direct contact water heater technology:

- 1. CTE units maintain a minimum of 99.7% high heat value (110% approx. low heat value) efficiency in all modes of operation, not just under optimal conditions.
- CTE units have multiple thermal passes. Water and the combustion gasses (or heat from the combustion) repeatedly come in contact. This ensures that the maximum amount of heat or energy from combustion is transferred to the water.
- CTE units have a dry combustion chamber. This is vital to maintaining complete combustion at all times during operation.
- 4. CTE units maintain complete combustion at all times.
- CTE units must have an integral water quality integrity system. Operational procedures must be in place to ensure that effluent water quality is equal to the influent water quality.

Complete Combustion = Complete Water Quality

While many traditional-method direct contact water heaters spray water directly on the flame – sometimes called "flame quenching" – Flo-Direct, using CTE technology, avoids this process altogether. According to the Industrial Heating Equipment Association's "Combustion Technology Manual," flame quenching promotes incomplete combustion, and produces alcohols, aldehyde, formic acid, higher order acids, carbon monoxide, as well as carbon dioxide and water vapor. With CTE technology, Flo-Direct maintains 99.7% high heat value* (110% approx. low heat value) combustion efficiency, while maintaining water quality at all times. *See page 530 for high heat value (HHV) and low heat value (LHV) explanation.

Global Water Quality Standards

Flo-Direct Complete Thermal Exchange (CTE) Gas Fired Water Heating Technology significantly limits the effluent water chemical additives typically attributed to other process water heating systems.

Our unique CTE water heating process deaerates the water significantly. Independent third party testing has verified CTE technology can actually remove some chemical constituents from the influent water.

NSF test results show that the effluent water from a Flo-Direct CTE Gas Fired Water Heater meets US, European Union and PRC bottled drinking water standards* and has been tested and documented as fully compliant with:

- USFDA The United States Food and Drug Administration, Code of Federal Regulations Bottled Water Standard: Chapter I, Title 21, Part 165, Subpart B, Section 165.110.
- EU-TRW The European Union Directives(s) Treated Waters: 98/83/EC.
- * Peoples Republic of China Standards for Drinking Water: GB5749-2006
- *Statement presumes influent water also meets listed standards.

Flo-Direct[®] Complete Thermal Exchange Gas Fired Water Heater

AFD = Armstrong Flo-Direct (e.g., 1000, 5000)

Specifications	
Gas Supply Pressure	2 - 6 psig / .1441 bar
Dynamic Water Supply Pressure	Constant water pressure (+/-5 psi variation maximum) within a minimum of 30 psig/2 bar and a maximum of 100 psig/6.8 bar range is required for optimum performance.
Maximum Inlet Water Temperature	120°F (49°C)
Minimum Inlet Water Temperature	32°F (0°C)
Maximum Effective Outlet Temperature	185°F (85°C)

Standard Sizing Formulas $\frac{\text{gpm } x \ \Delta T = \text{AFD Model}}{2}$	Standard Formula Key gpm = Gallons per Minute
– (AFD Model) x 2 = gpm	ΔT = Temperature rise (°F)
	AFD = Armstrong Flo-Direct
(AFD Model) x $2 = \Delta T$ gpm	(e.g., 1000, 5000)
Use the Flo-Direct sizing tool at ar	mstronginternational.com/flo-direct
Metric Sizing Formulas	Metric Formula Key
$\frac{\text{lpm}}{42} \times \Delta T = \text{AFD Model}$	Ipm = Liters per Minute
(AFD Model) x 4.2 = lpm	ΔT = Temperature rise (°C)

Use the Flo-Direct sizing tool at armstronginternational.eu/flo-direct

ΔT

(AFD Model) x $4.2 = \Delta T$ lpm

Materials	
Upper and Lower Canister	Type 304 Stainless Steel #10 Glass Finish
Inlet Gas Train Piping	Malleable Iron with Standard Yellow Finish
Inlet Water Train Piping	Copper with Brass/Bronze Fittings
Spray Ring	Type 304/316 Stainless Steel
Canister Gaskets	Warco White
Flame Tube	Type 304 Stainless Steel
Pall Rings	Type 304 Stainless Steel

Optional/Custom materials of construction available upon request.

For fully detailed certified drawing, refer to CDY #1088.

Flo-Direct Dimensions and Weights																		
	Connections*					Dimensions									Woight*			
Model	1		2		A		В		C		D		E		weigint		btu/hr	kW
	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	lb	kg		
1000	1	25	1	25	95	2413	71	1803	39	991	24	610	8	203	825	375	1,000,000	292
1500	1	25	1	25	97	2464	73	1854	41	1041	26	660	8	203	850	386	1,500,000	439
2000	1-1/2	40	1-1/2	40	100	2540	76	1930	44	1118	30	762	10-3/4	273	1500	680	2,000,000	585
3000	2	50	1-1/2	40	100	2540	76	1930	44	1118	36	914	12	305	1600	725	3,000,000	878
4000	2	50	2	50	104	2642	80	2032	48	1214	40	1016	14	356	2000	907	4,000,000	1171
5000	2-1/2	65	2	50	127	3226	97	2464	65	1651	44	1118	16	406	2500	1136	5,000,000	1464
6000	3	80	2	50	132	3353	100	2540	70	1778	47	1194	18	457	2900	1316	6,000,000	1757
7000	3	80	2	50	139	3531	107	2718	77	1956	50	1270	18	457	3200	1455	7,000,000	2050
8000	3	80	2	50	139	3531	107	2718	77	1956	50	1270	18	457	3200	1455	8,000,000	2342
9000	3	80	2	50	169	4293	139	3531	107	2718	60	1524	20	508	5000	2273	9,000,000	2635
10000	3	80	2	50	181	4597	151	3835	119	3023	61	1549	20	508	5200	2405	10,000,000	2928
11000	4	100	3	80	181	4597	151	3835	119	3023	61	1549	22	559	5500	2495	11,000,000	3221
12000	4	100	3	80	181	4597	151	3835	119	3023	61	1549	22	559	5500	2495	12,000,000	3514
13000	4	100	3	80	192	4877	161	4089	129	3277	70	1778	24	610	7000	3175	13,000,000	3807
14000	4	100	3	80	192	4877	161	4089	129	3277	70	1778	24	610	7000	3175	14,000,000	4099
15000	4	100	3	80	192	4877	161	4089	129	3277	70	1778	24	610	7000	3175	15,000,000	4392
16000	4	100	3	80	216	5486	185	4699	153	3886	70	1778	24	610	7500	3402	16,000,000	4685

<= Return

Hose

Stations

∋∍®

Hot Water Systems

Flo-Direct Complete Thermal Exchange Gas Fired Water Heaters deliver a wide variety of hot water solutions.

Non-Recirculating Hot Water Systems

Non-recirculating hot water systems are suitable for installations which experience frequent demand or processes which can accommodate the evacuation of a dead-leg before receiving heater set point water temperatures.

Recirculating Hot Water Systems

Recirculating hot water systems are suitable for installations which experience diverse draw-off or processes which cannot accommodate the evacuation of a dead-leg before receiving heater set point water temperatures.

Note: Recirculating hot water systems which idle at zero demand for long periods or experience a radiant heat loss during recirculation may require an immersion type heater in the storage tank.

Hot Water Systems

High Heat Value vs. Low Heat Value

High Heat Value = Total Energy Content of Fuel

Low Heat Value = Total Heat of Hot Water or Steam Generated by the boiler

High Heat Value (HHV) is the method for evaluating boiler efficiency typically used in the USA. The efficiency is calculated by comparing the total heat content (enthalpy) of the hot water or steam generated by a boiler with the total potential energy of the input fuel.

As a result efficiency measured using HHV will not exceed 100%.

Low Heat Value (LHV) is the method for evaluating boiler efficiency typically used in Europe. A LHV calculation includes recoverable heat.

Combustion exhaust contains hot water vapor which is created by both the evaporation of the water contained in the input fuel and the chemical reaction in the combustion process. Newer technologies such as "condensing" type water heaters and boilers can capture the "latent" heat.

As a result efficiency measured using LHV can, in some cases, exceed 100%.

When developing unit and system efficiency comparisons it is important to first determine whether the stated heat transfer efficiency is measured in HHV or LHV.

Plate Heat Exchanger Packages

Armstrong can provide a full range of either brazed plate or gasketted plate type heat exchangers for all hot water generation applications. These can be supplied either as stand alone units or assembled in our own fabrication workshop as skid mounted packages inclusive of all valves and control equipment. Please **CONTACT US** for further technical assistance.

Gasketed Plate Heat Exchangers are made up of a series of assembled corrugated plates. Between the plates there are two channels with a cold and warm medium (EG: water, steam etc).

These pass on each side of the plates and in opposite direction to each other. Our product portfolio includes various types of plate heat exchangers and freshwater distillers such as:

- Gasketed
- Semi-welded and fully welded
- Brazed
- Free Flow Plate and Shell
- Shell and Tube
- Fresh Water Distillers (FWD)

MODEL HAT IN-LINE TEMPERATURE CONTROL

FREEZE PROBLEMS? CALL THE GURU 1-877-FRZ-VALVE

DESIGN FEATURES

- Stainless steel body, fittings, spring and plug
- Corrosion resistant Long service life
- Most narrow temperature band available
- Compact, low mass Fast response
- Ram-type plug for reliable tight shutoff
- Downstream actuator for greater sensitivity
- Sensitive to temperature only
- Unaffected by pressure variations
- Easy installation with pipe wrench

ADVANTAGES

These valves save space and are easy and inexpensive to install. The unique ram-type plug & seat provide reliable, tight shut off longer than any other design available. HAT valves are covered with our standard 36 month prorated warranty & service policy to further reduce maintenance cost. Since HAT valves discharge condensate well below steam temperature, live steam losses are eliminated. For heating of temperature sensitive instruments or process fluids, the reduced temperature available for tracing simplifies operations and eliminates overheating problems. For other heat transfer fluids, HAT valves maintain a constant discharge temperature, thus providing benefits of accurate process temperature control and improved efficiency.

OPERATION

The **HAT** valve responds only to temperature. After condensate forms and cools to near the setpoint, the **HAT** valve modulates the flow to maintain a constant condensate discharge temperature. **HAT** valves are wide open at start-up for rapid venting and initial heat-up. **HAT** valves are self-draining after shutdown, to eliminate freeze damage.

APPLICATIONS

Therm-Omega-Tech **HAT** (Heat Actuated Trap) valves are commonly used as sub-cooling steam traps. **HAT** valves are ideal for replacing conventional steam straps on winterization tracing, instrument tracing, condensate return system freeze protection, tracing for processes under 150°F (65°C), and other applications requiring in-line flow control based on temperature. **HAT** valves are also suitable for controlling discharge temperature in fluid tracing systems.

HAT (REV: 07/11/2007)

MODEL HAT

FIELD SERVICEABLE IN-LINE TEMPERATURE CONTROL VALVE

PARTS AND MATERIALS

SPECIFICATIONS

Size	[D	ļ	L	WEI	GHT	Port	č	Maximum	Maximum	
(NP TF)	in	mm	in	mm	Lb	Kg	Size	Cv	Pressure	Temperature	
1/2"	1.25	32	4.5	114	0.9	0.41	С	1.3	200 PSIG	300°F	
3/4"	1.5	38	5.5	140	1.4	0.64	D	2	(13.8 BAR)	(149°C)	

TO ORDER SPECIFY: (see note 1 for standard temperatures)

Part	Number	Description		
EPDM Seals	Viton Seals	Description		
134 - 302100 - XXX	134 - 302200 - XXX	1/2" HAT C-Port		
134 - 312100 - XXX	134 - 312200 - XXX	1/2" HAT C-Port, all SS		
135 - 502100 - XXX	135 - 502200 - XXX	3/4" HAT D-Port		
135 - 512100 - XXX	135 - 512200 - XXX	3/4" HAT D-Port, all SS		

NOTES:

1. Standard open temperatures "XXX" available: 040F, 050F, 055F, 060F, 065F, 075F, 085F, 090F, 095F, 100F, 105F, 110F, 125F, 130F, 140F, 150F, 155F, 160F, 170F, 180F, 190F and 200F. Note: Closing temperature is typically 10F above opening temperature

2. Seal Material compatability:

a. EPDM - air (to 300F), water, steam, ketones and synthetic hydraulic oils.

b.Viton - air (to 450F), fuel, oil, gas, petroleum-based hydrulic oils.

3. Flow direction is reversed in valves that close over 200°F

4. A#20 mesh stainer is recommended for use with all port sizes

Therm-Omega-Tech, Inc. reserves the right to change the design and specifications without notice

Boiler Controls & Waste Heat Recovery

IGEMA BOILER LEVEL & TDS CONTROLS

IGEMA offers boiler level and TDS control products of the highest quality standard, being certified to ISO 9001.

Made in Germany, *IGEMA* products are manufactured in compliance with the European Pressure Directive 97/23, and the current standards for steam boiler operation, such as TRD – German Technical Regulations for Steam Boilers, AD 2000 – Workgroup for Pressure Vessels, ASME boiler codes etc.

Type Approvals have been obtained from virtually all significant international classification societies, such as TUV Rheinland, German Lloyd, Det Norske Veritas, Lloyds Register to name a few.

PROBE-TYPE LEVEL CONTROLS & ALARMS FOR ATTENDED AND UNATTENDED BOILERS

UNATTENDED BOILERS – Self-Checking Low Level Alarm

The combination of probe EL 30 and controller SMLC1 represents a High Integrity Water Level Limiter of Special Design.

Featuring an insulated compensating electrode in addition to the measuring tip, these probes are designed to respond to any conceivable failure condition, such as scaling due to boiler water impurities, open or short circuit of internal and external wiring or leakage of boiler water.

The SMLC1 controller checks system integrity continuously. It incorporates a cyclic self-test function. If it fails to react to a simulated fault, the burner safety circuit is activated.

Similar models are available for High Level Alarm and for boiler pressure to 200 bar.

UNATTENDED BOILERS – Self-Checking Low Level Alarm and Feed Pump On-Off Control

The probe MS015A combines a High Integrity Water Level Limiter of Special Design with two additional standard design probes.

The self-checking SMLC1 controller serves as the Water Level Limiter, while the DHR1 controller switches the feed pump on and off as signalled by the additional standard probes.

This represents a compact and economical system, since only a single probe entry into the boiler shell is required for both self-checking low level alarm and feed pump on-off control.

ATTENDED BOILERS – Standard Low Level Alarm

The combination of EL 41 probe and controller LMC1 are used for applications where there is no requirement for Self-Checking.

This high quality equipment is designed to comply with the relevant European boiler codes such as TRD and Water Level 2000.

Alternative probes for high level alarm and for boiler pressures to 200 bar are available.

ATTENDED BOILERS – Standard Low Level Alarm with Feed Pump On-Off Control and High Level Alarm

The multiple probe EL 914 is used for many applications requiring up to 4 individual switching or alarm points.

Combined with the DHR1 feed pump on/off controller with high level alarm, and an LMC1 controller for low level alarm, this gives an example of the versatility of the EL 914 multiple probe.

This probe is also available with 2 points (EL 912) or 3 points (EL 913).

MODULATING BOILER LEVEL CONTROLS

The basic **IGEMA** modulating control system comprises a capacitance probe EC 6, and a DLT 1 level transmitter.

This combination provides for a 4-20mA output signal proportional to the desired level control range.

The PID controller KS 90 or KS 40 accepts the 4-20mA signal and provides an appropriate output to the electric actuator of the feedwater control valve.

This relatively simple system has been found to provide excellent control for the majority of boilers, usually with a bypass orifice to ensure feed pump minimum flow requirements.

For situations with extremely rapid load swings, it is possible to add a feed forward signal from a steam flow meter, and/or feed back from a feed water flow signal to compensate for the effects of boiler water level sag or swell.

BOILER BLOWDOWN CONTROLS

INTERMITTENT BLOWDOWN FOR SEDIMENT AND SLUDGE CONTROL

If continuous blowdown is employed for TDS control, the requirement for intermittent blowdown to remove settled sludge and other solids from the bottom of the boiler drum can be reduced to a few seconds per day.

IGEMA bottom blowdown valves are available for pressures to 50 bar.

Control can be manual or via timercontrolled pneumatic actuator.

CONTINUOUS BLOWDOWN FOR TDS (Total Dissolved Solids) CONTROL

Boiler water conductivity is closely related to TDS. An appropriate IGEMA conductivity electrode measures conductivity, which is amplified by the FAR1 blowdown setpoint controller. The output signal from the FAR1 is applied to the electric actuator of the H-ASV2 continuous blowdown valve.

This system not only ensures that boiler water TDS stays within allowable limits. It also saves energy by limiting the amount of heat and treated water discharged from a boiler to the absolute minimum.

BOILER BLOWDOWN & HEAT RECOVERY

OTHER IGEMA EQUIPMENT

Illuminated boiler level gauges – any application to 200 bar

Float-Type level controls for boiler pressure to 200 bar.

Also for Self-Checking Applications

Remote Level Indication

Boiler Conductivity Probes

Aspects you should consider:

- Requirements for efficient boiler blowdown.
- Manual or Automatic TDS control, intermittent or continuous.
- Benefits of continuous blowdown.
- Calculation of blowdown rate.
- Blowdown heat recovery.
- Flash steam recovery.
- Residual sensible heat recovery.
- Calculation of heat recovery potential and payback period.
- Integration with feed tank or deaerator.

Boiler Blowdown has two distinct separate purposes:

1. To ensure that the concentration of total **dissolved** solids (TDS) is kept below a certain maximum allowable level.

2. To prevent the accumulation of **suspended** solids that collect at the bottom of the boiler drum.

The TDS concentration gradually increases due to evaporation. To ensure steady conditions, blowdown for TDS control should be continuous.

Suspended solids removal from the bottom of the boiler needs only a puff of blowdown for a few seconds once or twice per shift.

Feedwater = Condensate Return + Make-Up water.

Feedwater has to be treated to inhibit corrosion and scale formation.

Standard industrial boiler water treatment: Base Exchange water softening + Chemical dosing + Blowdown to limit TDS to a safe level. This is managed by a chemical specialist.

Excessive TDS causes scaling, foaming and carry-over of boiler water.

Excessive blowdown causes higher energy and treated water costs.

Good blowdown control results in economical boiler operation. Good blowdown control is essential for all aspects of boiler water treatment.

THEREFORE THE CHEMICAL SPECIALIST IS VITALLY INTERESTED IN PROPER BLOWDOWN PROCEDURES.

WHAT DO THE CHEMICAL COMPANIES SAY?

(extract from a boiler water treatment company info sheet)

The main purpose of blowdown is to maintain the solids content of the boiler water within prescribed limits. This would be under normal steaming conditions. However, in the event contamination is introduced in the boiler, high continuous and manual blowdown rates are used to reduce the contamination as quickly as possible.

Bottom Blowdown

By definition, bottom blowdown is intermittent and designed to remove sludge from the areas of the boiler where it settles. The frequency of bottom blowdown is a function of experience and plant operation. Bottom blowdown can be accomplished manually or electronically using automatic blowdown controllers.

Continuous Blowdown

Frequently used in conjunction with manual blowdown, continuous blowdown constantly removes concentrated water from the boiler. By design, it is in the area of highest boiler water concentration. This point is determined by the design of the boiler and is generally the area of greatest steam release. With modern boilers having high circulation, this point can be practically anywhere.

Continuous blowdown allows for excellent control over boiler water solids. In addition, it can remove significant levels of suspended solids. Another advantage is that the continuous blowdown can be passed through heat recovery equipment.

TDS CONTROL - THE CASE FOR AUTOMATIC CONTINUOUS BLOWDOWN

ONLY INTERMITTENT BLOWDOWN The boiler water TDS falls after each blowdown, then gradually increases over time. The average TDS is therefore well below the maximum TDS allowable, consequently wasting heat and water.

MANUAL CONTINUOUS BLOWDOWN The constant blowdown rate keeps the average TDS much closer to the maximum. However, TDS still varies in line with changing operating conditions and boiler load variations.

AUTOMATIC CONTINUOUS BLOWDOWN Operating changes can be compensated for by continuously measuring boiler TDS and controlling the blowdown rate. The average TDS is now practically identical to the maximum allowable, and the amount of blowdown is reduced to the minimum.

CALCULATION OF CONTINUOUS BLOWDOWN RATE

Continuous blowdown and automatic TDS control ensures:

Least amount of heat loss.

Least amount of treated water loss.

Stable chemistry inside boiler.

No upsets due to foaming or carry-over.

Heat recovery can be considered.

Blowdown rate = $(F / B - F) \times Steam Rate$

F = TDS feedwater B = TDS boiler water

TDS feedwater is the sum of TDS make-up water, percentage of condensate return and TDS due to treatment chemicals. TDS boiler water is the desired maximum TDS in the boiler.

SAVINGS DUE TO AUTOMATIC TDS CONTROL

Example for 5 t/h, 10 bar watertube boiler, 6000 hours/year, cost of fuel \$ 10/GJ, cost of treated feedwater \$ 2/kL: Blowdown water heat content = 782 kJ/kg at 10 barg (sensible heat boiler water). TDS of feedwater = 150 ppm Max. allowable TDS = 2500 ppm Actual average TDS with intermittent blowdown to ensure the max. allowed TDS is not exceeded = 1500 ppm Blowdown rate = F/B-F x 5000 kg/h For intermittent blowdown = 150/1500-150 x 5000 kg/h = 555 kg/h Heat loss = 555 kg/h x 782 kJ/kg = 0.43 GJ/h x \$ 10/GJ x 6000 h/y Heat loss cost = \$ 25,800/year For continuous blowdown = 150/2500-150 x 5000 kg/h = 319 kg/h Heat loss = 319 kg/h x 782 kJ/kg = 0.25 GJ/h x \$ 10/GJ x 6000 h/y Heat loss cost = \$ 15,000/year

SAVING DUE TO AUTO. BLOWDOWN = $\frac{10,800 / YEAR}{10,800 / YEAR}$ There is also a saving of treated water cost of 1416 kL/y = $\frac{12,832 / YEAR}{10,800 / YEAR}$

CONTINUOUS BLOWDOWN HEAT RECOVERY

SAVINGS DUE TO FLASH STEAM RECOVERY

Example for 5 t/h, 10 bar watertube boiler, 6000 hours/year, cost of fuel\$ 10/GJ:

Flash Steam = Blowdown flow 319 kg/h x ($h_{f1} - h_{f2} / h_{fg2}$) Sensible heat water before expansion $h_{f1} = 782$ kJ/kg at 10 barg. Sensible heat water after expansion $h_{f2} = 419$ kJ/kg at 0 barg. Latent heat steam after expansion $h_{fg2} = 2257$ kJ/kg at 0 barg. Sensible heat make-up water $h_{f3} = 104$ kJ/kg at 25° C. lash steam= 319 kg/h x (782 - 419/2257) = 51.3 kg/h x 2257 kJ/kg= 0.116 GJ/h saved ensible heat recovery due to flash steam condensation in feed tank: lash steam x ($h_{f2} - h_{f3}$) = 51.3 kg/h x (419 - 104) = 0.016 GJ/h saved

SAVINGS DUE TO RESIDUAL BLOWDOWN RECOVERY

Example for 5 t/h, 10 bar watertube boiler, 6000 hours/year, cost of fuel \$ 10/GJ:

Residual Blowdown = Blowdown 319 kg/h – Flash Steam 51.3 kg/h = 267.7 kg/h Residual Blowdown Recovery = 267.7 kg/h x Δt x spec. heat of water $\Delta t = 100 - 25 = 75^{\circ}$ C, spec. heat of water = 4.19 kJ/kg°C = 267.7 kg/h x 75°C x 4.19 kJ/kg°C = 0.084 GJ/h saved

Residual Blowdown Recovery through Plate Heat Exchanger = 0.084 x \$ 10/GJ x 6000 h/y = \$ 5040/year

AUTOMATIC TDS CONTROL & HEAT RECOVERY SUMMARY

Example for 5 t/h, 10 bar watertube boiler, 6000 hours/year, cost of fuel \$ 10/GJ, cost of treated feedwater \$ 2/kL:

FUEL COST SAVINGS

DUE TO AUTO. BLOWDOWN DUE TO FLASH STEAM DUE TO RESIDUAL BLOWDOWN

= \$ 10,800 /year = \$ 7,920/year NN <u>= \$ 5,040/year</u> <u>SUB-TOTAL = \$ 23,760/YEAR</u>

WATER COST SAVINGS

DUE TO LOWER BLOWDOWN RATE WITH AUTOMATIC TDS CONTROL DUE TO FLASH STEAM CON-DENSING IN FEED TANK

= \$ 2,832/year

TANK <u>= \$ 616/year</u> <u>SUB-TOTAL = \$ 3,448/YEAR</u> TOTAL SAVINGS \$ 27,208/YEAR Equipment cost including installation ~ \$ 20,000 Simple pay-back period ~ 7.5 months

INTEGRATION into boiler house

INTEGRATION WITH FEED TANK

INTEGRATION WITH DEAERATOR

SECTION

ecoFLUE

MODULAR FLUE GAS HEAT RECOVERY

for Steam Boilers, Hot Water Heaters and Dryers

Without flue gas heat recovery, about 20% of the natural gas input to boilers, dryers etc. is wasted through the flue to atmosphere. This presents an excellent opportunity for significant fuel cost and

energy savings, as well as reducing the carbon footprint of the facility.

The *ecoFLUE* creates hot water from otherwise wasted flue gas heat, up to about 85 °C.

Modular design of the *ecoFLUE* matches the available heat recovery to the available cool water heat sink.

A single module is suitable for a nominal boiler capacity of 100 kW. Additional modules are simply stacked together for larger boiler or dryer capacities.

The heart of the *ecoFLUE* is a multi-tiered spiral coil of flexible stainless steel tubing, which is inherently suitable for absorbing thermal expansion and contraction.

Corrugated flexible tubing has approx. twice the surface area of plain pipe, which, together with the spiral geometry, translates into a very compact heat exchanger.

Conventional finned tube economiser coils use dissimilar metals for fins and tubes, which are subject to corrosion and mechanical issues. Flexible tubes for our spiral coils are 304 or 316 stainless steel.

The shell of the *ecoFLUE* is also 304 stainless steel, therefore the entire unit can withstand the corrosive nature of flue gas condensate.

If a sufficiently large heat sink is available in the form of cold water <30 °C, we strongly recommend using the *ecoFLUE* as a flue gas condenser, since a large proportion of energy in the flue gas is in the form of latent heat.

Test pressure for the flexible stainless steel tubing is 1500 kPag (215 psig).

Burst pressure is 20 000 kPag (2900 psig).

However, the recommended relief valve setting is 400 kPag (60 psig) to ensure long life under the most arduous conditions.

The flue gas temperature limit for the standard *ecoFLUE* is 300 °C.

For condensing applications, a 2-zone recovery system is usually most efficient, to generate hot water at say 50 and 85 °C.

In many situations, the hot water outlet from the *ecoFLUE* is directed to an insulated buffer storage tank, especially when the boiler is on/off controlled.

To prevent a steam pressure from being generated inside the *ecoFLUE* coils, a pressure relief valve is required at the hot water outlet.

Many control options are possible to integrate the *ecoFLUE* into an existing boiler system.

The *ecoFLUE* is suitable for use with most forced draft burners which can tolerate an additional pressure drop of < 75 Pa (0.3" H₂O).

A draft inducer is available for installations with atmospheric burners.

Stacked heat exchanger sections shown connected in parallel. Connection in series is also possible.

The straightforward layout and compact size of the *ecoFLUE* makes installation an easy task.

Essentially, the *ecoFLUE* replaces a short length of flue duct.

Installation can be into either vertical, horizontal or inclined flue ducts.

The actual flue connections are tailored to suit each individual plant.

Larger *ecoFLUE* units than the standard 100 kW modules can be provided to special order.

CONTACT US TO CHECK OUT THE FUEL COST SAVINGS FOR YOUR PLANT TODAY!

The following graph illustrates the savings potential for heat recovery from the *ecoFLUE*.

Flue gas (at 200 °C for this example) flows through the *ecoFLUE*, and cool water flows through the heat exchange coils, absorbing heat from flue gas. Until the flue gas temperature reaches about 57 °C, this heat reduction follows the straight inclined line of the graph. This represents Sensible Heat recovery.

At about 57 °C the water vapour dewpoint is reached, and water will now start to condense out of the flue gas. The heat of condensation (Latent Heat) which had to be added in the boiler is now released.

The start of condensation can be observed by the sharp rise in the Latent Heat Recovery Line. It can also be seen that just a small reduction of flue gas temperature in the condensing region results in a significant increase in heat recovery potential.

For this reason the coldest water available in your plant should be used as the heat sink for flue gas heat recovery.

Effectively, the ecoFLUE converts any boiler into a modern condensing boiler.

Contact us for a heat recovery graph and energy savings calculation for your particular installation.

Humidification

SECTION

9

Humidification Selection Guide

Table 4-1. Armst	rong Humidific	ation Selectio	n Guide						
	Cent	ral Steam Avai	lable			Centra	I Steam Not	Available	
	No Chemical Concern with Plant Steam	Concern with Chemicals <800 lb/hr Capacity	Concern with Chemicals >800 lb/hr Capacity	Steam From DI Source	Hard Water Used. Minimal Maintenance.	Tap Water Used. Price More Critical Than Performance	DI Water Used (Electrical Units)	Gas Preferred. Tap Water or DI <475 pph capacity. Non- critical control.	Low Maintenance. Low Operating Costs. Evaporative cooling desired.
Air Handling System Application w/Critical Vapor Trail	С	D/L	E/C	С	F/L	G/L	F/L	H/L	_
Air Handling System Application w/Non-Critical Vapor Trail	A/J	D/K/O	E/A/J	B/J	F/K/O	G/K/O	F/K/0	H/K/0	I
Direct Area Discharge	A/M	D/M	E/A/M	B/M	F/M	G/M	F/M	H/M	I

Humidifier Type Key

- A. Series 9000 Direct Steam Injection Humidifier
- B. Series 1000 Direct Steam Injection Humidifier
- C. HumidiPack/HumidiPack Plus/HumidiPack CF System w/Control Valve, Trap(s), Strainer
- D. Series CS-10 Steam-to-Steam Humidifier
- E. Armstrong Unfired Steam Generator
- F. Series HC-6000 HumidiClean Electronic Humidifier
- G. Series EHU-700 Electrode Type Electronic Humidifier
- H. Gas Fired HumidiClean
- I. Armstrong Cool-Fog

Critical Vapor Trail includes requirements <3 feet

Dispersion Type

- J. SS Jacketed Manifold or aluminum SteamStik[™] jacketed manifolds
- K. SS Non-Jacketed Dispersion Tube
- L. HumidiPack Distribution Panel (Only)
- M. Fan Type Dispersion
- N. Venturi Nozzle Type Dispersion
- O. Steam Jacketed Dispersion Tube (SJDT)

SECTION

Humidification Plays an Essential Role

Although humidity is invisible to our eyes, we can easily observe its effects. In human terms, we are more comfortable and more efficient with proper humidification. In business and industrial environments, the performance of equipment and materials is enhanced by effectively applying humidity control.

Maintaining indoor air quality through humidity management can lower energy costs, increase productivity, save labor and maintenance costs, and ensure product quality. In short, humidification can provide a better environment and improve the quality of life and work.

Armstrong has been sharing know-how in humidification application since 1938. Through the design, manufacturing, and application of humidification equipment Armstrong has led the way to countless savings in energy, time and money. Armstrong also provides humidification sizing and selection software, videotapes, and other educational materials to aid in humidification equipment selection, sizing, installation, and maintenance.

Armstrong offers this updated Humidification Engineering section as a problem-solving, educational aid for those involved with the design, installation, and maintenance of environmental control systems in all types of buildings. In addition, you may request a free copy of Armstrong's Humid-A-ware[™] Humidification Sizing and Selection Software for step-by-step sizing of your own installation. It can also be downloaded by accessing www.armstrong-intl.com.

Your specific humidification questions can be answered by your Armstrong Representative. Additional support from Armstrong International humidification specialists is available to assist with difficult or unusual applications.

Controlled humidification helps protect humidity-sensitive materials, personnel, delicate machinery, and equipment. Beyond the important issues of comfort and process control, humidity control can help safeguard against explosive atmospheres. You can't afford NOT to humidify. And the best way to protect your investment is through proven humidification strategies and solutions pioneered by Armstrong.

Inside the Humidification Engineering Section...

Why Humidification is Important How Humidity Affects Materials

Determining Humidity Requirements of Materials

How Psychometrics Help in Humidification

How Humidifiers Work

Considerations in Selecting Steam Humidifiers

Basic Application Principles of Steam Humidifiers

Sizing Considerations of Steam Humidifiers

Steam Humidifiers in Central Systems

Installation Tips

Application of Unit Humidifiers for Direct Discharge

Considerations in Selection of Fogging Systems

References

ASHRAE Handbook, 2000 Systems and Equipment.

ASHRAE Handbook, 2002 Fundamentals.

ASHRAE Handbook, 1999 HVAC Applications.

IBM Installation Planning Manual, April, 1973.

Obert, Edward F. Thermodynamics, 1948.

Static Electricity, National Fire Protection Association. 1941. U.S. National Bureau of Standards.

IMPORTANT: This section is intended to summarize general principles of installation and operation. Actual installation and operation should be performed only by experienced personnel. Selection or installation should always be accompanied by competent technical assistance or advice. This data should never be used as a substitute for such technical advice or assistance. We encourage you to contact Armstrong or its local representative for further details.

Why Humidification is Important

Glossary

Relative Humidity(RH):

The ratio of the vapor pressure (or mole fraction) of water vapor in the air to the vapor pressure (or mole fraction) of saturated air at the same dry-bulb temperature and pressure.

Sensible Heat:

Heat that when added to or taken away from a substance causes a change in temperature or, in other words, is "sensed" by a thermometer. Measured in Btu.

Latent Heat:

Heat that when added to or taken away from a substance causes or accompanies a phase change for that substance. This heat does not register on a thermometer, hence its name "latent" or hidden. Measured in Btu.

Dew Point:

The temperature at which condensation occurs (100%RH) when air is cooled at a constant pressure without adding or taking away water vapor.

Evaporative Cooling:

A process in which liquid water is evaporated into air. The liquid absorbs the heat necessary for the evaporation process from the air, thus, there is a reduction in air temperature and an increase in the actual water vapor content of the air.

Enthalpy:

Also called heat content, this is the sum of the internal energy and the product of the volume times the pressure. Measured in Btu/lb.

Hygroscopic Materials:

Materials capable of absorbing or giving up moisture.

Phase:

The states of existence for a substance, solid, liquid, or gas (vapor). Humidification is simply the addition of water to air. However, humidity exerts a powerful influence on environmental and physiological factors. Improper humidity levels (either too high or too low) can cause discomfort for people, and can damage many kinds of equipment and materials. Conversely, the proper type of humidification equipment and controls can help you achieve effective, economical, and trouble-free control of humidity.

As we consider the importance of humidity among other environmental factors—temperature, cleanliness, air movement, and thermal radiation—it is important to remember that humidity is perhaps the least evident to human perception. Most of us will recognize and react more quickly to temperature changes, odors or heavy dust in the air, drafts, or radiant heat. Since relative humidity interrelates with these variables, it becomes a vital ingredient in total environmental control.

70°F

80,550 Grains

Humidity and Temperature

Humidity is water vapor or moisture content always present in the air. Humidity is definable as an absolute measure: the amount of water vapor in a unit of air. But this measure of humidity does not indicate how dry or damp the air is. This can only be done by computing the ratio of the actual partial vapor pressure to the saturated partial vapor pressure at the same temperature. This is relative humidity, expressed by the formula:

$$\mathsf{RH} = \frac{\mathsf{vp}_a}{\mathsf{vp}_s} \mid \mathsf{t}$$

 $\begin{array}{l} vp_a = actual \ vapor \ pressure \\ vp_s = vapor \ pressure \ at \ saturation \\ t = dry-bulb \ temperature \end{array}$

For practical purposes, at temperatures and pressures normally encountered in building systems, relative humidity is considered as the amount of water vapor in the air compared to the amount the air can hold at a given temperature.

"At a given temperature" is the key to understanding relative humidity. Warm air has the capacity to hold more moisture than cold air. For example, 10,000 cubic feet of 70°F air can hold 80,550 grains of moisture. The same 10,000 cubic feet of air at 10°F can hold only 7,760 grains of moisture.

> 10°F 7,760 Grains

If the 10,000 cubic feet of 10°F air held 5,820 grains of moisture, its relative humidity would be 75%. If your heating system raises the temperature of this air to 70°F with no moisture added, it will still contain 5,820 grains of moisture. However, at 70°F, 10,000 cubic feet of air can hold 80,550 grains of moisture. So the 5,820 grains it actually holds give it a relative humidity of slightly more than 7%. That's very dry...drier than the Sahara Desert.

Air Movement and Humidity

Another variable, air movement in the form of infiltration and exfiltration from the building, influences the relationship between temperature and relative humidity. Typically, one to three times every hour (and many more times with forced air make-up or exhaust) cold outdoor air replaces your indoor air. Your heating system heats this cold, moist outdoor air, producing warm, dry indoor air.

Evaporative Cooling

We've discussed the effects of changing temperature on relative humidity. Altering RH can also cause temperature to change. For every pound of moisture evaporated by the air, the heat of vaporization reduces the sensible heat in the air by about 1,000 Btu. This can be moisture absorbed from people or from wood, paper, textiles, and other hygroscopic material in the building. Conversely, if hygroscopic materials absorb moisture from humid air, the heat of vaporization can be released to the air, raising the sensible heat.

Dew Point

Condensation will form on windows whenever the temperature of the glass surface is below the dew point of the air. Table 7-2, from data presented in the ASHRAE Systems and Equipment Handbook, indicates combinations of indoor relative humidity and outside temperature at which condensation will form. Induction units, commonly used below windows in modern buildings to blow heated air across the glass, permit carrying higher relative humidities without visible condensation.

Table 7-2. Relative Humidities at Which Condensation Will Appear on Windows at 74°F When Glass Surface Is Unheated							
Outdoor Temperature	Single Glazing	Double Glazing					
40	39%	59%					
30	29%	50%					
20	21%	43%					
10	15%	36%					
0	10%	30%					
-10	7%	26%					
-20	5%	21%					
-30	3%	17%					

Table 7-1.	Grains of Wa	ater per Cubic	Foot of Sat	turated Air and	d per Pound of	f Dry Air at	Various Temp	eratures.			
(Abstracte	d from ASHRA	E Handbook)									
°F	Per cu ft	Per Ib Dry Air	°F	Per cu ft	Per Ib Dry Air	°F	Per cu ft	Per Ib Dry Air	°F	Per cu ft	Per Ib Dry Air
-10	0.28466	3.2186	50	4.106	53.38	78	10.38	145.3	106	23.60	364.0
-5	0.36917	4.2210	51	4.255	55.45	79	10.71	150.3	107	24.26	375.8
0	0.47500	5.5000	52	4.407	57.58	80	11.04	155.5	108	24.93	387.9
5	0.609	7.12	53	4.561	59.74	81	11.39	160.9	109	25.62	400.3
10	0.776	9.18	54	4.722	61.99	82	11.75	166.4	110	26.34	413.3
15	0.984	11.77	55	4.889	64.34	83	12.11	172.1	111	27.07	426.4
20	1.242	15.01	56	5.060	66.75	84	12.49	178.0	112	27.81	440.4
25	1.558	19.05	57	5.234	69.23	85	12.87	184.0	113	28.57	454.5
30	1.946	24.07	58	5.415	71.82	86	13.27	190.3	114	29.34	469.0
31	2.033	25.21	59	5.602	74.48	87	13.67	196.7	115	30.13	483.9
32	2.124	26.40	60	5.795	77.21	88	14.08	203.3	120	34.38	566.5
33	2.203	27.52	61	5.993	80.08	89	14.51	210.1	125	39.13	662.6
34	2.288	28.66	62	6.196	83.02	90	14.94	217.1	130	44.41	774.9
35	2.376	29.83	63	6.407	86.03	91	15.39	224.4	135	50.30	907.9
36	2.469	31.07	64	6.622	89.18	92	15.84	231.8	140	56.81	1064.7
37	2.563	32.33	65	6.845	92.40	93	16.31	239.5	145	64.04	1250.9
38	2.660	33.62	66	7.074	95.76	94	16.79	247.5	150	71.99	1473.5
39	2.760	34.97	67	7.308	99.19	95	17.28	255.6	155	80.77	1743.0
40	2.863	36.36	68	7.571	102.8	96	17.80	264.0	160	90.43	2072.7
41	2.970	37.80	69	7.798	106.4	97	18.31	272.7	165	101.0	2480.8
42	3.081	39.31	70	8.055	110.2	98	18.85	281.7	170	112.6	2996.0
43	3.196	40.88	71	8.319	114.2	99	19.39	290.9	175	125.4	3664.5
44	3.315	42.48	72	8.588	118.2	100	19.95	300.5	180	139.2	4550.7
45	3.436	44.14	73	8.867	122.4	101	20.52	310.3	185	154.3	5780.6
46	3.562	45.87	74	9.153	126.6	102	21.11	320.4	190	170.7	7581.0
47	3.692	47.66	75	9.448	131.1	103	21.71	330.8	195	188.6	10493.0
48	3.826	49.50	76	9.749	135.7	104	22.32	341.5	200	207.9	15827.0
49	3.964	51.42	77	10.06	140.4	105	22.95	352.6			

SECTION

Why Humidification is Important, continued...

Energy Conservation With Controlled RH

Indoor relative humidity as we have computed it is called Theoretical Indoor Relative Humidity (TIRH). It virtually never exists. RH observed on a measuring device known as a hygrometer will almost always exceed the TIRH. Why? Dry air is thirsty air. It seeks to draw moisture from any source it can. Thus it will soak up moisture from any hygroscopic materials (such as wood, paper, foodstuffs, leather, etc.) and dry out the nasal passages and skin of human beings in the building.

But is this free "humidification"? No, it is the most expensive kind there is when translated into terms of human comfort, material deterioration, and production difficulties. Moreover, it requires the same amount of energy whether the moisture is absorbed from people and materials or added to the air by an efficient humidification system.

The true energy required for a humidification system is calculated from what the actual humidity level will be in the building, NOT from the theoretical level. In virtually all cases, the cost of controlling RH at the desired level will be nominal in terms of additional energy load, and in some cases may result in reduced energy consumption.

A major convention center in the Central United States reported that it experienced a decrease in overall steam consumption when it added steam humidification. From one heating season with no humidification to the next with humidifiers operating, the steam consumption for humidification was 1,803,000 lbs, while the steam for heating decreased by 2,486,000 lbs in the same period. The decreased (metered) consumption occurred despite 7.2% colder weather from the previous year. The records from this installation indicate that it is possible to reduce the total amount of steam required for environmental control by maintaining a higher, controlled relative humidity.

Let's examine a theoretical system using enthalpy (heat content) as our base.

- Assume a winter day with outside temperature of 0°F at 75% RH.
- The enthalpy of the air is .6 Btu/lb dry air (DA).
- If the air is heated to 72°F without adding moisture, the enthalpy becomes 18 Btu/lb DA.
- Theoretical relative humidity becomes 3.75%, but actual RH will be about 25%.
- At 72°F and 25% RH the enthalpy is 22 Btu/lb DA.
- The additional moisture is derived from hygroscopic materials and people in the area.

But what about the additional energy — the difference between the 18 Btu/lb DA and 22 Btu/lb DA? This 22% increase must come from the heating system to compensate for the evaporative cooling effect. If a humidification system is used and moisture added to achieve a comfortable 35% RH, the enthalpy is 23.6 Btu/lb DA.

This is only a 7% increase over the "inevitable" energy load of 22 Btu/lb DA—substantially less than the theoretical increase of 31% from 3.75% RH (18 Btu/lb DA) to 35% RH (23.6 Btu/lb DA) at 72°F. If the temperature was only 68°F at 35% RH (because people can be comfortable at a lower temperature with higher humidity levels), the enthalpy is 21.8 Btu/lb DA, or a slight decrease in energy.

Problems With Dry Air

Dry air can cause a variety of costly, troublesome, and sometimes dangerous problems. If you are not familiar with the effects of dry air, the cause of these problems may not be obvious. You should be concerned if you are processing or handling hygroscopic materials such as wood, paper, textile fibers, leather, or chemicals. Dry air and/or fluctuating humidity can cause serious production problems and/or material deterioration.

Static electricity can accumulate in dry atmospheric conditions and interfere with efficient operation of production machinery or electronic office machines. Where static-prone materials such as paper, films, computer disks, and other plastics are handled, dry air intensely aggravates the static problem. In potentially explosive atmospheres, dry air and its resultant static electricity accumulations can be extremely dangerous.

Humidity and Human Comfort

Studies indicate people are generally most comfortable when relative humidity is maintained between 35% and 55%. When air is dry, moisture evaporates more readily from the skin, producing a feeling of chilliness even with temperatures of 75°F or more. Because human perception of RH is often sensed as temperature differential, it's possible to achieve comfortable conditions with proper humidity control at lower temperatures. The savings in heating costs are typically very significant over the course of just a single heating season.

The Need for Humidity Control in Today's Electronic Workplace

Electronics are revolutionizing the way your office and plant floor operates, communicates, collects data, and maintains equipment. In the office, xerographic copies, phone systems, computers, and fax machines, even wall thermostats are electronically controlled. What's more, office decor has far more work stations incorporating wall panels and furniture with natural and synthetic fabric than ever before.

In manufacturing areas, more machines are electronically controlled. In fact, you see more control rooms (just to house electronic control systems) than in previous years.

All this means that the nature of today's business makes proper humidification a virtual necessity.

Why Improper Humidification Threatens Sensitive Electronic Equipment

Central to all electronic circuits today is the IC (integrated circuit) or "chip." The heart of the IC is a wafer-thin miniature circuit engraved in semiconductor material. Electronic components—and chips in particular—can be overstressed by electrical transients (voltage spikes). This may cause cratering and melting of minute areas of the semiconductor, leading to operational upsets, loss of memory, or permanent failure. The damage may be immediate or the component may fail sooner than an identical part not exposed to an electrical transient.

A major cause of voltage spikes is electrostatic discharge (ESD). Although of extremely short duration, transients can be lethal to the wafer-thin surfaces of semiconductors. ESD may deliver voltage as high as lightning and it strikes faster.

ESD is a particularly dangerous phenomenon because you are the source of these transients. It is the static electricity that builds up on your body. The jolt you get from touching a doorknob or shaking someone's hand is ESD. Table 9-1 below shows voltages which can be generated by everyday activities.

Voltage accumulates on surfaces (in this case, the human body), and when the surface approaches another at a lower voltage a discharge of electrical voltage occurs. Note the humidity levels at which these voltages may be generated. As the level of humidity rises, voltages are reduced because a film of moisture forms on surfaces, conducting the charges to the ground. Although the 65%-90% RH cited in Table 9-1 is impractical for office areas, any increase in humidity will yield a significant reduction in ESD events.

ESD Damage is Not Only Possible but Probable

A study of personnel ESD events in a poorly controlled room with a wool carpet was conducted for 16 months. The strength of the ESD event was measured in current (amps). Results indicate, for example, that a current discharge of 0.3 amps is 100 times more likely to occur at 10%-20% RH than at 45%-50% RH. In other words, the higher the relative humidity, the lower the occurrence and severity of ESD.

In addition to the risk of damage to electronic devices from static electricity charges, there are grave risks associated with sparks from static charges in many process applications. Static electricity is extremely dangerous in the presence of gases, volatile liquids, or explosive dusts such as is found in munitions plants, paint spray booths, printing plants, pharmaceutical plants, and other places.

While many static control products (special mats, carpeting, sprays, straps, etc.) are available, bear in mind that humidification is a passive static-control means. It is working to control static all the time—not just when someone remembers.

Table 9-1. Effect of Humidity on Electrostatic Voltages							
	Electrostatic Voltages						
Means of Static Generation	10%-20% Relative Humidity	65%-90% Relative Humidity					
Walking across carpet	35,000	1,500					
Walking over vinyl floor	12,000	250					
Worker at bench	6,000	100					
Vinyl envelopes for work instructions	7,000	600					
Common poly bag picked up from bench	20,000	1,200					
Work chair padded with polyurethane foam	18,000	1,500					

Figure 9-1. Effect of humidity on electrostatic voltages.

Integrated circuit damaged by ESD. (Photo courtesy of Motorola Semiconductor, Inc.)

How Humidity Affects Materials

Paper and Paper Products

Every production superintendent in the paper industry is, by experience, familiar with the excessive scrap losses and customer complaints that can result from the following wintertime headaches:

- 1. Curling of stock.
- 2. Cracking or breaking at creases of folding boxes, cartons, corrugated and solid fiber containers.
- 3. Loss of package and container strength.
- 4. Production delays when sheets fail to go through machines smoothly due to static electricity.
- 5. Gluing failures.

All of the above wintertime problems have a common cause dry or curling paper caused by low indoor relative humidities.

Whenever you heat air, without adding moisture, its RH drops. Table 10-1 shows that 0°F outside air at 75% RH will have a relative humidity of only 4.4% when heated to 70°F indoors. Even though the theoretical RH should be 4.4% in your plant, the actual observed humidity will be much higher because of the moisture given off by the paper. This type of humidification is very expensive in terms of stock and production.

Figure 10-1.

Effects of moisture content in folding paper. Sheet on left has proper moisture. Sheet on right lacks enough moisture—is dry and brittle—breaks on fold.

The RH of surrounding air governs the moisture content of paper, as shown in Table 11-1. The fibrils in paper take on moisture when the paper is drier than the surrounding air and give up moisture when the conditions are reversed.

A paper moisture content range of 5%-7% is essential to maintain satisfactory strength and workability of paper. This requires an indoor RH of about 40%-50%, depending upon the composition of the paper.

Moisture contents of different types of papers will vary slightly from those shown in the table but will follow an identical pattern.

Changes in moisture content thus cause paper to become thicker or thinner, flatter or curlier, harder or softer, larger or smaller, limp or brittle.

Table 10-1. How Indoor Heating Reduces Indoor RH and Dries Out Paper								
Outdoor	Indoor Temperature 70°F							
Temperature Degrees	Indoor Relative Humidity %	Approx. Moisture Content of Paper						
-20	1.5	0.5						
-10	2.5	0.8						
0	4.4	1.2						
10	7.2	2.2						
20	11.6	3.3						
30	18.1	4.3						
40	26.8	5.3						
50	38.3	6.4						
60	54.0	8.0						
70	75.0	11.6						

Effect of Indoor Heating Upon RH and Moisture Content of Kraft Wrapping Paper. NOTE: This table assumes an outdoor relative humidity of 75%. When outdoor RH is less, as is common, indoor RH will also be less. Indoor temperatures higher than 70° F will also cause lower relative humidities.

Printing

The dry air problems found in paper manufacturing are equally common to the printing industry.

Paper curling, generally caused by the expansion and contraction of an unprotect-

ed sheet of paper, takes place when too dry an atmosphere draws moisture from the exposed surface which shrinks and curls. The curl will be with the grain of the sheet. This trouble is most pronounced with very lightweight stocks or with cover stocks and coated-one-side papers.

Wood Products, Woodworking, and Furniture Manufacture

Like all hygroscopic materials, wood takes on or gives off moisture as the RH of the surrounding air varies. When, at any given temperature and relative humidity, the wood finally stops absorbing or liberating moisture, it is said to have reached its equilibrium moisture content (EMC). The moisture in the wood is then "in balance" with the moisture in the air.

It is generally not practical to hold indoor RH as high during the cold months as it is during the warm months. However, when the cold season sets in, humidifiers permit a gradual reduction of RH and EMC to a practical minimum working level. Under this controlled condition, warping and cracking will not occur.

Leather Processing

RH maintained uniformly in the 40%-60% range (higher in muller rooms) reduces cracking, minimizes loss of pliability, helps maintain quality and appearance, and reduces the dust problem in the plant.

Offices

RH maintained at 30%-40% stops splitting, checking, shrinkage, and glue joint failure in paneling and furnishings, adds life to carpeting and draperies. Electronic office equipment such as computers, xerographic copiers, and phone systems require a constant RH of 40%-

50% to guard against harmful electrical transients (see Page 9).

Libraries and Museums

Relative humidity maintained uniformly at 40%-55% in storage rooms, vaults, and galleries prolongs the life of valuable collections by stabilizing the pliability of glue, starch and casein. The embrittlement of fibers in paper, canvas, papyrus, leather bindings, etc., is minimized.

Table 11-1. Moisture Content of Paper at Various Relative Humidities											
Material	Description	Relative Humidity % 10 20 30 40 50 60 70 2.1 3.2 4.0 4.7 5.3 6.1 7.2									
Material	Description	10 20	20	30	40	50	60	70	80	90	
M.F. Newsprint	Wood Pulp 24% Ash	2.1	3.2	4.0	4.7	5.3	6.1	7.2	8.7	10.6	
HMF Writing	Wood Pulp 3% Ash	3.0	4.2	5.2	6.2	7.2	8.3	9.9	11.9	14.2	
White Bond	Rag 1% Ash	2.4	3.7	4.7	5.5	6.5	7.5	8.8	10.8	13.2	
Com. Ledger	75% Rag 1% Ash	3.2	4.2	5.0	5.6	6.2	6.9	8.1	10.3	13.9	
Kraft Wrapping	Coniferous	3.2	4.6	5.7	6.6	7.6	8.9	10.5	12.6	14.9	

SECTION 9

Determining Humidity Requirements of Materials

No single level of relative humidity provides adequate moisture content in all hygroscopic materials. Moisture content requirements vary greatly from one material to the next. We will discuss typical hygroscopic materials which require specific RH levels to avoid moisture loss and materials deterioration and/or production problems that result.

Process or Product	Temp. °F	%RH	Process or Product	lemp. °F	%RH	Process or Product	Temp. °F	%RH
Residences	70-72	30	Switchgear:			Tea		
			Fuse & cutout assembly	73	50	Packaging	65	65
Libraries & Wuseums			Capacitor winding	73	50			
Archival	55-65	35	Paper Storage	/3	50		70 75	
Art storage	60-72	50	Conductor wrapping with yai	n 75	65-70	Cigar & cigarette making	/0-/5	55-65
Stuffed fur animals	40-50	50	Lightning arrester assembly	y 68	20-40	Softening	90	85-88
Communication Contors			Inermal circuit breakers	75	20.00	Stemming & stripping	75-85	/0-/5
Tolophone terminale	70 70	10 50	High-voltage transformer ren	70 air 70	55	Facking & Simpping	13-13	60
Padia & TV studios	71 70	40-00 20.40	Water wheel generators:	all 79	55	Filler tobacco casilig	75	75
	14-10	00-40	Thrust rupper lapping	70	30-50	Filler tobacco storade	75	75
General Commercial & F	Public Rui	enihl	Rectifiers	10	30-30	& preparation	77	70
denoral commercial a .	70-74	20-30	Processing selenium &			Wrapper tobacco storage		10
(including cafeterias restaurants	airnort tern	ninals office	conner oxide plates	73	30-40	& conditioning	75	75
huildings & howling centers)	, anport torn	innais, onnoc		10	00 10		10	10
bununigo, a bowning contoroj			Fur			Pharmaceuticals		
Hospitals & Health Facil	ities		Storage	40-50	55-65	Powder storage (prior to	mfa)*	*
General clinical areas	72	30-60			00 00	Manufactured powder sto	rade	
Surgical area		00 00	Gum			& packing areas	75	35
Operating rooms	68-76	50-60	Manufacturing	77	33	Milling room	75	35
Recovery rooms	75	50-60	Rolling	68	63	Tablet compressing	75	35
Obstetrical			Stripping	72	53	Tablet coating room	75	35
Full-term nursery	75	30-60	Breaking	73	47	Effervescent tablets		
Special care nursery	75-80	30-60	Wrapping	73	58	and powders	75	20
						Hypodermic tablets	75	30
Industrial Hygroscopic N	laterials		Leather			Colloids	75	30-50
Abrasive			Drying	68-125	75	Cough drops	75	40
Manufacture	79	50	Storage, winter room temp	. 50-60	40-60	Glandular products	75	5-10
						Ampoule manufacturing	75	35-50
Ceramics			Lenses (Optical)			Gelatin capsules	75	35
Refractory	110-150	50-90	Fusing	75	45	Capsule storage	75	35
Molding Room	80	60-70	Grinding	80	80	Microanalysis	75	50
Clay Storage	60-80	35-65				Biological manufacturing	75	35
Decalcomania production	/5-80	48	Matches	70 70	50	Liver extracts	/5	35
Decorating Room	75-80	48	Manufacture	12-13	50	Serums	/5	50
. .			Drying	/0-/5	60	Animal rooms	75-80	50
Cereal	75.00	45 50	Storage	60-63	50	Small animal rooms	/5-/8	. 50
Packaging	70-60	45-50	Muchroomo			"Store in sealed plastic containe	ers in sealed d	irums.
Distilling			Spawp added	60 72	poarly cat	Photographia Processin	'n	
Storage			Growing pariod	50 60	nearry Sal.	Photo studio	y	
Grain	6	35-40	Storage	30-00	80-85	Dressing room	79_74	40-50
Liquid Veast	32-33	00-40	Storage	02 00	00 00	Studio (camera room)	72-74	40-50
General manufacturing	60-75	45-60	Paint Application			Film darkroom	70-72	45-55
Aging	65-72	50-60	Oils paints: Paint spraving	60-90	80	Print darkroom	70-72	45-55
/ ging	00 12	00 00		00 00	00	Drving room	90-100	35-45
			Plastics			Finishing room	72-75	40-55
Electrical Products						Storage room		
Electrical Products Electronics & X-ray:			Manufacturing areas:				-	40-60
Electrical Products Electronics & X-ray: Coil & transformer wind	ing 72	15	Manufacturing areas: Thermosetting molding			b/w film & paper	72-75	
Electrical Products Electronics & X-ray: Coil & transformer wind Semi conductor assemb	ing 72 ly 68	15 40-50	Manufacturing areas: Thermosetting molding compounds	80	25-30	b/w film & paper color film & paper	72-75 40-50	40-50
Electrical Products Electronics & X-ray: Coil & transformer wind Semi conductor assemb Electrical instruments:	ing 72 ly 68	15 40-50	Manufacturing areas: Thermosetting molding compounds Cellophane wrapping	80 75-80	25-30 45-65	b/w film & paper color film & paper Motion picture studio	72-75 40-50 72	40-50 40-55
Electrical Products Electronics & X-ray: Coil & transformer wind Semi conductor assemb Electrical instruments: Manufacture & laboratoi	ing 72 ly 68 ry 70	15 40-50 50-55	Manufacturing areas: Thermosetting molding compounds Cellophane wrapping	80 75-80	25-30 45-65	b/w film & paper color film & paper Motion picture studio	72-75 40-50 72	40-50 40-55
Electrical Products Electronics & X-ray: Coil & transformer wind Semi conductor assemb Electrical instruments: Manufacture & laborator Thermostat assembly	ing 72 ly 68 ry 70	15 40-50 50-55	Manufacturing areas: Thermosetting molding compounds Cellophane wrapping Plywood	80 75-80	25-30 45-65	b/w film & paper color film & paper Motion picture studio Static Electricity Control	72-75 40-50 72	40-50 40-55
Electrical Products Electronics & X-ray: Coil & transformer wind Semi conductor assemb Electrical instruments: Manufacture & laborator Thermostat assembly & calibration	ing 72 ly 68 ry 70 75	15 40-50 50-55 50-55	Manufacturing areas: Thermosetting molding compounds Cellophane wrapping Plywood Hot pressing (resin)	80 75-80 90	25-30 45-65 60	b/w film & paper color film & paper Motion picture studio Static Electricity Control Textiles, paper, explosive	72-75 40-50 72 control	40-50 40-55 >55
Electrical Products Electronics & X-ray: Coil & transformer wind Semi conductor assemb Electrical instruments: Manufacture & laboratoi Thermostat assembly & calibration Humidistat assembly	ing 72 ly 68 ry 70 75	15 40-50 50-55 50-55	Manufacturing areas: Thermosetting molding compounds Cellophane wrapping Plywood Hot pressing (resin) Cold pressing	80 75-80 90 90	25-30 45-65 60 15-25	b/w film & paper color film & paper Motion picture studio Static Electricity Control Textiles, paper, explosive	72-75 40-50 72 control	40-50 40-55 >55
Electrical Products Electronics & X-ray: Coil & transformer wind Semi conductor assemb Electrical instruments: Manufacture & laboratoi Thermostat assembly & calibration Humidistat assembly & calibration	ing 72 ly 68 ry 70 75 75	15 40-50 50-55 50-55 50-55	Manufacturing areas: Thermosetting molding compounds Cellophane wrapping Plywood Hot pressing (resin) Cold pressing	80 75-80 90 90	25-30 45-65 60 15-25	b/w film & paper color film & paper Motion picture studio Static Electricity Control Textiles, paper, explosive Clean Rooms & Spaces	72-75 40-50 72 control	40-50 40-55 >55 45
Electrical Products Electronics & X-ray: Coil & transformer wind Semi conductor assemb Electrical instruments: Manufacture & laboratou Thermostat assembly & calibration Humidistat assembly & calibration Small mechanisms:	ing 72 ly 68 ry 70 75 75	15 40-50 50-55 50-55 50-55	Manufacturing areas: Thermosetting molding compounds Cellophane wrapping Plywood Hot pressing (resin) Cold pressing Rubher-Dipped Goods	80 75-80 90 90	25-30 45-65 60 15-25	b/w film & paper color film & paper Motion picture studio Static Electricity Control Textiles, paper, explosive Clean Rooms & Spaces	72-75 40-50 72 control	40-50 40-55 >55 45
Electrical Products Electronics & X-ray: Coil & transformer wind Semi conductor assemb Electrical instruments: Manufacture & laboratoi Thermostat assembly & calibration Humidistat assembly & calibration Small mechanisms: Close tolerance assembl	ing 72 ly 68 ry 70 75 75 y 72	15 40-50 50-55 50-55 50-55 40-45	Manufacturing areas: Thermosetting molding compounds Cellophane wrapping Plywood Hot pressing (resin) Cold pressing Rubber-Dipped Goods Cementing	80 75-80 90 90 80	25-30 45-65 60 15-25 25-30*	b/w film & paper color film & paper Motion picture studio Static Electricity Control Textiles, paper, explosive Clean Rooms & Spaces Data Processing	72-75 40-50 72 control	40-50 40-55 >55 45 45-50
Electrical Products Electronics & X-ray: Coil & transformer wind Semi conductor assemb Electrical instruments: Manufacture & laborator Thermostat assembly & calibration Humidistat assembly & calibration Small mechanisms: Close tolerance assembly Meter assembly & test	ing 72 ly 68 79 70 75 75 y 72 75	15 40-50 50-55 50-55 50-55 40-45 60-63	Manufacturing areas: Thermosetting molding compounds Cellophane wrapping Plywood Hot pressing (resin) Cold pressing Rubber-Dipped Goods Cementing Dipping surgical articles	80 75-80 90 90 80 75-80	25-30 45-65 60 15-25 25-30* 25-30*	b/w film & paper color film & paper Motion picture studio Static Electricity Control Textiles, paper, explosive Clean Rooms & Spaces Data Processing	72-75 40-50 72 control	40-50 40-55 >55 45 45-50
Electrical Products Electronics & X-ray: Coil & transformer wind Semi conductor assemb Electrical instruments: Manufacture & laborator Thermostat assembly & calibration Humidistat assembly & calibration Small mechanisms: Close tolerance assembl Meter assembly & test	ing 72 ly 68 y 70 75 75 y 72 75	15 40-50 50-55 50-55 50-55 40-45 60-63	Manufacturing areas: Thermosetting molding compounds Cellophane wrapping Plywood Hot pressing (resin) Cold pressing Rubber-Dipped Goods Cementing Dipping surgical articles Storage prior to manufacture	80 75-80 90 90 80 75-80 60-75	25-30 45-65 60 15-25 25-30* 25-30* 40-50*	b/w film & paper color film & paper Motion picture studio Static Electricity Control Textiles, paper, explosive Clean Rooms & Spaces Data Processing Paper Processing	72-75 40-50 72 control 72	40-50 40-55 >55 45 45-50
Electrical Products Electronics & X-ray: Coil & transformer wind Semi conductor assemb Electrical instruments: Manufacture & laborator Thermostat assembly & calibration Humidistat assembly & calibration Small mechanisms: Close tolerance assembl Meter assembly & test	ing 72 19 68 75 75 9 72 75	15 40-50 50-55 50-55 50-55 40-45 60-63	Manufacturing areas: Thermosetting molding compounds Cellophane wrapping Plywood Hot pressing (resin) Cold pressing Rubber-Dipped Goods Cementing Dipping surgical articles Storage prior to manufacture Laboratory (ASTM Standar	80 75-80 90 90 80 75-80 60-75 d)73.4	25-30 45-65 15-25 25-30* 25-30* 40-50* 50*	b/w film & paper color film & paper Motion picture studio Static Electricity Control Textiles, paper, explosive Clean Rooms & Spaces Data Processing Paper Processing Finishing area	72-75 40-50 72 control 72 72 72	40-50 40-55 >55 45 45-50 40-45
Electrical Products Electronics & X-ray: Coil & transformer wind Semi conductor assemb Electrical instruments: Manufacture & laborator Thermostat assembly & calibration Humidistat assembly & calibration Small mechanisms: Close tolerance assembl Meter assembly & test	ing 72 19 68 75 75 9 72 75	15 40-50 50-55 50-55 50-55 40-45 60-63	Manufacturing areas: Thermosetting molding compounds Cellophane wrapping Plywood Hot pressing (resin) Cold pressing Rubber-Dipped Goods Cementing Dipping surgical articles Storage prior to manufacture Laboratory (ASTM Standar *Dew point of air must be below	80 75-80 90 90 80 75-80 60-75 d)73.4 evaporation	25-30 45-65 60 15-25 25-30* 25-30* 40-50* 50* n temperature	b/w film & paper color film & paper Motion picture studio Static Electricity Control Textiles, paper, explosive Clean Rooms & Spaces Data Processing Finishing area Test laboratory	72-75 40-50 72 control 72 72 72 70-75 73	40-50 40-55 >55 45 45-50 40-45 50

SECTION

9

How Psychometrics Help in Humidification

Psychometrics is the measurement of thermodynamic properties in moist air. As a problem-solving tool Psychometrics excel in clearly showing how changes in heating, cooling, humidification, and dehumidification can affect the properties of moist air. Psychrometric data is needed to solve various problems and processes relating to air distribution.

Most complex problems relating to heating, cooling and humidification are combinations of relatively simple problems. The psychrometric chart illustrates these processes in graphic form, clearly showing how changes affect the properties of moist air.

One of the reasons psychrometric data is particularly important today is traceable to the way most new buildings (and many older ones) are heated. The lower duct temperatures (55°F and below) used in new buildings make accurate humidity control more difficult to achieve. (This is because low duct temperatures have a limited ability to absorb moisture. Adding moisture via the central air handling system must compensate for reheating of air before it leaves the duct.)

For such applications, booster humidification must sometimes be accomplished in the duct of the zone after it has reached its final temperature (reheated).

To maintain typical conditions of 70°F and 50% RH, duct humidities will be very high (75% RH and above). To keep the duct from becoming saturated, a duct high limit humidistat is used, and becomes in these cases the main controller of the humidifier. Since this humidistat is in close proximity to the humidifier, and air is constantly moving, and must be controlled close to saturation, the humidifier output control must be fast, accurate and repeatable.

Using the Psychrometric Chart

The psychrometric chart is a graphical representation of the thermodynamic properties which impact moist air.

It consists of eight major components:

1. Humidity ratio values are plotted vertically along the right-hand margin, beginning with 0 at the bottom and extending to .03 at the top.

 Enthalpy, or total heat, is plotted with oblique lines, at intervals of 5 Btu/lb o dry air, extending from upper left to lower right.

2. Enthalpy, or total heat, is plotted with oblique lines, at intervals of 5 Btu/lb of dry air, extending from upper left to lower right.

3. Dry-bulb temperature lines are plotted vertically at 1°F intervals.

 Wet-bulb temperature lines are indicated obliquely and fall almost part to enthalpy lines. They are shown at 1'F intervals.

3. Wet-bulb temperature lines are indicated obliquely and fall almost parallel to enthalpy lines. They are shown at 1°F intervals.

5. Relative humidity lines curve across the chart form left to right at intervals of 10%. They begin at the bottom at 10% and end at the top with the

saturation curve (100%).

11.1.2 11.1.2 11.1.2 11.1.2 11.1.2

Volume lines indicating cubic feet per pound of dry air are plotted at of 5 cubic feet.

6. Volume lines indicating cubic feet per pound of dry air are plotted at intervals of .5 cubic feet.

Two-phase region includes a narrow, cross-hatched area to the left of the saturation region indicating a mixture of condensed water in equilibrium.

7. Two-phase region includes a narrow, cross-hatched area to the left of the saturation region indicating a mixture of condensed water in equilibrium.

8. The protractor at the upper left of the chart contains two scales. One is for the ration of enthalpy difference. The other is for a ratio of sensible heat to the total heat. The protractor establishes the angle of a line on the chart along which a process will follow.

Example 1

Given the conditions of 75°F dry bulb and 50% RH, determine the dew point, volume and humidity content in grains per cubic foot of dry air.

Solution:

- 1. Locate the state point, where the 75°F dry-bulb line intersects the 50% RH line. Call this state point number 1.
- Project horizontally to the left to the saturation curve and read 55°F (dew point).
- Project horizontally to the right and read .0092 pounds of moisture per pound of dry air.
- Draw a line through the state point parallel to 13.5 volume line and estimate a volume of 13.68 cubic feet per pound of dry air.
- 5. Solve for grains per cubic foot by converting: 0.0092 x 7,000 = 4.71 grains/cu ft

13.68 See also Table 29-5, Page 29 for

quick values.

Example 2

Determine resultant RH when 55° F air at 80% RH is heated to a temperature of 75° F.

Solution:

- Locate the state point where 55°F dry-bulb line intersects 80% RH line. Call this state point number 2.
- Project horizontally to the right to intersect the 75°F dry-bulb line at 40% RH. Call this state point 3.
- Observe that if air is delivered to a system at state point 2, that a reheat operation can deliver it to an area at state point 3.
- If state point 1 (example 1) is desired in the area, then booster humidification is needed.

How Humidifiers Work

Steam Humidification (Isothermal)

Unlike other humidification methods, steam humidifiers have a minimal effect on dry-bulb (DB) temperatures. The steam humidifier discharges ready-made water vapor. This water vapor does not require any additional heat as it mixes with the air and increases relative humidity. Steam is pure water vapor existing at 212°F (100°C). This high temperature creates a perception that steam, when discharged into the air, will actually increase air temperature. This is a common misconception. In truth, as the humidifier discharges steam into the air, a steam/air mixture is established. In this mixture steam temperature.

The psychrometric chart helps illustrate that steam humidification is a constant DB process. Starting from a point on any DB temperature line, steam humidification will cause movement straight up along the constant DB line. The example illustrates that 70°F DB is constant as we increase RH from 30%-50%. This is true because steam contains the necessary heat (enthalpy) to add moisture without increasing or decreasing DB temperature. Actual results utilizing high pressure steam or large RH increases (more than 50%) increase DB by 1° to 2°F. As a result, no additional heating or air conditioning load occurs.

Figure 16-1. Separator Type

Direct Steam Injection Humidifiers

The most common form of steam humidifier is the direct steam injection type. From a maintenance point of view, direct steam humidification systems require very little upkeep. The steam supply itself acts as a cleaning agent to keep system components free of mineral deposits that can clog many forms of water spray and evaporative pan systems.

Response to control and pinpoint control of output are two other advantages of the direct steam humidification method. Since steam is ready-made water vapor, it needs only to be mixed with air to satisfy the demands of the system. In addition, direct steam humidifiers can meter output by means of a modulating control valve. As the system responds to control, it can position the valve anywhere from closed to fully open. As a result, direct steam humidifiers can respond more quickly and precisely to fluctuating demand.

The high temperatures inherent in steam humidification make it virtually a sterile medium. Assuming boiler makeup water is of satisfactory quality and there is no condensation, dripping or spitting in the ducts, no bacteria or odors will be disseminated with steam humidification.

Corrosion is rarely a concern with a properly installed steam system. Scale and sediment—whether formed in the unit or entrained in the supply steam—are drained from the humidifier through the steam trap.

Steam-to-Steam Humidifiers

Steam-to-steam humidifiers use a heat exchanger and the heat of treated steam to create a secondary steam for humidification from untreated water. The secondary steam is typically at atmospheric pressure, placing increased importance on equipment location.

Maintenance of steam-to-steam humidifiers is dependent on water quality. Impurities such as calcium, magnesium and iron can deposit as scale, requiring frequent cleaning. Response to control is slower than with direct steam because of the time required to boil the water.

Direct Steam Humidification

Figure 16-2. Panel Type

Steam-to-Steam Humidification Figure 16-3.

Electric Steam Humidifiers (Electrode)

Electric steam humidifiers are used when a source of steam is not available. Electricity and water create steam at atmospheric pressure. Electrode-type units pass electrical current through water to provide proportional output. Use with pure demineralized, deionized or distilled water alone will generally not provide sufficient conductivity for electrode units.

Water quality affects the operation and maintenance of electrode-type humidifiers. Use with hard water requires more frequent cleaning, and pure softened water can shorten electrode life. Microprocessor-based diagnostics assist with troubleshooting.

Electrode units are easily adaptable to different control signals and offer full modulated output. However, the need to boil the water means control will not compare with direct-injection units.

Electric Steam Humidifiers (Ionic Bed)

lonic bed electric humidifiers typically use immersed resistance heating elements to boil water. Since current does not pass through water, conductivity is not a concern. Ionic bed technology makes the humidifier versatile enough to accommodate various water qualities. These units work by using ionic bed inserts containing fibrous media to attract solids from water as its temperature rises, minimizing the buildup of solids inside the humidifier. Water quality does not affect operation, and maintenance typically consists of simply replacing the inserts.

Electric Steam Humidification with Ionic Beds

Figure 17-1.

lonic bed humidifiers are adaptable to different control signals and offer full modulated output. Control is affected by the need to boil the water.

Gas-Fired Steam Humidifiers (Ionic Bed)

In gas-fired steam humidifiers, natural gas or propane are combined with combustion air and supplied to a gas burner. The heat of combustion is transferred to water through a heat exchanger, creating atmospheric steam for humidification. Combustion gasses must be vented per applicable codes. Fuel gas composition, combustion air quality and proper venting can affect operation.

Water quality also can impact the operation and maintenance of gas-fired humidifiers. Ionic bed-type gas-fired humidifiers use ionic bed inserts containing fibrous media to attract solids from water as its temperature rises, minimizing the buildup of solids inside the humidifier. Therefore, water quality does not affect operation, and maintenance typically consists of simply replacing the ionic bed inserts.

lonic bed gas-fired humidifiers are adaptable to various control signals and offer modulated output. However, control of room RH is affected by the need to boil water and limitations inherent in gas valve and blower technology.

Gas-Fired with lonic Beds Figure 17-2.

How Humidifiers Work, continued...

Fogging Systems (Adiabatic)

Fogging systems use compressed air to atomize water and create a stream of microscopic water particles, which appears as fog. In order to become vapor, water requires approximately 1,000 Btu per pound. The water particles quickly change from liquid to gas as they absorb heat from the surrounding air, or air stream. Properly designed fogging systems include sufficient heat in the air to allow the water to vaporize, avoiding "plating out" of water on surfaces, which might lead to control or sanitation problems.

Fogging systems contain virtually none of the heat of vaporization required to increase RH to desired conditions. For this reason, fogging systems humidification is a virtually constant enthalpy process. As the psychrometric example illustrates, DB temperature changes as RH increases from 30% to 50%. This evaporative cooling can provide energy benefits for systems with high internal heat loads.

Unlike many adiabatic humidifiers, properly designed fogging systems are able to modulate both compressed air and water pressures to provide modulated output. Although time and distance (in an air handling system) are required for evaporation, response to control is immediate. High evaporation efficiency guarantees maximum system performance.

A water analysis is suggested prior to applying fogging systems when reverse osmosis (RO) or deionized (DI) water is not available.

Cost Comparisons

To fairly evaluate the costs of selecting a humidification system, you should include installation, operating and maintenance costs as well as initial costs. Total humidification costs are typically far less than heating or cooling system costs.

Initial costs, of course, vary with the size of the units. Priced on a capacity basis, larger capacity units are the most economical, regardless of the type of humidifier, i.e.: one humidifier capable of delivering 1,000 pounds of humidification per hour costs less than two 500 lbs/hr units of the same type.

Direct steam humidifiers will provide the highest capacity per first cost dollar; fogging systems and gas-fired humidifiers are the least economical (first cost), assuming capacity needs of 100 lbs/hr or more.

Installation costs for the various types cannot be accurately formulated because the proximity of water, steam and electricity to humidifiers varies greatly among installations. Operating costs are low for direct steam and slightly higher for steam-to-

Table 18	-1. Comparison of	Humidification Meth	ods					
		Direct Steam	Steam-to-Steam	Electric Steam	Ionic Bed Electric Steam	Ionic Bed Gas-Fired Steam	Fogging Systems	
Effect on	temperature			Virtually no change			Substantial	
	tomporataro			vintually no onaligo			temperature drop	
Unit capa	acity per unit size	Small to very large	Small	Small to medium	Small to medium	Small to medium	Small to very large	
Vapor qu	ality	Excellent	Good	Good	Good	Good	Average	
Respons	e to control	Immediate	Slow	Fair	Fair	Fair	Immediate	
Control o	of output	Good to excellent	Below average	Average	Average	Below average	Good to excellent	
Sanitatio	n/corrosion	Sterile medium;	Bacteria can	Programmed to not	Programmed to not	Programmed to not	Designed to not	
Janitatio	1/0011031011	corrosion free	be present	promote bacteria	promote bacteria	promote bacteria	promote bacteria	
Maintena	ince frequency	Δηριμαί	Monthly	Monthly to quarterly	Quarterly to	Quarterly	Δηριμαί	
Ividintonic	and inequency	/ initial	semi-ani		semi-annually	Quartony	Annuai	
Maintena	ince difficulty	Low	High	Medium	Low	Medium	Low	
Costs:	Price (per unit of capacity)	Low	High	Medium	Medium	High	Medium	
	Installation		Varies with availability of steam, water, gas, electricity, etc.					
	Operating	Low	Low	Medium	Medium	Low	Low	
	Maintenance	Low	High	High	Low to medium	Low to medium	Low	

Figure 18-2. Fogger Head

steam. Fogging system and gas-fired (ionic bed) operating costs are also low. Energy costs are higher for electric humidifiers.

Direct steam humidifiers have the lowest maintenance costs, followed by fogging systems. Ionic bed electric and gas-fired humidifiers are designed specifically to minimize maintenance while adapting to various water qualities. Maintenance costs for other types can vary widely, depending on water quality and applications.

These are the principal considerations in selecting a humidification system. Table 18-1, Page 18 summarizes the capabilities of each humidifier type.

Recommended Applications

Steam: Recommended for virtually all commercial, institutional and industrial applications. Where steam is not available, small capacity needs up to 200 lbs/hr can be met best using ionic bed type, self-contained steam generating units. Above this capacity range, central system steam humidifiers are most effective and economical. Steam should be specified with caution where humidification is used in small, confined areas to add large amounts of moisture to hygroscopic materials. We recommend that you consult your Armstrong Representative regarding applications where these conditions exist. **Fogging Systems:** Properly designed compressed air/water fogging systems used with a reverse osmosis (RO) or deionized (DI) water source will avoid problems associated with sanitation, growth of algae or bacteria, odor, or scale. The potential energy benefit associated with fogging systems should be examined for any application requiring over 500 lb/hr where steam is not available, or where evaporative cooling is beneficial, such as air side economizers or facilities with high internal heat loads.

Summary: The evidence supports the conclusion that steam is the best natural medium for humidification. It provides readymade vapor produced in the most efficient evaporator possible, the boiler. There is no mineral dust deposited, and because there is no liquid moisture present, steam creates no sanitation problems, will not support the growth of algae or bacteria, has no odor and creates no corrosion or residual mineral scale.

With these advantages in mind, engineers specify steam boilers and generators solely for humidification when the building to be humidified does not have a steam supply. The minimum humidification load where this becomes economically feasible falls in the range of 200 lbs/hr. Steam generator capacity is generally specified 50% greater than maximum humidification load, depending on the amount of piping and number of humidifiers and distribution manifolds that must be heated. Typical piping for boiler-humidifier installations is shown in Figure 19-1.

Figure 19-1. Typical Piping for Boiler-Humidifier Installation

Design Guidelines— Boiler-Humidifier Combinations

- Boiler gross output capacity should be at least 1.5 times the total humidification load.
- 2. Water softeners should be used on boiler feedwater.
- Condensate return system is not necessary (unless required by circumstances).
- 4. Boiler pressure should be at 15 psig or less.
- 5. An automatic blowdown system is desirable.
- 6. All steam supply piping should be insulated.
- 7. No limit to size or number of humidifiers from one boiler.

Considerations in Selecting Steam Humidifiers

Electric Or Gas-Fired Steam Humidifiers

When steam is not available, self-contained electric or gas-fired humidifiers can meet low-capacity requirements. The primary consideration in selecting this type of humidifier is its ability to work with wide ranges in water quality. Ionic bed electric or gasfired humidifiers are frequently selected for this capability.

Direct Injection Steam Humidifiers

An evaluation of three performance characteristics is essential to understand the advantages steam holds over other humidification media:

- Conditioning
- Control
- Distribution

Figure 20-1. Steam Panel Humidifier

NOTE: Condensate cannot be lifted or discharged into pressurized return.

Figure 20-3. Steam Separator Type Humidifier

dry and free of significant particulate matter. Response to control signals must be immediate, and modulation of output must be precise. Distribution of steam into the air must be as uniform as possible. Inadequate performance in any of these areas means the humidifier will not meet the basic humidification requirements.

The humidifier must condition the steam so that it's completely

Direct injection steam humidifiers are available in three basic types: specially designed steam panels, steam cups and the steam separator.

Specially designed steam panel systems incorporate advanced engineering in addressing unique applications where vapor trail is of prime concern.

Steam cup humidifiers receive steam from the side of the cup, which theoretically permits the condensate to fall by gravity to the steam trap. However, in practice a great deal of the liquid moisture in the steam goes into the air flow, and the steam itself is poorly distributed.

The steam separator is a more sophisticated device which, when properly designed, meets essential performance criteria.

Steam Conditioning

As steam moves through supply lines, scale and sediment may be entrained in the flow—a Y-type strainer is required to remove larger solid particles. Similarly, the condensation that occurs in the supply lines permits water droplets or even slugs of condensate to be carried into the humidifier.

Several steps within the humidifier are required to positively prevent the discharge of liquid moisture and finer particulate matter along with the humidifying steam.

The separating chamber in the humidifier body should provide the volume required for optimum velocity reduction and maximum separation of steam from condensate. Properly separated, the condensate carries a substantial portion of the significant micronic particulates with it to be discharged through the drain trap.

Steam from the separating chamber can still carry liquid mist which must be removed. Humidifiers equipped with an inner drying chamber that is jacketed by the steam in the separating chamber can effectively re-evaporate any remaining water droplets before steam is discharged. Similarly, the control valve should be integral with the humidifier. Both the humidifier and the distribution pipe should be jacketed by steam at supply pressure and temperature to prevent condensation as steam is discharged.

Only proper design of the humidifier for conditioning of steam can assure the essential levels of sanitation and a clean atmosphere. These guidelines contribute to better comfort conditions and ensure that the humidifier meets the vital physical requirements of the system.

Control of Output

In most applications, humidifiers consistently operate at a fraction of maximum output.

Humidifier control must provide immediate response and precise modulation in order to accurately maintain the required relative humidity. Faulty control can make it difficult to provide the desired humidity level, and can lead to overloading the ducts with moisture and the creation of wet spots.

Two design factors affect the accuracy of humidifier control that can be achieved—the metering valve and the actuator that positions the valve.

Precise flow control can be achieved with a valve designed expressly for the purpose of adding steam to air. Parabolic plug type valves have been established as best for this service. They permit a longer stroke than comparable industrial valves, and the plug normally extends into the orifice even with the valve in "full open" position. This facilitates full and accurate modulation of flow over the complete stroke of the valve.

Chart 21-1. Desirable modified linear characteristic curve for valves used under modulating control. The modification of true linear characteristics provides more precise control when capacity requirements are very low and the valve is just cracked off the seat.

Figure 21-1. Parabolic Plug Metering Valve

Considerations in Selecting Steam Humidifiers, continued

The Control Valve

The parabolic plug design also provides exceptionally high rangeability. Rangeability is the ratio between the maximum controllable flow and the minimum controllable flow of steam through the valve. The higher the rangeability of a valve, the more accurately it can control steam flow. Rangeabilities of the parabolic plug valves used in Armstrong Series 9000 Humidifiers shown in Table 22-1 are typical of the ratios that can be achieved with this type of valve.

The actuator is another important component in humidity control. Several types are available to provide compatibility with various system types. The actuator must be able to position the valve in very nearly identical relationship to the seat on both opening and closing strokes. This is essential to provide consistent, accurate metering of steam discharged by the humidifier.

By their design, electric motor modulating actuators provide true linear positioning characteristics on both opening and closing cycles. Pneumatic actuators may or may not be able to provide the precise positioning and holding characteristics essential to accurate control. Rolling diaphragm type pneumatic actuators are recommended, providing they meet the following criteria:

- Large diaphragm area—12 sq in or more—to provide ample lifting force. This permits the use of a spring heavy enough to stabilize both the hysteresis effect and the flow velocity effect on the positioning of the valve stem versus air pressure to the actuator.
- 2. Diaphragm material highly resistant to wear or weakening from continuous cycling.
- 3. Actuator stroke long enough (in conjunction with valve plug and seat design) to provide high rangeability ratios.

All modulating actuators, whether electric or pneumatic, should incorporate a spring return. This is necessary to ensure closing the valve if there is an interruption of power or control air to the unit.

For industrial in-plant operation and for very limited duct applications, a solenoid actuator may be used to provide simple on-off operation. This type of actuator should not be specified for duct applications without a detailed analysis of the system.

Table 22-1. Steam Humidifier Valve Rangeabilities								
Valve Size	Range	ability						
Equivalent Diameter	Ratio of Flow Max:Min	Minimum Flow as % of Maximum						
1-1/2"	63:1	1.6						
1-1/4"	69:1	1.4						
1-1/8"	61:1	1.6						
1"	53:1	1.9						
7/8"	44:1	2.3						
3/4"	33:1	3.0						
5/8"	123:1	0.8						
9/16"	105:1	0.9						
1/2"	97:1	1.0						
15/32"	85:1	1.2						
7/16"	75:1	1.3						
13/32"	64:1	1.6						
3/8"	70:1	1.4						
11/32"	59:1	1.7						
5/16"	49:1	2.0						
9/32"	40:1	2.5						
1/4"	31:1	3.2						
7/32"	24:1	4.2						
3/16"	18:1	5.6						
5/32"	59:1	1.7						
1/8"	37:1	2.7						
7/64"	28:1	3.5						
3/32"	21:1	4.8						
5/64"	15:1	6.9						
1/16"	10:1	10.0						

Chart 22-1. Desirable Operating Characteristic for Pneumatic Actuators

Position of valve is very nearly identical on both opening and closing strokes at any given air pressure to the actuator.

Distribution of Steam

The third essential factor in proper humidifier design is distribution. Steam must be discharged as uniformly as possible into the air to permit the fastest possible absorption without creating damp spots or saturated zones.

In normal ducts, a single distribution manifold installed across the long dimension will provide good distribution of steam. In large ducts or plenum chambers, it may be necessary to broaden the pattern of vapor discharge to achieve the required distribution, thus requiring multiple manifolds from single or multiple humidifiers.

Humidification for industrial areas without central air handling systems is customarily achieved with unit humidifiers discharging steam directly into the atmosphere. Proper mixing of steam and air can be accomplished in two ways. A dispersing fan may be mounted on the humidifier or a unit heater can be positioned to absorb and distribute the water vapor.

Figure 23-2. Single Distribution Manifold in a Normal Duct

Operating Noise

In addition to these crucial performance characteristics, operating noise is a consideration in selecting steam humidifiers for areas where quiet operation is essential or desirable, i.e., hospitals, office buildings, schools, etc.

Figure 23-1. Unit Humidifier for Direct Discharge into Area Humidified

Figure 23-3. Multiple Distribution Manifolds in a Large Duct or Housing

Note: See Page 26 for multiple manifold hook-ups.

Figure 23-4.

The noise of escaping steam is generated at the control valve. Muffling materials around the valve are necessary to minimize this noise.

Basic Application Principles

Several basic principles must be considered in the application of steam humidification equipment to insure proper system operation.

Vapor dissipation in air ducts is one of these considerations. In the steam humidification process, pure water vapor at 212°F is mixed with air at a lower temperature. The mixing of hot steam with cooler air results in heat transfer. Any time heat is transferred from steam condensation takes place. This condensation is referred to as visible vapor. When steam is discharged from a manifold in an air duct, it quickly changes from an invisible gas into visible water particles, and then dissipates to become invisible again.

Visible vapor indicates an area of super-saturation, where the invisible steam gas is condensing into water particles. When condensation occurs, the steam gas releases its latent heat of vaporization (about 1,000 Btu/lb of vapor) to duct air. Then, as the vapor completely mixes with the duct air, the latent heat previously given off is reabsorbed, converting the visible vapor back into invisible gas with essentially no change in DB temperature. (See Figure 24-1).

Clearly, the vapor dissipation in air ducts is very important to proper location of temperature or humidity controllers. Any controller located in or near the visible vapor pattern will produce inaccurate results because of pockets of saturated air. Under typical duct conditions, all controllers should be located at least 10 to 12 feet downstream of a manifold. However, the following system characteristics will affect the visible vapor pattern, and therefore should be considered in controller location:

- Aspect Ratio of Duct. The ratio of duct height to width is a factor that influences the visible vapor pattern. Figure 24-2 shows two ducts with equal cross section areas, but with different aspect ratios. Air velocities, temperatures, RH and vapor output from the manifolds are all identical. However, in the taller duct the manifold is shorter and its vapor output comes in contact with a much smaller percentage of duct air, causing a longer visible vapor pattern.
- Duct Air Temperature. The temperature of the air flow in the duct also affects the length of the visible vapor pattern. Warmer air produces shorter vapor pattern, as shown in Figure 25-2, Page 25. All other conditions are the same.

Figure 24-1.

Typical dry-bulb (sensible) temperature variations within a duct near the humidifier manifold. As the latent heat of vaporization is released, the temperature increases (in or near the visible vapor the temperature may rise as much as 20° to 30° F). However, as the visible vapor mixes and re-evaporates in the air flow, the heat of vaporization is reabsorbed and the duct air temperature returns to its former level.

Figure 24-2.

3. Insulated Manifolds. While it is true that steam humidification is an isothermal process, several Btu's of energy will be transferred into the air stream when using steam jacketed manifolds. Typically, this will result in less than a 3°F temperature gain. The use of insulated steam jacketed manifolds will reduce this heat transfer for air temperature critical applications.

When insulated manifolds cannot be avoided, considerations need to be taken during the installation of these manifolds. A typical installation of a steam jacketed manifold requires the steam to be injected into the air stream. When insulated manifolds are used, they need to be installed with the steam being injected with the air stream. This is done to ensure moisture will not accumulate on the cool insulation jacket surfaces. However, when the manifolds are installed in this fashion, the added turbulence caused by the air flow travelling around the standard steam jacketed manifold is lost, resulting in a longer visible vapor trail. Figure 25-1 shows the proper installation, and effects on the visible vapor trail.

4. Duct Air Velocity. As the duct air velocity increases, the length of the visible vapor pattern increases. Figure 25-4 shows two sections of air ducts with air velocities of 500 fpm and 2,000 fpm respectively. Other conditions are the same: temperature, duct air humidity, duct dimensions and the amount of steam released from the identical manifolds. The length of the visible vapor pattern is approximately proportional to the velocity of the air in the duct.

5. Number of Manifolds in Duct.

In a large duct section requiring the discharge capacity of two humidifiers, better vapor distribution is achieved by using two manifolds full across the duct and vertically spaced to divide the duct section into thirds. The same effect is achieved by using multiple distribution manifolds from a single humidifier that has adequate capacity to meet the requirements. When a quantity of vapor is distributed among multiple manifolds, the amount released through each manifold is smaller, and more of the duct air comes into contact with the vapor. This effect is shown in Figure 25-5.

6. Duct Air RH. Relative humidity in the duct also affects the visible vapor. The higher the relative humidity downstream of the humidifier discharge, the longer the visible vapor trail. The closer duct conditions are to saturation, the longer the vapor trails are likely to be. Fortunately, duct air RH may be controlled with a duct high-limit humidistat, as shown in Figure 27-2, Page 27.

Basic Application Principles, continued...

Since the use of multiple manifolds reduces the length of visible vapor, their use should be considered whenever any of the following conditions exist at the humidifier location:

- A. Duct air temperature is below 55°F or relative humidity is above 80%.
- B. Duct air velocity exceeds 800 fpm.
- C. "Final" or "high efficiency" filters are located within 10 feet downstream from humidifier.
- D. Height of duct section exceeds 36."
- E. Visible vapor impinges upon coils, fans, dampers, filters (not final), turning vanes, etc. located downstream from humidifier.

Table 26-1 and Figure 26-1 show a typical number of manifolds and typical spacing between them when duct height exceeds 36".

Consult your Armstrong Representative or download Armstrong Humid-A-ware Humidification Sizing and Selection software at www.armstrong-intl.com for specific recommendations regarding your needs.

The piping arrangement for humidifiers with multiple manifolds varies with the location of the manifolds.

When all manifolds are located above the humidifier inlet, manifold piping should be as shown in Figure 26-2.

When one or more manifolds are located below the humidifier inlet, the manifolds should be trapped separately, as shown in Figure 26-3.

Smaller manifolds, when possible to use, reduce the cost of multiple manifold installations. Care must be taken that the humidifier capacity does not exceed the combined capacity of the multiple manifolds. Piping arrangement is shown in Figure 27-3, Page 27.

7. Humidifier Manifold too Close to High Efficiency Filter. Many air handling systems require the use of high efficiency filters (also called "absolute" or "final" filters). These filters remove up to 99.97% of all particles 0.3 micron in diameter,

Table 26-1. Typical Number of Manifolds for Various Duct Heights							
Duct height at humidifier location	No. of manifolds to be installed from one or more humidifiers						
37" to 58"	2						
59" to 80"	3						
81" to 100"	4						
101" & Over	5						

Table 26-2. Typical Particle Sizes of Common Substances

Material	Particle Size in Microns
Particles visible to human eye	10 or more
Human hair	100
Dust	1 to 100
Pollen	20 to 50
Fog (visible steam vapor)	2 to 40
Mist (water spray)	40 to 500
Industrial fumes	0.1 to 1
Bacteria	0.3 to 10
Gas molecules (steam gas)	0.0006

and up to 100% of larger particles. The significance of these filtering qualities is shown in Table 26-2, where particle sizes of common substances are compared.

Figure 26-1.

Figure 26-2.

Figure 26-3.

Strainer Standard Pipe With Threads - One End Only

Since water particles present in visible vapor range from 2 to 40 microns, these particles are trapped by high efficiency filters. Some types of filters absorb moisture and expand, reducing air flow through the filter material. As a result, the static pressure in the duct rises from normal (about 1" water gauge) to as high as 40" wg. When the filter absorbs moisture, it also releases the latent heat of condensed steam into the duct air.

When a humidifier manifold is located too close to an absolute filter, the filter collects water vapor, preventing the moisture from reaching the space to be humidified. Placing the humidifier manifold farther upstream allows the water vapor to change into steam gas, which will pass unhindered through an absolute filter.

Under most circumstances, the water vapor will dissipate properly if the humidifier manifold is located at least 10 feet ahead of the final filter. However, if the duct air temperature is low, air velocity is high or the duct is tall, multiple manifolds may be installed to speed the mixing of steam with the duct air. For additional protection, install a duct high-limit controller just ahead of the final filter to limit the maximum humidity to approximately 90%. (See Figure 27-2)

Figure 27-1.

Specially Designed Steam Panel Systems

For applications with particularly limited downstream absorption distances, custom engineered systems may be considered. The system includes a separator/header and multiple dispersion tube assembly packaged with a control valve, strainer, steam supply drip trap and one or two header drain traps. Each system is customized to provide uniform distribution and shortened non-wetting distance downstream. (See Figure 27-4.)

How Steam Panel Systems Shorten Non-wetting Distance Conditioned steam enters each of the dispersion tubes and flows through steam nozzles that extend from the center of each tube, before discharging through orifices into the airstream.

Airflow first encounters baffle tubes (See Figure 27-1) which influence its flow pattern and increase its velocity. Air traveling around each set of baffle tubes encounters opposing flow of high velocity steam exiting the orifices. The result is more uniform distribution and faster absorption of moisture into the air, resulting in a shorter non-wetting distance requirement than experienced with traditional manifolds or dispersion tubes.

Figure 27-2.

Figure 27-4. Steam Panel System

NOTE: Condensate cannot be lifted or discharged into pressurized return when using a steam panel system.

Figure 27-3.

9

SECTION

Sizing Considerations for Steam Humidifiers

Psychrometric Considerations in Ducted Systems

In practice you may find that areas need humidification but cannot be satisfactorily humidified through the central air handling system. These are often areas having high sensible heat loads that must be balanced with low duct air temperatures to maintain design temperature conditions in the area. Typical examples are data processing rooms or hospital operating rooms where duct air temperatures may be held as low as 50°F to maintain a design condition of 75°F in the room. These low duct air temperatures prevent adding enough moisture to the air to meet design RH requirements in the room—say, 55% RH.

Using these conditions as an example, duct air at 50°F and 90% RH holds slightly less than 3.7 grains of moisture per cubic foot. At 75°F the same 3.7 grains of moisture yield a relative humidity of 39%. To achieve design conditions of 55% RH at 75°F, the air must contain 5.2 grains of moisture per cubic foot—1.5 grains more than it psychrometrically can hold at duct air temperature.

For such applications, booster humidification must be accomplished in the air of the area after it has reached its final temperature. Self-contained electric humidifiers may be used for this purpose, although we would recommend using combined steam humidifier-fan units which can be installed either within the humidified space or remote ducted to the space. For hospital applications, steam humidifier-fan units should include an integral high efficiency (95%) filter to satisfy code requirements.

Determining Humidification Loads for Air Handling Systems

Most engineers prefer to determine humidification requirements psychrometrically on the basis of design conditions and humidification requirements. However, short-cut methods for making these calculations or for checking psychrometric calculations are described below.

Sizing for Primary Humidification

In sizing duct humidifiers for air handling systems, you should know:

CFM of air.

Design outdoor air temperature and relative humidity. Required indoor temperature and relative humidity. Humidifier steam supply pressure.

The formula for load calculation is:	
Humidification Load	CFM (R2-R1) 60
in Ibs/hr	7,000

Where:

CFM	=	air flow of unhumidified air at moisture
		condition R1
R2	=	moisture content of required indoor condition air in
		gr/ft3
R1	=	moisture content of air to be humidified (from outdoor
		condition) in gr/ft3
7,000	=	gr/lb conversion

60 = min/hr conversion

EXAMPLE, assume:

10,000 CFM of outdoor air. Design outdoor air temperature 0°F. Steam pressure 10 psig. Required 40% RH at 70°F. Air controls used.

From Table 29-1,Page 29, for 70°F final temperature, read 2.456 under 40% and opposite 0°F. This is pounds of vapor per hour for 100 CFM. Then 100 x 2.456 = 245.6 or, call it 246 lbs per hour required for design conditions.

A single humidifier can provide this capacity although sequence control for two humidifiers might be needed to avoid duct condensation on very light loads. Length of distribution manifold is governed by width of duct where the humidifier is to be located.

Sizing for Booster Humidifier

Assume that a primary humidifier provides air that will have 40% RH at 70°F, but you want to maintain 60% RH in a laboratory supplied with 900 CFM of the air at 40% at 70°F. Refer to Table 29-3, Page 29, and read 1.38 under 60% and opposite 70°F — 40%. 9 x 1.38 = 12.42 lbs. The humidifier must be able to provide this capacity at steam supply pressure.

Special Conditions

When relative humidities must be figured for temperature conditions other than those given in Tables 29-1 through 29-3, Table 29-5, Page 29, will prove helpful.

New Condition—55% RH at 7	77°F.		
Makeup Air—35% RH at 70°I	F.		
From Table 29-5, Page 29:			
Grains per cu ft			
New Condition			5.54
Less Grains per cu ft,			
Makeup Air			2.82
Grains to be added			2.72
Assume 800 CFM			
<u>800 x 2.72 x 60</u> 7,000	=	18.65 lbs/hr	

NOTE: .857 lb of steam per hour will add 1 grain to 100 CFM. Use of this factor simplifies the above equation to: $8 \times 2.72 \times .857 = 18.65.$

Where Table 29-5, page 29, is used for outdoor air makeup, assume 75% RH for the outdoor air at 0° to -20°F.

Room to Duct Comparisons

When high humidity is needed in a room (70°F-60% RH) and the duct temperature is lower than the room temperature (50°F), the duct high-limit humidistat often acts as the controlling stat. Duct high-limit humidistats should be set between 70% and 90% RH. We do not recommend setting the high-limit stat any higher than 90% RH. Table 29-4, Page 29, shows the maximum room humidity that can be achieved for the given duct conditions.

Humid-A-ware[™] Can Simplify Humidifier Selection

Armstrong offers a free software program that can eliminate the need for time-consuming pencil-and-paper calculations. The Armstrong Humidi-A-ware[™] Humidification Sizing and Selection Software runs on Microsoft® Windows® 9x and Windows® 200x. Once the user-friendly software is loaded into your computer, the program displays on your monitor a series of easy-to-understand questions about your humidification application. You respond to the questions-often with a single keystroke-and Humid-A-ware[™] can:

- Calculate humidification load. •
- Determine correct humidifier model number. •
- Create and customize equipment and data schedule. •
- Indicate psychrometric properties of air. •
- Calculate non-wetting distance. •
- Print the complete humidification application specification.

You may request a free copy of the Humid-A-ware™ Humidification Sizing and Selection software with catalog and drawings available as PDF files by contacting your local Armstrong Representative. Or visit www.armstronginternational.com for complete humidification information.

Table 29-4. Maximum Room RH for Given Duct Conditions

Duct Temperature	Duct Relative Humidity	Room RH @ Temperature °F						
°F	(RH)	68°	70°	72°	75°			
	90%	47%	44%	41%	37%			
50	85%	44%	41%	39%	35%			
	80%	42%	39%	36%	33%			
	90%	57%	53%	49%	44%			
55	85%	53%	50%	46%	42%			
	80%	50%	47%	44%	39%			
	90%	68%	63%	59%	53%			
60	85%	64%	60%	56%	50%			
	80%	60%	56%	52%	47%			

Table 29-5. Grains of Water Vapor per cu ft of Air at Various Temperatures and Relative Humidities

Air	Grains	Grains per cu ft at Relative Humidity Specified								
Temp.	Saturated	35%	40%	45%	50%	55%	60%	65%	75%	
80	11.04	3.86	4.42	4.97	5.52	6.07	6.62	7.18	8.28	
79	10.71	3.75	4.28	4.82	5.36	5.89	6.43	6.96	8.03	
78	10.38	3.63	4.15	4.67	5.19	5.71	6.23	6.75	7.79	
77	10.06	3.52	4.03	4.53	5.03	5.54	6.04	6.55	7.55	
76	9.749	3.41	3.90	4.39	4.87	5.36	5.85	6.34	7.31	
75	9.448	3.31	3.78	4.25	4.72	5.20	5.67	6.14	7.09	
74	9.153	3.20	3.66	4.12	4.58	5.03	5.49	5.95	6.86	
73	8.867	3.10	3.55	3.99	4.43	4.88	5.32	5.76	6.65	
72	8.568	3.01	3.44	3.86	4.29	4.72	5.15	5.58	6.44	
71	8.319	2.91	3.33	3.74	4.16	4.58	4.99	5.41	6.24	
70	8.055	2.82	3.22	3.62	4.03	4.43	4.83	5.24	6.04	
65	6.845	2.40	2.74	3.08	3.42	3.76	4.11	4.45	5.13	
60	5.795	2.03	2.32	2.61	2.90	3.19	3.48	3.77	4.35	
55	4.889	1.71	1.96	2.20	2.44	2.69	2.93	3.18	3.67	
50	4.106	1.44	1.64	1.85	2.05	2.26	2.46	2.67	3.08	
40	2.863	1.00	1.15	1.29	1.43	1.57	1.72	1.86	2.15	
30	1.946	.58	.68	.78	.97	1.07	1.17	1.26	1.46	
20	1.242	.43	.50	.56	.62	.68	.75	.81	.93	
10	.776	.27	.31	.35	.39	.43	.47	.50	.58	
0	.475	.17	.19	.21	.24	.26	.29	.31	.36	
-10	.285	.10	.11	.13	.14	.16	.17	.19	.21	
-20	.166	.06	.07	.07	.08	.09	.10	.11	.12	

Steam required to add 1 gr per cu ft to 100 CFM: $100 \times 60 = 6,000$ cu ft per hour or 6,000 grains per hour.

Table 29-1. 70°F Primary Humidification Pounds of vapor required per hour per 100 CFM to secure desired RH at 70°F (outside air 75% saturated)										
Outdoor	oor Relative Humidity Desired									
Temp.	35%	40%	45%	50%	55%	60%	65%	70%		
*30	1.165	1.510	1.855	2.200	2.545	2.891	3.236	3.581		
20	1.618	1.963	2.308	2.653	2.998	3.344	3.689	4.034		
10	1.918	2.263	2.608	2.953	3.298	3.644	3.989	4.334		
0	2.111	2.456	2.801	3.146	3.591	3.837	4.182	4.527		
-10	2.233	2.578	2.923	3.268	3.613	3.959	4.304	4.649		
-20	2.309	2.654	2.999	3.344	3.689	4.035	4.380	4.725		

Table 29-2. 75°F Primary Humidification Pounds of vapor required per hour per 100 CFM to secure desired RH at 75°F (outside air 75% saturated)										
Outdoor		Relative Humidity Desired								
Temp.	35%	40%	45%	50%	55%	60%	65%	70 %		
*30	1.584	1.989	2.394	2.799	3.204	3.609	4.014	4.419		
20	2.034	2.439	2.844	3.249	3.654	4.059	4.464	4.869		
10	2.334	2.739	3.144	3.549	3.954	4.359	4.764	5.169		
0	2.529	2.934	3.339	3.744	4.149	4.554	4.959	5.364		
-10	2.652	3.057	3.462	3.867	4.272	4.677	5.082	5.487		
-20	2.727	3.132	3.537	3.942	4.347	4.752	5.157	5.562		

*When outdoor design temperatures exceed 30°F, use Table 30-5, entering the table with both outdoor design temperature and outdoor design RH.

Table 29-3. Booster Humidification Pounds of vapor required per hour per 100 CFM to secure desired relative humidity with no change in air temperature										
Initial C	ondition			Relative	Humidity	Desired				
Temp.	RH	40%	45%	50%	55%	60%	65%	70%		
70	35%	.345	.690	1.03	1.38	1.72	2.07	2.42		
70	40%		.345	.69	1.03	1.38	1.72	2.07		
72	35%	.368	.728	1.10	1.46	1.83	2.20	2.57		
72	40%	_	.368	.73	1.10	1.46	1.83	2.20		
75	35%	.405	.810	1.22	1.62	2.03	2.43	2.84		
75	40%	_	.405	.81	1.22	1.62	2.03	2.43		

 $[\]frac{6,000}{7,000}$ = .857 lb/hr

Sizing Considerations for Steam Humidifiers, continued...

Economizer Cycles

Fan coil air systems which mix return air and outside air in varying amounts to obtain a given final mixed air temperature require special consideration in determining maximum humidification loads.

Systems of this type usually use a fixed minimum amount of outside air (approximately 10%-30%) when outside air temperature is at a maximum design (-10°F). As the outside air temperature increases, more outside air is mixed with return air to achieve a final mixed air temperature (55°F). Since humidification load is a function of the amount of outside air introduced (plus its moisture content) the maximum humidification requirement will occur at some outside air temperature other than maximum design.

Conditions

Tables 30-1 and 30-3 below give the percent of outside air required to maintain desired mixed air temperature when outside air temperature is as shown. Table 30-1 is used when return air (room air) temperature is at 70°F. Table 30-3 is for 75°F return air systems.

Tables 30-2 and 30-4 can be used to determine maximum humidification load at the given conditions of mixed air temperature and required RH, assuming 40% RH OSA and 10% minimum OSA.

NOTE: Consideration must be given to over-saturating conditions in lower temperature systems.

EXAMPLE

Given conditions that 70°F return air temperature is mixed with outside air to produce 55°F constant mixed air temperature in duct. The design of the space being conditioned is 70°F at 40% RH. Total volume of air through the fan system is 40,000 CFM. Determine maximum humidification load.

From Table 30-2 with 55°F mixed air temperature and 40% RH space design, the maximum humidification load is 11.4 pounds per 1,000 CFM of total air volume. This maximum load occurs when the outside air temperature is at 55°F. Multiplying 11.4 x 40 results in total pounds per hour required in the 40,000 CFM system. Therefore maximum humidification load becomes 456 pounds of vapor per hour.

Table 30-1. With	Table 30-1. With 70°F Return Air														
Desired Mixed	ed % Outside Air Required at Temperature Shown														
Air Temp. °F	-10°	0°	5°	10°	15°	20°	25°	30°	35°	40°	45°	50°	55°	60°	65°
50	25	29	31	33	36	40	45	50	57	67	80	100	—	—	_
55	19	21	23	25	27	30	33	36	43	50	60	75	100	—	—
60	12	14	15	17	18	20	22	25	29	33	40	50	67	100	—
65	6	7	7	8	9	10	11	13	14	16	20	25	33	50	100

Table 30-2. With 70°	Table 30-2. With 70°F Return Air											
Max. Humidification Load (given in lbs. of vapor/hr/1,000 CFM of total air) Occurs at Outside Air Temp. Shown for Given Inside RH												
Inside RH 30% 35% 40% 45% 50% 55%												
Mixed Air Temp. °F	Outside Air °F	Max. Load	Outside Air °F	Max. Load	Outside Air °F	Max. Load	Outside Air °F	Max. Load	Outside Air °F	Max. Load	Outside Air °F	Max. Load
50	42	7.7	50	10.7	50	14.2	50	17.7*	50	21.2*	50	24.7*
55	42	5.8	52	8.0	55	11.4	55	14.9	55	18.4	55	22.0*
60	42	3.8	52	5.4	60	8.2	60	11.7	60	15.2	60	18.7
65	0	1.9	52	2.7	65	4.4	65	7.9	65	11.4	65	15.0

Table 30-3. With	75°F Ret	urn Air													
Desired Mixed	d % Outside Air Required at Temperature Shown														
Air Temp. °F	-10°	0°	5°	10°	15°	20°	25°	30°	35°	40°	45°	50°	55°	60°	65°
50	30	33	36	38	42	45	50	56	62	71	83	100	—	—	—
55	23	26	28	31	33	36	40	44	50	57	67	80	100	—	_
60	18	20	21	23	25	27	30	33	37	43	50	60	75	100	_
65	12	13	14	15	16	18	20	22	25	29	33	40	50	67	100

Table 30-4. With 75°F Return Air

		•										
Max. Humidification Load (given in lbs. of vapor/hr/1,000 CFM of total air) Occurs at Outside Air Temp. Shown for Given Inside RH												
Inside RH	30	30% 35% 40% 45% 50% 55%										
Mixed Air Temp. °F	Outside Air °F	Max. Load	Outside Air °F	Max. Load	Outside Air °F	Max. Load	Outside Air °F	Max. Load	Outside Air °F	Max. Load	Outside Air °F	Max. Load
50	46	11.2	50	15.2	50	19.3*	50	23.5*	50	27.7*	50	31.9*
55	46	8.9	55	12.4	55	16.6	55	20.8*	55	24.9*	55	29.1*
60	46	6.7	60	9.3	60	13.4	60	17.5	60	21.7	60	25.9*
65	46	4.5	65	6.2	65	9.6	65	13.7	65	17.9	65	22.1*

*Humidification loads will exceed 90% RH in duct at temperature indicated. Booster humidification is recommended.

Steam Humidifiers in Central Systems

Proper location, installation and control of humidifiers is essential to achieve totally satisfactory, trouble-free performance. The primary objective is to provide the required relative humidity without dripping, spitting or condensation. Liquid moisture, even in the form of damp spots, cannot be tolerated in the system. Aside from the hazards to the structure caused by water in the ducts, there is an even more critical health hazard if breeding grounds are provided for bacteria.

In addition to the need for proper humidifier design and performance, several other factors deserve close attention. The humidifier must be the proper capacity for the system; properly located in relation to other components of the system; properly installed and piped in a manner that will not nullify all the other precautions taken. In sizing humidifiers you should be sure that they deliver the amount of steam per hour called for in the design calculations. Steam pressure to the humidifiers must be kept relatively constant to assure sufficient capacity. Doublecheck to be sure you're not trying to put more moisture into the air stream than it can hold at its existing temperature. Use of Psychometrics can be a helpful aid in determining moisture potential in your application.

Proper location of humidifiers in the system is most important, although sometimes the design of the system makes this difficult to achieve. The following examples of typical systems demonstrate proper humidifier location.

System 1

This is a simple ventilating system. We assume final duct air temperature to be slightly above desired room temperature. The desirable location of the steam jacketed distribution manifold of the primary humidifier is downstream from the supply fan. This humidifier would be sized for maximum design load. If the humidifier were located between the coil and the fan, it might interfere with the temperature sensing bulb. The indicated use of a high-limit duct humidity controller shown is optional. It is advisable if the capacity of the humidifier at design loads could possibly overload air when outside air moisture content is higher than the design. The high-limit controller should be 10 to 12 feet downstream from the humidifier. Place the high-limit controller where it will see the same temperature as the humidifier. A cooler temperature at the humidifier would allow saturation if the high-limit controller were in warmer air.

This is shown as a pneumatic control system. The fan switch activates the control system and the electric pneumatic relay bleeds air from the humidifier actuator diaphragm when the fan is off. The following examples also show pneumatic control—if the systems were electric, control locations would remain the same.

Features of this system and the following systems include:

- A. Accurate control is possible because of immediate response of steam humidifier.
- B. Control can be modulating electric or pneumatic (shown).
- C. No need for drain pans or eliminator plates; makes locations of humidifier more flexible.
- D. Addition of moisture is accomplished with no appreciable change in duct dry-bulb temperature.
- E. The humidifier's integral steam jacketed control valve with parabolic plug is accurately sized to meet capacity requirements.

Glossary of Symbols

EA	_Exhaust Air
E-P relay	_Electric-Pneumatic relay
Η	_Humidity controller
Μ	_Damper motor
MA	_Mixed air
NC	_Normally closed
NO	_Normally open
OSA	Outside Air
RA	_Return Air
Т	_Temperature Controller

Steam Humidifiers in Central Systems, continued...

System 2

This is a typical 100% outside air system with preheat and reheat coils. The preheat coil heats outside air to a duct temperature controlled at 50° to 60°F. The reheat coil adds more sensible heat depending on the space heat requirement. Here the desirable location for the primary humidifier is downstream from the reheat coil to introduce moisture into the highest level of dry-bulb air temperature.

Note the humidity controller location in the exhaust air duct. When a good pilot location for a humidity controller is not available in the space humidified, one placed in the exhaust air duct as close to the outlet grille as possible serves the purpose very well.

Again, the high-limit controller is optional but generally recommended.

Glossary of Symbols									
EA	Exhaust Air								
E-P relay	Electric-Pneumatic relay								
Η	_Humidity controller								
Μ	Damper motor								
MA	Mixed air								
NC	Normally closed								
NO	Normally open								
OSA	Outside Air								
RA	Return Air								
Т	Temperature Controller								

System 2

Figure 32-1. 100% OSA heat-vent system with primary humidification.

System 3

This system is similar to the previous one. It also shows 100% outside air and preheat and reheat coils. But here two humidifiers are used and are controlled in sequence from a single space or exhaust air duct humidity controller. The two humidifiers are indicated as V-1 and V-2.

V-1 will deliver one-third of the total capacity with a 4 to 7 psig spring range. V-2 is sized for two-thirds of the capacity, with a spring range of 8 to 13 psig. This sequencing control arrangement allows closer moisture input control, particularly when operating conditions vary considerably from design, thus preventing the possibility of overrun and duct saturation. With milder outdoor air conditions, V-1 can satisfy space conditions by introducing only a portion of the total design capacity.

As the outdoor air becomes colder and drier, humidifier V-1 will not satisfy demand so the V-2 unit starts to open in response to the additional demand. This gives much closer control in all kinds of outside air conditions, as well as preventing a supersaturated condition in the duct at minimum design. Again the high-limit controller is optional but desirable.

System 3

Figure 32-2. 100% OSA heat-vent system with sequence control on primary humidification.

System 4

Here is another 100% outside air system. In this case, the air leaving the preheat coil is held at a constant dry-bulb temperature in the 55° to 60°F range. This system indicates the use of two humidifiers—one as a primary humidifier and the second as a booster or secondary humidifier.

This system allows a primary humidifier to be controlled directly from a duct humidity controller at a level high enough to maintain a space condition of about 35% RH at a space temperature of 75°F. The booster unit, located downstream from a reheat coil and fan, can then be sized and controlled to produce the necessary moisture to raise the space RH from 35% to some higher condition, say 55%, where and when desired. This allows individual humidity control for each zone at a higher level than otherwise possible.

This is an important combination because the use of the primary unit allows the capacity of the booster unit to be small enough so that super saturation and visible moisture may not occur, even when the units are located as close as three feet from the discharge grille. For more information, consult your local Armstrong representative or download Armstrong's Humid-A-wareTM Humidflication Sizing and Selection software at www.armstrong-intl.com.

In this typical air handling system, it would not be psychrometrically possible to introduce enough humidity into the air temperature downstream from the preheat coil to give the maximum required condition in excess of 35% RH in the space. See Example 2, Page 15. The use of both primary and booster humidifiers is the only method for controlling the relative humidifier is pace at any level above approximately 35%.

System 4

Figure 33-1. 100% OSA heat-vent system with primary and booster humidification.

System 5

Here is a single zone packaged heating and ventilating unit with internal face and by-pass dampers. The humidifier should be positioned downstream from the mixing dampers so that moisture is introduced into the final leaving air temperatures of the heating ventilating unit. This location permits a high level of space relative humidity to be maintained without duct saturation. This humidifier location is preferred compared to just ahead of the coils because of higher air temperature and better mixing conditions. Again a high-limit controller is recommended to prevent possible duct saturation, installed 10 to 12 feet downstream from the humidifier.

System 5

Figure 33-2. Single zone heat-vent unit with internal face and by-pass dampers—primary humidification.

Steam Humidifiers in Central Systems, continued...

System 6

This is a multi-zone heating/ventilating unit with face and bypass dampers on each zone. The example shows a method and location for primary humidification, but it should be restricted to design conditions of "comfort humidification" of, say, 35%. These systems are normally package units and it is standard practice to incorporate the humidifier ahead of the coils as shown. This location of the humidifier will provide equal moisture distribution in hot or cold decks before heat zone takeoff, but it does limit the amount of moisture that can be added to the 55° air. Design conditions above 35% RH risk impingement of visible vapor on the coils. See Example 2, Page 15.

With these units, it is sometimes possible to use two humidifiers at this location with baffles between zone takeoff and sized for different conditions of relative humidity in their respective sections. Booster humidifiers can be used in individual zones for a higher relative humidity where required.

Glossary of Symbols										
EA	Exhaust Air									
E-P relay	_Electric-Pneumatic relay									
Η	_Humidity controller									
Μ	_Damper motor									
MA	_Mixed air									
NC	_Normally closed									
NO	_Normally open									
OSA	_Outside Air									
RA	_Return Air									
Т	_Temperature Controller									

System 6

Figure 34-1. Multi-zone heat-vent unit with internal face and by-pass dampers for each zone—primary humidification.

System 7

Here is a high-velocity dual duct system with primary and booster humidification shown. Like System 6, the primary humidifier is capable of providing "comfort humidification" only— 30% to 35% RH. Because of space limitations, the primary humidifier, sized to maintain a duct condition of, say, 90% RH in the mixed air temperature, can be located as shown ahead of the fan. The humidifier should be located as far as possible upstream—no closer than three feet from the face of the supply fan—to ensure good air mixing and to allow the duct controller ample time to sense the condition short of saturation. The use of multiple manifolds will help provide good air mixing.

Note that the primary humidifier in this case should not be controlled from a space controller or an exhaust air duct controller, but rather from the supply duct controller as indicated. Since each zone has its own temperature-controlled mixing box, a location of the primary humidifier controller in the space or exhaust duct could not provide accurate control. Further, the distance between the humidifier and the controller could cause delayed response or override.

System 7

Figure 34-2. High-velocity dual duct system with primary and booster humidification.

Packaged Air Conditioner Installations

Humidifiers frequently must be installed in packaged central station air conditioners. This can present some unusual location requirements due to the close quarters within the packaged units.

In the horizontal discharge draw-thru type packaged unit shown in Figure 35-1, the recommended location of the humidifier is at the fan discharge. In some instances this may not be possible. Note that with the alternate location, the humidifier manifold is installed to discharge upward into the area of greatest air turbulence. This permits the air to achieve optimum mixing before reaching the fan blades. A high-limit controller, set at 80%, should be located as shown when the humidifier is installed at the alternate location. Recommended humidifier locations for a vertical discharge draw-thru type air conditioner (Figure 35-2) are identical to the horizontal unit. If the alternate location must be used, a highlimit controller set at 80% is desirable. The humidifier manifold should discharge upward, as with the horizontal discharge unit.

Figure 35-1. Horizontal Discharge With humidifier installed at recommended location, high-limit duct controller should be set at 90% RH maximum—alternate location at 80% RH maximum.

Figure 35-2. Vertical Discharge

Steam Humidifiers in Central Systems, continued...

In a low pressure blow-thru type, multi-zone, packaged air conditioner (Figure 36-1), the recommendations are much the same. However, to avoid overloading the cold deck and to avoid impingement of discharge, the manifold is installed to discharge upward instead of directly into the fan discharge.

As with the draw-thru units, a high-limit controller set at 90% should be installed. In a high pressure blow-thru type packaged unit (Figure 36-2), again the recommended location is as close to the fan as possible, with the manifold discharging directly into the fan discharge. A high-limit controller set at 90% is desirable.

In either high or low pressure systems, where the humidifier is installed at the alternate location, set the high-limit humidity controller at 80% RH.

Figure 36-1. Low pressure system

Figure 36-2. High pressure system

Installation Do's and Don'ts

In discussing the systems, we mentioned a few location "do's and don'ts." Let's review these precautions that may help to keep you out of trouble. For example, whenever possible, install the distribution manifold downstream from coils. If you have more than three feet of distance available between the manifold and the coil on the upstream side, the manifold can be installed at this location (greater than three feet for higher velocity systems).

When it is necessary to place the humidifier in the coil section ahead of the fan, locate the manifold in the most active airflow and as far upstream from the fan inlet as possible.

Don't risk restriction of the airflow in ducts 8" or less in depth. Use an expanded section as shown.

When it is necessary to place the humidifier discharge into a packaged multi-zone air handling system, install the distribution manifold into the center of the active air flow and as close to the fan discharge as possible.

Do not install a distribution manifold closer than 10 feet upstream from a temperature controller or you may get false signals.

The distribution manifold should never be placed within three feet of an air fan intake. The best location is at the fan discharge.

Whenever possible, install the distribution manifold into the center of the duct.

Always install distribution manifolds as far upstream from discharge air grilles as possible—never less than three feet upstream.

Always size and install the distribution manifold to span the widest dimension of the duct section.

Always select the stream distribution manifold length that will span the maximum width of the duct.

The manifold should never be installed vertically downward from the humidifier. This presents a condensate drainage problem in the jacket of the manifold. Vertical upward installation is permissible.

NOTE: All dimensions shown in the above figures are based on duct temperature of 65°F or higher and duct velocities of 800 ft/min, or lower. If duct air is cooler or velocities are higher, these dimensions should be greater or multiple manifolds considered.

Application of Unit Humidifiers for Direct Discharge

A survey of your requirements should be taken to determine the amount of steam needed for humidification, the number, size and type of units required, and the location of both humidifier and humidity controllers.

Sizing and Location with Natural Ventilation

These are the average industrial humidification applications with:

Room temperatures—65° to 80°F. Relative humidities—35% to 80%. Natural ventilation—i.e., infiltration around windows and doors.

Selection Data Required

Minimum Outdoor Temperature: For most jobs, figure 10°F above the lowest recorded temperature for your locality. The lowest temperatures are seldom encountered for more than a few hours.

- Indoor Temperature
- RH Desired
- Pressure of Steam Available for Humidification
- Number of Cubic Feet in Room
- Air Changes Per Hour: air changes taking place under average conditions exclusive of air provided for ventilation or regain of hygroscopic materials.

Rooms, 1 side exposed	1
Rooms, 2 sides exposed	1-1/2
Rooms, 3 or 4 sides exposed _	2
Rooms with no windows or	
outside doors	1/2 - 3/4

Typical Problem:

Design outdoor temperature	0°F
Indoor temperature	70°F
RH required	40%
Air changes per hour	2
Steam pressure available	5 psi

Room size 400' x 160' with 10' ceiling Natural ventilation Heated by: Unit heaters-fan on-off control **Step I:** Steam required for humidification. Our room contains $(400' \times 160' \times 25')$ or 1,600,000 cu ft.

From the 70°F Table 38-1, read across from 0°F outside temperature to the 40% RH column where you find the figure .409 lbs of steam/hour per 1,000 cu ft of space for each air change. Then, 1,600 times .409 times 2 equals 1,309 lbs of steam/hour installed humidification capacity required.

Step II: Electric or air-controlled units. The large floor area calls for multiple humidifiers. No explosion hazard has been specified so use of air-controlled units is not required. Electric units are recommended.

Step III: Number of humidifiers for job. Divide steam required by capacity of humidifiers at steam pressure available.

Step IV: What size humidifier to use. For this example, a large number of smaller capacity units is recommended. Larger capacity units could cause condensation on the low ceiling. Also, because of the large floor area, the humidistats for fewer units would be widely spaced which could result in less accurate control than desirable.

Step V: What type humidifier to use. In this example, integral fan units are preferable to steam jet units installed in conjunction with unit heaters. Since the unit heater fans are on or off to control temperature, it follows that the humidistat may call for steam when the nearest unit heater is not running. With the low ceiling, the discharge from a steam jet humidifier might rise to the ceiling and produce condensation. Therefore, the integral fan type should be used.

Step VI: Location of humidifiers. Several patterns are possible, and actual location can usually conform with the existing steam supply and return lines to make an economical installation with a minimum of new piping.

Pounds of steam per hour, per air change for each 1,000 cu ft of space to secure desired indoor relative humidity at 70°F with various outdoor temperature (outside air 75% saturated).

Table 38-1.	rable 38-1. 70°F Humidification											
Outdoor		70°F - Relative Humidity Desired Indoors - 70°F										
Temp.	25%	30%	35%	40%	45%	50%	55%	60 %	65%	70 %	75%	
*30	.079	.136	.194	.251	.309	.367	.424	.482	.539	.597	.654	
20	.154	.212	.269	.327	.385	.441	.499	.557	.615	.672	.730	
10	.204	.262	.319	.377	.434	.492	.549	.607	.665	.722	.780	
0	.237	.294	.352	.409	.467	.524	.582	.639	.697	.754	.812	
-10	.257	.314	.372	.430	.487	.545	.602	.660	.717	.775	.832	
-20	.270	.327	.385	.442	.500	.557	.615	.672	.730	.787	.844	

In our problem of a 400' x 160' x 25' room, there would likely be steam lines along both sides of the room, and humidifiers can be located as shown in black in Figure 39-1. If the supply lines run down the center of the room the line pattern would be practical. Runouts to integral fan units in a 160' wide room would be about 20' long. If the room were only 60 or 80 feet wide, runouts need be no longer than required for actual hookup.

Step VII: Location of humidistat. This should be from 20 to 30 feet away from the humidifier and slightly to one side of the air stream from the unit. The humidistat should "see" its humidifier and be in "active" air. Do not hide it behind a post or in the channel of an H-beam. It must get a good sample of the air to control the humidity.

Sizing and Location with Forced Ventilation

Typical Jobs: Mill and sanding rooms in furniture factories. Here, the problem of selecting and installing humidifiers is much the same as previously described except for:

1. Determining the number of air changes.

2. Location of humidifiers and humidistats.

Air Changes: These can be determined from the exhaust fans' capacities. The cubic feet per hour capacity of the fans, divided by the cubic feet of space to be humidified, will give the number of air changes.

Where the capacity of fan or fans is not known, air changes can be measured with velometer readings at all open doors, elevator shafts, etc. leading to the room and with fans operating at full capacity. Your Armstrong Representative can determine air changes for you.

Humidifier Location: Bear in mind that humidifiers will have to control the humidity 24 hours a day, seven days a week during the heating season. Exhaust fans may operate only 40 hours or 80 hours per week. Thus the humidifiers and humidistats must be located for good distribution of humidity during fan-off periods as well as when the fans are operating.

Figure 39-1. Where practical, locate humidifiers to minimize piping. Locations shown in black where steam supply lines are along outer walls; in white where supply is in center of room.

Figure 39-2. Outlines a typical requirement. Schematic layout of humidifiers in wood-working plant where exhaust fans are used. Arrows indicate air flow induced by fans. Humidifiers are sized for load conditions imposed by fan. Humidifiers are located to give uniform distribution of humidity when fans are off or when fans are running.

Pounds of steam required per hour per air change for each 1,000 cu ft of space to secure desired indoor relative humidity at 75°F with various outdoor temperatures (outside air 75% saturated).

Table 39-1.	Table 39-1. 75°F Humidification											
Outdoor	75°F - Relative Humidity Desired Indoors - 75°F											
Temp.	25%	30%	35%	40%	45%	50%	55%	60%	65%	70%	75%	
*30	.129	.196	.264	.331	.399	.466	.533	.601	.668	.736	.803	
20	.204	.271	.339	.406	.474	.541	.609	.676	.744	.811	.879	
10	.254	.321	.389	.456	.524	.591	.659	.726	.794	.861	.929	
0	.286	.354	.421	.489	.556	.624	.691	.759	.826	.894	.961	
-10	.307	.374	.442	.509	.577	.644	.711	.779	.846	.914	.981	
-20	.319	.387	.454	.522	.589	.657	.724	.792	.859	.927	.994	

*Note: When outdoor design temperatures exceed 30°F, use Table 7-1, Page 7.

Application of Unit Humidifiers for Direct Discharge, cont.

Sizing for High or Low Temperature Humidification

Where air temperatures are well above 75°F or below 70°F, it is impractical to use Tables 38-1, Page 38, or 39-1, Page 39. Humidification requirements must be figured from Table 7-1, Page 7, showing grains of water per cu ft of saturated air at various temperatures. Typical problem: How much steam per hour is required to humidify 60,000 cu ft of space with four air changes per hour to 40% RH when the air temperature is 90°F? Assume that any makeup air will come from outdoors at 0°F, 75% saturated.

 90°F saturated air = 14.9 gr/cu ft saturated = 5.976 gr/cu ft at 40% RH

Outdoor air 0°F saturated = .475 gr/cu ft

75% saturated = .356 gr/cu ft

5.976 minus .356 = 5.620 grains to be added per cu ft

 5.620×1.000 = .803 lb per M cu ft per air change 7,000

NOTE: 7,000 gr = 1 lb

With four air changes in a 60,000 cu ft room, then $.803 \times 60 \times 4$, or 193 lbs steam would be required per hour. Humidifier capacity required for temperatures below 70°F is determined in exactly the same manner.

NOTE: For high temperature air in particular, air volume changes dramatically with RH. Armstrong Humid-A-ware[™] Humidification Sizing and Selection Software will provide greater accuracy in humidifier sizing for these applications.

Explosion Hazard Humidification

Sizing air-operated humidifiers for areas where explosion hazard exists is done exactly as for other requirements except that they should be sized for the most severe conditions of makeup air, RH required and minimum steam pressure.

Humidifiers should be located to get the best possible dispersal and distribution of vapor in the area.

Special Purpose Industrial Applications

In some industrial operations, a stratum of high relative humidity is required in close proximity to a fast moving sheet or film of paper, thin gauge plastic, fabric, cellophane, etc. The objective may be to prevent accumulation of static electricity charges, or to prevent loss of moisture from the material. If the sheet or film is hot, as it very well might be, it tends to give up its moisture very quickly. By using steam shower humidifiers expressly adapted for this application to create a laminar zone of high humidity adjacent to the sheet, moisture loss is prevented and moisture content of the material is properly maintained.

For this application, the humidifier must be interlocked with the drive of the machine, and it is essential that the steam be discharged in a dry state, with no water droplets or liquid spray.

Considerations in Selection of Cool Fog Systems

Unlike other Armstrong humidification products, selection and sizing of Cool Fog system components is performed almost exclusively "in house." The selection process requires detailed information for each application that must be supplied by the customer.

Water Quality and Materials of Construction:

Cool Fog Systems (CF) may be used with potable tap water if the levels of calcium and other dissolves solids are not excessive. If water testing indicates that purification is required, a reverse osmosis water treatment system should be considered. The "CF" designation indicates that the fogger manifold bars are made of copper tubing with 316 SS foggers, and the water valves are made of brass.

When de-ionized water is required for laboratory or clean room humidification, Pure Fog Systems (PF) should be used. The "PF" designation indicates that the fogger manifolds, bars, foggers, and water valves are made of stainless steel.

Figure 41-1. Air Handling Unit Side View

Drain Pan

Figure 41-2. Fog Chamber Side View

Fogger Location:

Foggers may be applied in air handlers or ducts where the air velocity is less than 750 FPM. For duct applications, if the air velocity is in excess of the recommended maximum, a fogging chamber with fog eliminator and drain pan should be considered.

When a fogging system cannot be practically applied to the existing mechanical system, a Direct Area Discharge Fogging System (DDF) might be the logical alternative. The "DDF" designation indicates that foggers are individually located within an enclosed area such as a warehouse or factory floor, and fog is directly discharge into the open space.

Control Types:

The Standard Proportional Control System (STD) simultaneously modulates both air and water output pressures to modulate humidification output while maintaining a fixed air/water differential. This type of system is most appropriate for small to medium air handler systems where compressed air consumption is not a critical consideration.

For larger air handler systems where compressed air consumption can be a significant expense, the Variable Differential Control System (VDC) should be considered. Because the "VDC" system proportionally reduces the air/water output differential along the upper half of the control range, the compressed air consumption is reduced by as much as 50% reducing the required air compressor size and operating cost.

For air handlers with stable loads and fixed outside air percentages, the HumidiComp (HC) "On/Off" Control System is an economical alternative to the STD or VDC systems.

Direct Area Discharge Fogging systems (DDF) are controlled by "ON/OFF" control panels, which do not modulate the fog output as in the Standard Proportional or Variable Differential Control panels.

All control panels require a control input (on/off, 4-20 mA, or 0-10 vdc) that is typically supplied by the Building Automation System.

Figure 41-3. Direct Area Discharge Fogging System (Side View)

Basic Application Principles

A properly applied fogging system will meet the following requirements:

- 1. Air entering the fogging chamber must be warm enough and slow enough.
- 2. Adequate evaporation distance must be available.
- 3. The compressed air plant must supply adequate PSIG and SCFM of clean air.
- 4. The water system must supply adequate PSIG and GPM of clean water.
- 5. Un-evaporated water and dissolved solids need to be removed from the air stream.

Air Temperature and Preheat:

As illustrated in Figure 18-1, Page 18, when atomized water is evaporated into an air stream, there is a dry bulb cooling effect. The magnitude of the dry bulb cooling depends on the evaporation rate of the water. This is determined by the actual output of the fogger heads and the evaporation efficiency.

In order to discharge the supply air at the desired dry bulb temperature and relative humidity, the air entering the fogging chamber (i.e. mixed air) must be mixed or preheated to the wet bulb temperature of the desired supply air. This requires that the mixed air damper and/or preheat coil be proportionally controlled.

Although each application is different, minimum incoming air temperature requirements for air handlers with economizer are 60-65°F. For make-up air units, it is not unusual for air to be pre-heated to 100°F or more.

Air Velocity:

The air velocity in the fogging chamber of an air handler must be slow enough to allow adequate time for the atomized water to evaporate before leaving the fogging chamber and impinging on any downstream surfaces (500 FPM or less is optimal). See Figure 41-1, Page41.

Airflow in ducts is typically too fast. Therefore, duct applications usually require a "Fogging Chamber" that is of adequate height and width to reduce the FPM to an acceptable level, and of adequate length to allow the fog to evaporate. See Figure 41-2, Page 41.

Evaporation Area:

Because there is usually little air movement near the fogger heads in Direct Area Discharge Fogging (DDF) applications, 200 cubic feet of free space and a 10 foot vertical drop to the nearest surface are minimum requirements. See Figure 42-2.

Evaporation Efficiency AND Fog Elimination:

Some applications do not allow enough fog chamber length to assure 100% evaporation of the fog.

Figure 42-1. Standard Proportional Control/ Variable Differential Control

Figure 42-2. Direct Area Discharge Area View

For air handler or duct installations where no un-evaporated fog can be allowed downstream of the fogging chamber, a cooling coil with drain pan or a "fog eliminator" with drain pan will be required. See Figure 41-2, Page 41.

No practical means of catching unevaporated fog exists for direct area discharge applications. Therefore, direct area discharge (DDF) systems should not be used in clean room environments where unevaporated fog could cause potential damage to sensitive processes or products.

Water Supply:

Adequate water pressure and capacity (GPM) must be consistently available to supply the waterside of the fogger manifold bars.

Only in rare cases is tap water determined to be of adequate purity for fogging. In such cases an air filter needs to be installed downstream of the fogging chamber to catch dissolved solids that do not evaporate with the water.

Compressed Air Supply:

Clean air must be available in sufficient capacity (SCFM) and pressure to supply the airside of the fogger manifold bars. An oil filled, rotary screw compressor with pre-filter and 4-stage final filter is a minimum requirement.

Instrument Air:

Standard proportional and variable differential control panels require an "instrument air quality" pneumatic supply. ON/OFF Panels require no pneumatic supply.

Figure 43-1. Standard Proportional Control (STD) or Variable Differential Control (VDC)

Cool Fog Sizing

Sizing humidification loads for fogger systems differ from steam humidification systems in several ways.

Fogging humidification systems require outside air to be preheated, or mixed, to the WB temperature of the supply air.

Steam humidification systems require outside air to be preheated, or mixed, to the DB temperature of the supply air.

Due to the dry bulb cooling effect of fogging systems, air must be mixed or preheated to a higher dry bulb temperature than with steam systems. While this does not effect the actual load, it is an important part of the psychrometric evaluation and it does impact the sizing of the pre-heat coil.

Example 1: 100% outside air, assume:

10,000 CFM outside air at 0°F and 40% RH needs to discharge from an air handler at 55°F and 49% RH in order to maintain a 70°F @ 40% RH in the zone.

As in the steam sizing example on Page 28, The load is 246 lbs./hr for both steam and fogger humidification systems. However the air for the steam humidification system only needs to be heated to 55°F before steam is injected into the air stream. For the fogging system, the air needs to be preheated to 82°F in order to discharge at the desired conditions.

Figure 44-1. Example 1: 100% Outside Air

Economizer Cycles:

Because fogging systems require outside air to be mixed, or preheated, to the WB temperature of the supply air, less outside air is required to achieve the supply air temperature. This results in a significant reduction in the humidification load.

Example 2: economizer, assume:

40,000 CFM of air in an economizer system with 10% minimum outside air needs to discharge at 55°F to maintain 70°F in the space. The desired space design is 40% RH and the outdoor air design is 40% RH. As in the economizer example on Page 30, the calculated steam load is 456 lbs./hr.

Due to the cooling effect of the fogging system, the required mixed air temperature needs to be 61° F to achieve a discharge temperature of 55°F. Due to the reduction in outside air, the grains added per pound of dry air is reduced from 17.8 for steam to 10 resulting in a load of 258 lbs./hr maximum load for the fogging system.

Figure 45-1. Example 2: Economizer

Note: Psychrometric chart representations do not include fan heat gains, duct losses, infiltration losses or cooling coil dehumidification.

Cool Fog Sizing, continued...

Minimum Outside Air and Preheat

When the minimum outside air requirement drives the maximum mixed air temperature below the dry bulb temperature required to achieve a discharge air temperature of 55° F, preheat will be required. This typically happens when outside air requirements are above 20% or the outside air design is below -10° F.

Example 3: preheat, assume:

40,000 CFM of air in an economizer system with 25% minimum outside air needs to discharge at 55°F to maintain 70°F in the space. The desired space design is 40% RH and the outdoor design is -20 F at 40% RH.

The pschycrometric chart indicates that the maximum mixed air temperature that can be attained when the outside air temperature is -20° F is 47.5°F. In this case, the maximum humidification load for both the steam and the fogger system is the same (i.e. 280 lbs/hr). The steam system needs to be preheated to 55°F, whereas the fogger system needs to be preheated to 62.5°F in order to achieve a discharge air temperature of 55°F.

Example 4: Direct Area Discharge, assume: Room size 400' x 160' with a 25' ceiling Natural ventilation Heated by unit heaters

The steam load is calculated exactly the same way as in the steam example on Page 38 (1,309 lbs./hr).

The maximum recommended output per fogger head is 25 lbs./hr, so this application would require 53 fogger heads. Foggers should be evenly distributed and located where adequate evaporation area and vertical drop to the nearest surface are within the recommended minimums. See Figure 42-2. Page 42.

Figure 46-1. Example 3: Preheat

Ionic Bed Technology™

Armstrong offers (3) Three Unique Steam Humidification Solutions when Boiler Steam is not available or Chemical Free Steam is desired.

HumidiClean encompasses (3) three forms of steam generating humidifiers: electric, gas, and steam-to-steam.

HumidiClean Humidification from Armstrong begins with the lonic Bed, a fibrous medium located in the HumidiClean steam generation tank. Simple in appearance, the lonic Bed offers a practical solution to the traditional goal of minimizing mineral build-up in tanks of self-contained, steam generating humidifiers.

Contractors, engineers, and owners no longer need to focus on adjusting water quality to an acceptable range of conductivity or hardness in order to secure satisfactory humidifier performance. HumidiClean (electric, gas, or steam-to-steam) humidifiers utilizing Ionic Bed Technology are naturally adaptable to a broad range of water quality. Have hard water? Have softened water? Have reverse osmosis (RO) or deionized (DI) water? It doesn't matter, the versatile HumidiClean line of humidifiers operates perfectly with any type of water.

For additional information on ionic bed technology and the models in which they are supported please refer to pages 113 and 125.

How Armstrong Reduces Humidifier Maintenance Using Ionic Bed Technology

Ionic Beds Stop Solids

lonic beds consist of a fibrous medium that attracts solids from the water as its temperature rises, minimizing the buildup of solids on the heat exchanger and inner tank walls. Once the ionic beds have absorbed their capacity of solids, an indicator on the humidifier's control panel signals it's time to replace the ionic beds. Changing the beds takes only about 15 minutes. Use of the ionic beds:

- Reduces cleaning of the tank exchanger or heating elements
- Keeps the drain screen cleaner longer allowing effective tank blowdown
- Helps maintain humidifier output without building excessive heat exchanger surface temperatures
- Requires less frequent blowdown, conserving water and energy
- Eliminates the need for wasteful surface skimmers that must be checked weekly for possible plugging
- Reduces downtime
- Has years of field-proven success in thousands of humidifier applications

Better Here than in your Humidifiers

These photos show how the ionic bed fibers (magnified 52.5x) collect solids throughout their service life. A new ionic bed weighs between 1/3 and 1/2 pound, depending on the humidifier type. When it reaches its capacity, an ionic bed may weigh more than 2-1/2 pounds.

Sanitary -Clean Steam Applications

SECTION

10

TC Series Clean Steam Thermostatic Traps

For Clean Steam Systems

For Pressures to 120 psig (8 bar)...Capacities to 3,775 lb/hr (1,712 kg/hr)

Armstrong offers a complete range of T-316L stainless steel clean steam Different body configurations allow for choice of piping and ease of clean steam.

The thermostatic design is free-draining and can operate close to steam temperature at any given pressure.

Features

- · Constructed of 316L stainless steel for corrosion resistance
- · Highly polished for cleanability
- Self-draining to minimize contamination
 Compact and lightweight
- Easy to install
 Provide easy disassembly for cleaning

Typical Applications

- Fermentors
- Sterilizers/autoclaves
- Process piping
- Block and bleed .
- Bioreactors CIP/SIP systems
- Equipment sterilization
 Sterile barriers

How to Order:

- Specify: Model number
- Pipe connection sizeEnd connection type
- Example:
- TC-C, 1/2" sanitary end connections.

Model TC-S Sealed 1/2" (15 mm), 3/4" (20 mm) Sanitary End Connections

Model TC-R Repairable With Bolted Body and Cap 1/2" (15 mm), 3/4" (20 mm), 1" (25 mm) Sanitary End Connections

For a fully detailed certified drawing, refer to: TC-C CD #1161 TC-R CD #1162 TC-S CD #1163

SECTION

10

Model TC-C Clamp With Sanitary Body Clamp 1/2" (15 mm), 3/4" (20 mm), 1" (25 mm) Sanitary End Connections

Model TC-S Sealed 1" (25 mm) Sanitary End Connections

1-1/2"

Model TC-S Sealed 1/2" (15 mm), 3/4" (20 mm) Threaded End Connections

Model TC-S Sealed 1/2" (15 mm), 3/4" (20 mm) Tube End Connections

Model TC-R Repairable With Bolted Body and Cap 1/2" (15 mm), 3/4" (20 mm) Tube End Connections

Diameter 3-11/16" (93 mm)

2-9/16" (65 mm)

Model TC-R Repairable With Bolted Body and Cap 1/2" (15 mm), 3/4" (20 mm) Threaded End Connections

TC Series Clean Steam Thermostatic Traps For Clean Steam Systems For Pressures to 120 psig (8 bar)...Capacities to 3,775 lb/hr (1,712 kg/hr)

Materials

Model	TC-C Clamp	TC-R Repairable	TC-S Sealed					
Cap and body	ASTM A479 316L							
Bellows		316L Stainless St	teel					
Body gasket	Vito	on®	_					
Retainer		Stainless Stee						
Clamp	Stainless Steel	—	_					
Screws	—	Stainless Steel	—					
Finish	180 grit polish to or belov and 150 g polish to or below o	Mechanical finish to 63 µin Ra interior and 32 µin Ra exterior						

NOTE: µin = microinches

Physical Data

Model	TC-C	TC-R	TC-S
	Clamp	Repairable	Sealed
Maximum Allowable Pressure	120 psig		150 psig
(Vessel Design)	(8.3 bar)		(10 bar)
Maximum Allowable Temperature	350°F (177°C)		366°F (186°C)
Maximum Operating Pressure	100 psig (7 bar)		120 psig (8.3 bar)
Weight Ib (kg)	1-1/4	1-1/2	3/4
	(0.57)	(0.68)	(0.34)

TC Series Clean Steam Trap Capacities					
psig bar	10°F (5.6°C) Subcool		20°F (11.2°C) Subcool		
	bar	lb/hr	kg/hr	lb/hr	kg/hr
5	0.35	180	82	320	145
10	0.70	360	163	645	293
20	1.4	676	307	1,108	503
30	2.1	1,009	458	1,563	709
40	2.8	1,236	561	1,830	830
50	3.5	1,542	699	2,016	915
60	4.1	1,845	837	2,505	1,136
70	4.8	2,037	924	2,668	1,210
80	5.5	2,360	1,071	2,990	1,356
90	6.2	2,460	1,116	3,237	1,468
100	6.9	2,547	1,155	3,450	1,565
110	7.6	2,610	1,184	3,640	1,651
120	8.3	2,660	1,206	3,775	1,712

SANITARY PRESSURE REDUCING VALVE

P-130

DESCRIPTION

The ADCA P-130 series direct acting, spring-loaded diaphragm sensing, pressure reducing valves, are designed for use on compressed air, water and other gases or liquids compatible with the materials of construction.

MAIN FEATURES

Compact design. Completely machined from barstock material, no castings or forgings used on the standard version. No rising stem

STANDARD SURFACE FINISH Internal wetted parts: 0,5 microns Ra External : Body and cover- Fine machined (mechanical or electro polished as option)

OPTIONS:	Self relieving Leakage line connection 1/8" (captured vent). Panel mounting version (thread M45) Gauge connection on body Different soft valves for liquids and gases. Casted cover (CF8M) with rising stem handwheel for economic reasons. Special execution for steam.
USE:	Compressed air, water and other gases and liquids compatible with the construction.
AVAILABLE MODELS:	P-130
SIZES:	DN1/2" to DN 1" ; DN15 to DN25
OUTLET SPRING RANGES:	0,2 – 1,5 bar; 0,3 – 3 bar; 0,8 – 8 bar.
CONNECTIONS:	Clamp ends or others on request

INSTALLATION: Horizontal installation.

ORDER

REQUIREMENTS: Type of fluid Maximum operating temperature Inlet pressure and required outlet pressure Capacity (maximum and minimum).

CE MARKING (PED - European Directive 97/23/EC)		
PN 16	Category	
DN1/2" to DN 1"	SEP - art. 3, paragraph3	

St.Steel hand wheel

Aluminium hand wheel

LIMITING CONDITIONS			
Valve model	P-130		
Body design conditions	PN 16		
Max.upstream pressure	16 bar		
Max.downstream pressure	8 bar		
Min.downstream pressure	0,2 bar		
Max.design temperature *	150 ºC		
*Other on request.			

SANITARY PRESSURE REDUCING VALVE

P-130

DIMENSIONS (mm)							
SIZE DN	A ASME BPE	A ISO 1127	B	c	D	WGT. Kgs BPE	WGT. Kgs ISO
1/2" - 15	130	115	37	135	80	2,7	3,2
3/4" - 20	130	115	37	135	80	2,9	3.2
1" - 25	130	115	37	135	80	3,3	3.3

Valves with aluminium hand wheel weights less 0,24 kgs Different dimensions and standards on request.

Consult factory for certified dimensions and weights.

CAPACITIES				
Valve Size	1/2" - 15	3/4" - 20	1*-25	
KVs (m3/h)	.3	3,2	3,3	

Reduced Ky on request

Connection examples					
Clamp	Round thread	Flange			

MATERIALS					
POS.	DESIGNATION	MATERIAL			
1	Valve body	AISI316L / 1.4406			
2	Cover	AJSI316L / 1.4404			
3	Seat cover	AISI316L / 1.4404			
4	* O-ring	Viton / EPDM			
5	*Piston	AISI316L/ 1.4404			
6	* Valve head	AISI316L / 1.4404 ; Viton .PTFE			
7	* Valve spring	AISI302 / 1.4300 (Polished)			
9	Pusher disc	AISI 316L / 1.4404			
10	* Lower diaphragm	PTFE			
11	* Upper diaphrag	EPDM			
12	Washer	AISI304/1,4301			
13	Spring plate	AISI304/1.4301			
14	Nut	St.steel A2-70			
15	* Adjustment spring	AISI302 / 1.4300			
16	Spring plate	AISI304/1.4301			
17	Adjustment screw	AISI304/1.4301			
18	Retaining ring	St.steel A2-70			
19	Handwheel	AISI316L / 1.4404			
19	Handwheel	Aluminium white painted			
20	O-ring	EPDM			
21	** O-ring	EPDM			

* Available spare parts. ** On request

Remarks: FDA/USP Class VI seals certificate on request All valves have a serial number. In case of non-standard

PRESSURE REDUCING VALVE - Clean Steam

P-160

DESCRIPTION

The ADCA P-160 series direct acting, spring-loaded diaphragm sensing , pressure reducing valves, are designed for use on clean steam, compressed air, water and other gases or liquids compatible with the materials of construction.

MAIN FEATURES

Compact design. Completely machined from barstock material, no castings or forgings used on the standard version. No rising stem

STANDARD SURFACE FINISH Internal wetted parts: 0,5 microns Ra External : Body and cover- Fine machined (mechanical or electro polished as option)

OPTIONS:	Leakage line connection 1/8" (captured vent). Different soft valves for liquids and gases. Casted cover (CF8M) with rising stem handwheel for economic reasons. Lock system, allows clean-in-place (CIP) and sterilization-in-place (SIP) operations with valve in line.		
USE:	Clean steam, compressed air, water and other gases and liquids compatible with the construction.		
MODELS:	P-160		
SIZES:	DN3/4", 1", 11/2", 2" ; DN 20, 25, 40, 50		
OUTLET SPRING RANGES:	0,8 – 1,5 bar; 1 – 3 bar; 1,5 – 5 bar.		
CONNECTIONS:	Clamp ends or others on request		
INSTALLATION:	Horizontal installation. Inlet vertical and		
ORDER REQUIREMENTS:	Type of fluid Maximum operating temperature Inlet pressure and required outlet pressure Capacity (maximum and minimum).		

LIMITING CONDITIONS				
Valve model	P-160			
Body design conditions	PN 16			
Max.upstream pressure	8 bar DN 2" only 4bar**			
Max.downstream pressure	5 bar			
Min.downstream pressure	0,8 bar			
Max.design temperature *	150 °C			
*Other an annual				

*Other on request.

**Special execution on request with lower Kvs

CE MARKING (PED - European Directive 97/23/EC)		
PN 16 Category		
DN 3/4" to 2"	SEP - art. 3, paragraph3	

PRESSURE REDUCING VALVE - Clean Steam

P-160

DIMENSIONS (Clamp conn.)					
SIZE DN	А	В	с	D	WGT. Kgs
3/4"-20	85	55	200	130	6,7
1"-25	85	55	200	130	6,8
11/2"-40	85	65	210	130	7,6
2"-50	85	70	210	130	7,8

* Different lenghts on request.

Consult factory for certified dimensions

Dimensions subject to change without notice

CAPACITIES					
Valve Size	3/4"-20	1"-25	11/2"-40	2"-50	
KVs (m3/h)	1,3* - 3	3,5* - 4,5	5,3	** 5,5 - 8,5	

*Max.available Kvs with ASME BPE clamp connection ** On request, for maximum inlet pressure higher than 4 bar

Connection examples				
	Clamp Round		t thread	Flange
đ		1	2	H
		MATI	ERIALS	
POS.	DESIGNA	TION		MATERIAL
1	Valve b	ody	A	ISI316L / 1.4404
2	Cove	er	A	ISI316L / 1.4404
3	Centering	l plate	AISI316L / 1.4404	
4	* Valve stem		AISi316L/1.4404	
5	* Soft plug		EPDM; PTFE **	
6	* Valve plug		A	ISI316L / 1.4404
7	* Upper diaphragm			EPDM;VITON**
8	* Lower diaphragm			PTFE
9	Diaphragm plate		A	ISI316L / 1.4404
10	* O-rii	ng	EPDM	
11	Diaphragn	n plate	AISI316L / 1.4404	
12	Stem g	uide	A	AISI316 / 1.4401
13	Spring p	olate	AISI316 / 1.4401	
14	Nut		:	St.Steel A2 - 70
15	Wash	er	A	AISI316 / 1.4401
16	* Adjustmer	nt spring	Ą	ISI 302 / 1.4300
17	Top spring	g plate	A	AISI316 / 1.4401
18	Retaining	g ring	:	St.Steel A2 - 70
19	Regulatir	ng nut	A	ISI316L / 1.4404
20	Adjustmen	t screw	A	AISI304 / 1.4301
21	O-rin	g		EPDM

Available spare parts; **Others according to the fluid FDA/USP Class VI seals certificate on request Viton diaphragm only with FDA approval (Pos.7) Remarks: All valves has a serial number. In case of non-standard valves this number must be supplied if spare parts are ordered.

PNEUMATIC CONTROL VALVES - PV 928

(V928 angle type valves with linear actuators PA series)

DESCRIPTION

The PV928 are two or three way control valves with angle connections, specially designed for food, chemical pharmaceutical and cosmetic industries among others. The PA pneumatic actuator is rubber diaphragm and multi-springs. It's action can be DA - direct action (air to close) or RA-reverse action (air to open). The PV928 valves have been designed to assure an accurate control in any process condition and they have self draining design.

MAIN FEATURES

Quick disassembling through clamp body bonnet coupling Metal to metal or soft sealing. Self draining design

STANDARD SURFACE FINISH Internal parts: 0,8 microns Ra 0,4 microns Ra on request External: Body: Fine machined (mechanical or electro polished as option) Actuator: Stainless steel satin bead blast finish - 1,6 microns Ra Steel painted

OPTIONS:	Soft sealing Steam barrier	MAX.AIR SUPPLY:	3,5 bar	
	Position transmitter Pneumatic pilot positioner Air filter regulator	AMBIENT TEMPERATURE:	-20ºC	+70ºC
	Top-work manual handwheel	STEM SEALING:	EPDM o Conside	r PTFE ring the medium and
USE:	Saturated steam liquids and gases compatible with the construction		tempera	ture
AVAILABLE MODELS:	PV928A-Two way angle valve PV928H-Two way horizontal valve PV928M-Three way mixing valve	PLUG TYPES:	Equal pe Linear (F On-Off (ercentage (EQP) PL) PT)
	PV928D-Three way diverting valve	PORT:	Full port Reduced	as standard d or microflow on
VALVE SIZES:	DN1/2" to DN4" ; DN15 to DN100		request	
CONNECTIONS:	Tube weld, screwed, flanged and	_		
PNEUMATIC	sanitary clamp.	_	VALVE BO	DDY LIM. CONDITIONS
ACTUATORS:	PA-205,PA-280,PA-340,PA-435		PRESSU	JRE/TEMPERATURE
ACTUATOR CONN:	1⁄4" NPT-F	L F	10 bar ligher limits o	-10/170ºC
CONTROL SIGNAL:	0.2 – 1bar: 0.4 – 1.2 bar: 0.4 – 2 bar	CE MARKING (P	ED - Europe	an Directive 97/23/EC)
	, .,., , <u>.</u> , <u>.</u>	PN 10		Category
ELECTRIC ACT.:	Consult catalogue IS EL20.00 E	DN1/2" to DN4" - DN	15 to DN100	SEP - art. 3, paragraph3

MATERIALS				
DESIGNATION	MATERIAL			
Valve Body	AISI316L / 1.4404			
Bonnet	AISI316L / 1.4404			
Actuator (Steel)	S235JRG2 / 1.0038			
Actuator (Stain.steel)	AISI304 / 1.4301			
* Diaphragm	NBR 70			
Yoke (Steel)	C45E / 1.1191			
Yoke (Stainless steel)	AISI304 / 1.4301			
*Valve plug	Metal, EPDM, PTFE, VITON			
*Valve Seal	EPDM,FEP,VMQ			
*Packing	EPDM, PTFE, VITON			

* Available spare parts

V928A

Connection examples									
Clamp	Round thread	Flange							
		T.							

				D	MENSION	S AND FLO	OW RATE						
	VALVE BODY										ACTUATOR		
DN	Kvs m3/h	Stroke mm	ø d * DIN 11850	A (mm)	A1 (mm)	B (mm)	B0 (mm)	B1 (mm)	C (mm)	Туре	D (mm)	ø E (mm)	
1/2"-15	4,2	20	18	38	76	38	14	66	38	PA-205	235	210	
3/4"-20	6,8	20	22	38	76	38	16	66	38	PA-280	240	275	
1"-25	11	20	28	52	104	52	22	72	52	PA-340	265	335	
11/4"-32**	15	20	34	56	112	56	25	78	56	PA-435	295	430	
11/2"-40	22	20	40	64	128	64	28	86	64				
2"-50	38	20	52	72	144	72	34	96	72				
21/2"-65	61	30	70	86	172	86	45	114	86				
3"-80	89	30	85	109	218	109	54	135	109				
4"-100	136	30	100	119	238	119	61	152	119				
* Tube weld	, other co	nnections a	and standards	on reques	t. ** Not av	ailable with	ASME BP	E					

Consult factory for certified dimensions. Dimensions subject to change without notice.

PNEUMATIC CONTROL VALVES - PV926

(V926 angle valves series with linear actuators PA series)

DESCRIPTION

The PV926 control valves are single seated, two-way body constructed with angle connections. The PA pneumatic actuator is rubber diaphragm and multisprings. It's action can be DA - direct action (air to close) or RA-reverse action (air to open). The PV926 valves have been designed to assure an accurate control in any process condition. The self draining design is ideally suited to applications in clean steam service.

MAIN FEATURES

Single seated, two way, direct or reverse action valve. Valve top flange permanently attached to the body, removal is unnecessary for replacing the actuator. Metal to metal or soft sealing. Self draining design

5 5				1.00	2
STANDARD SURFAC	E FINISH rons Ra				
External:					
Body					CA
Fine machined (mech	anical or electro polished as				12:00 A
option)					
Actualor Stainloss staal satin b	and blact finish 1.6 microns Pa			100	0
Steel nainted				-	80
OPTIONS:	Soft sealing				
	Position transmitter				
	Pneumatic pilot positioner				
	Air filter regulator				
	Top-work manual handwheel	MAX	AIR SUPPLY:	3,5 b	ar
		AME	BIENT		
USE:	Saturated steam	TEM	IPERATURE:	-20°C	C+70°C
	Hot and superheated water				
	Air and gases compatible with the	STE	M SEALING:	VITO	N/PTFE O-Rings 170°C
	construction				
AVAILABLE		PLU	G TYPES:	Equa	l percentage (EQP)
MODELS:	PV926			Linea	ir (PL)
				On-O	off (PT)
VALVE SIZES:	DN1/2" to DN2" ; DN15 to DN50	D 01	·-		
	Clamp and an other on request	POF	KT:	Full p	ort as standard
CONNECTIONS:	Clamp ends or other on request			Redu	ced or microflow on
				reque	ist
	PA-205 PA-280 PA-340 PA-435				
AUTOATORO.	1 A-200,1 A-200,1 A-3+0,1 A-+30				
ACTUATOR CONN:	1⁄4" NPT-F				
			CEMARKING (PE	D. Fure	nean Directive 97/23/EC)
CONTROL SIGNAL:	0,2 – 1bar; 0,4 – 1,2 bar; 0,4 – 2 bar		PN 16		Category
				2"	SED ort 2 paragraph2
	Concult catalogue IS EL 20.00 E			∠	or - an o, paragrapho

ELECTRIC ACT .: Consult catalogue IS EL20.00 E

HOW TO SELECT: Never size the valve according to the pipe diameter in which it has to be fitted, but according to the required actual flow of steam or water. Refer to the valve calculation data sheet or consult the factory.

PNEUMATIC CONTROL VALVES - PV926

(V926 angle valves series with linear actuators PA series)

	MATERIAL	S			
POS.	DESIGNATION	MATERIAL			
1	Valve Body	AISI316L / 1.4404			
1.1	Ferrule	AISI316L / 1.4404			
2	Bonnet	AISI316L / 1.4404			
2.1	Bolts	DIN 933 A-2			
2	Actuator (Steel)	S235JRG2 / 1.0038			
3	Actuator (Stainless steel)	AISI304 / 1.4301			
4	* Diaphragm	NBR 70			
5	Yoke (Steel)	C45E / 1.1191			
5	Yoke (Stainless steel)	AISI304 / 1.4301			
6	Valve Seal	PTFE			
7	Standard packing	AISI316L / 1.4404			
8	O-ring	EPDM			
9	O-ring	VITON			
10	Seal washer	VITON			

VALVE BODY LIM. CONDITIONS								
PRESSURE/TEMPERATURE								
16 bar	100 ºC							
15 bar	150 °C							
14 bar	200 °C							

	DIMENSIONS (Clamp conn.)											
	VALVE	BODY	ACTUATOR									
DN	A (mm)	B (mm)	C (mm)	Туре	D (mm)	ø E (mm)						
1/2"-15	60	49	62,5	PA-205	235	210						
3/4"-20	60	49	62.5	PA-280	240	275						
1"-25	60	49	62,5	PA-340	265	335						
11/4"-32*	60	65	75,5	PA-435	295	430						
11/2"-40	67,5	70	84									
2"-50	67,5	80	77,5									

Consult factory for certified dimensions.

Dimensions subject to change without notice.

*Not available with ASME BPE

FLOW RATE COEFFICIENTS										
	SIZES									
	1/2"-15	3/4"-20	1"-25	11/4"-32	11/2"-40	2"-50				
Kvs	1,7* - 3	3,7*- 5,1	6,3* - 9,4	15,4	19,2*-22,2	27,7*-40,1				

* Max. available Kvs with ASME BPE clamp connections Kvs in m3/h , see data sheet IS PV10.00 E ; For conversion Kvs = Cv(US) x 0,855

	ACTUATOR STROKE IN mm										
		SIZES									
	1/2"-15	3/4"-20	25-1"	11/4"-32*	11/2"-40	2"-50					
Stroke	20	20	20	20	20	20					
Connection examples											
C	lamp	F	Round thr	ead	Flange						
	.5		-20								

Free of particles and sterile

Compressed air, technical gases and liquids require a certain purity in most applications. In most cases, the media has to be free of particles.

■ Especially the food and beverage, pharmaceutical or chemical industries require a special degree of puritiy of the used media. Compressed air and technical gases must be free of particles, but also free of bacteria, microorganism and viruses.

■ As opposed to their size, microorganism are a serious problem for most sensitive production areas. As living organisms, they are able to proliferate in the right ambient condition and to contaminate the production.

Only a few viable organism in a clean or sterile production process can result in immense damages. Not only resulting in a lower product quality but also by complete uselessness of the production charge.

Sterile filter elements and filter housings from ultrafilter

ultrafilter offers a complete range for process filtration of compressed air, technical gases and liquids.

■ ultrafilter GmbH offers a wide range of sterile filters for different applications. Depending on the application a wide range of filter elements with nominal or absolute retention rates can be offered.

■ Within the production of our process filters, only the highest quality materials are used.

All process filters are made of inert materials, without adhesives, additives or surface active components.

ultrafilter GmbH offers a wide range of stainless steel filter housings for the individual filtration requirements.

All ultrafilter stainless steel filter housings are build and designed according to international requirements.

■ Depending on the requirements, stainess steel filter housings can be offered in different stainless steel qualities (304, 316L) and different connections.

ultrafilter filter housings achieve high volumes flow at low differential pressures due an improved construction.

Due to the modular design different element types can be installed.

Sterile filter P-SRF for compressed air and technical gases

ultrafilter P-SRF

■ The P-SRF is a wounded depth filter with inner and outer guard end caps made of stainless steel. Consisting of a threedimensional borosilicate depth media, the P-SRF achieves a void volume of 95 %, ensuring a high containment capacity at high flow rates and low differential pressure. A retention rate of > 99.99998 % related to 0.01 µm is achieved during operation. ■ All components meet the FDA requirements for the contact with food in accordance with the CFR requirements (code of federal regulations) tilte 21.

Features and advantages

- Non-fibre releasing filter element.
- Manufactured without use of binders or other chemical additives.
- Corresponds to cGMP requirements (current Good Manufacture Practice) and is manufactured according to DIN EN ISO 9001.
- P-SRF has passed the toxicological test according to USP XX Class VU for plastics.

- Packing industry
- Biotechnology
- Breweries
- Chemical industry
- Diaries
- Fermentation processes
- Food & beverage industry
- Pharmaceutical industry
- Hospitals

Vent filter P-BE for storage tanks

ultrafilter P-BE

■ The P-BE is a wounded depth filter with inner and outer guard end caps made of stainless steel. Consisting of a threedimensional borosilicate depth media, the P-BE achieves a void volume of 95 %, ensuring a high containment capacity at high flow rates and low differential pressure. A retention rate of > 99.999 % related to 0.01 µm is achieved during operation. ■ All components meet the FDA requirements for the contact with food in accordance with the CFR requirements (code of federal regulations) tilte 21.

Features and advantages

- Non-fibre releasing filter element.
- Manufactured without use of binders or other chemical additives.
- Corresponds to cGMP requirements (current Good Manufacture Practice) and is manufactured according to DIN EN ISO 9001.
- P-BE has passed the toxicological test according to USP XX Class VU for plastics..

- Chemical Industry
- Aseptic packing
- Pharmaceutical Industry
- Biotechnology
- Cosmetics Industry
- Breweries
- Dairies
- Food and beverages
- Water treatment systems
- Fermentation processes

element	А	В	Ø C*	ØD	CF		
size	mm	mm		mm			
03/10	76	12	³ /4"	42	0,12		psid mbar volume flow
05/25	128	14	1"	62	0,32		1,2 80
05/30	128	16	2"	86	0,46		
10/30	254	16	2"	86	1,00	A	
20/30	508	16	2"	86	2,10		0,3 20
30/30	762	16	2"	86	3,28		0 0 20 40 60 80 100 120

section 10

P-GS filter of sintered stainless steel for gases, liquids and steam

Features and advantages

- Good durability against most liquids, aggressive gases and steams.
- The porosity level is more than 50 % ensuring high particle and dirt load capacity as well as a good flow rate at a low differential pressure.
- Regeneration by ultrasonic bath.

Applications

- Aseptic packing
- Breweries
- Chemical Industry
- Dairy industry
- Electronic industry
- Fermentation processes
- Food and beverages
- Pharmaceutical Industry
- Plastic industry

ultrafilter P-GS

■ The ultrafilter P-GS filter ist designed for removal of particles from gases, liquids and steam.

The P-GS consists of a regenerable weldless filter pipe made from sintered stainless steel. The retention rate extends from 1 μm to 25 μm.

P-SM sterile filter made of stainless steel mesh

ultrafilter P-SM

Pre and final filter with absolute retention rate for particle removal from ageous solutions, water and other liquids, as well as gases.

■ The P-SM consists of a regenerable stainless steel mesh, with stainless steel outer guard and endcaps. The retention rate extends from 5 μm up to 250 μm.

Features and advantages

- The P-SM offers an especially economical pre- and final filtration.
- Regeneration of stainless steel mesh by ultrasonic bath or back flush.
- Welded contact points, guaranteeing a constant pore diameter, even under extreme operating conditions.
- Also suitable for high viscosity liquids.
- Withstands a differential pressure of up to 5 bar (flow from outside to inside).
- Suitable for operating temperatures of up to 200 °C.

- Water filtration
- Chemicals
- Solvents
- Biological liquids
- Pharmaceutics
- Cosmetics
- Oils
- Food and beverages
- Syrup
- Collants
- Compressed air and other gases

PP-TF process filter for particle retention out of liquids

ultrafilter PP-TF

Depth filter for particle removal from water and aquaeous solutions with a nominal retention rate of 1 μm to 50 μm.

■ The PP-TF is a pleated polypropylene filter with an inner and outer guard of polypropylene.

This filter element distinguishes itself by an exceedignly high dirt hold capacity as well as a high flow rate with a low differential pressure and a long service life.

Features and advantages

- Manufactured in accordance with cGMP requirements (current Good Manufacture Practice).
- no migration of filter medium, non-fibre releasing
- thermally, binderfree welded without chemical additives

Applications

Particle removal from

- Biological liquids
- Chemicals
- Collants
- Compressed air and other gases
- Cosmetics
- Etchants
- Food and beverages
- Jet printer inks
- Oils
- Photolithografical liquids
- Pharmaceutics
- Solvents
- Water

PP process filter depth filter for particle retention out of liquids

ultrafilter PP

Depth filter for particle removal from water and aquaeous solutions and gases with a nominal retention rate of 1 μm to 30 μm.

■ The P-PP is a pleated polypropylene filter with an inner and outer guard of propylene.

■ This filter element distinguishes itself by an exceedignly high dirt hold capacity as well as a high flow rate with a low differential pressure and a long service life.

Features and advantages

- Manufactured in accordance with cGMP requirements (current Good Manufacture Practice) and complies with FDA requirements for the contact with food.
- no migration of filter medium, non-fibre releasing
- thermally, binderfree welded without chemical additives
- Pre-rinsed with 18MΩ cm water, which leads to extremely low extractables

- Biological liquids
- Chemicals
- Collants
- Compressed air and other gases
- Cosmetics
- Etchants
- Food and beverages
- Jet printer inks
- Oils
- Pharmaceutics
- Syrup
- Solvents
- Water

PP100 process filter for particle retention out of liquids

ultrafilter PP100

Depth filter for particle removal from water and aquaeous solutions with an absolute retention rate of 0.45 μm to 40 μm.

The PP100 is a pleated polypropylene filter with an inner and outer guard of propylene.

This filter element distinguishes itself by an exceedignly high dirt hold capacity as well as a high flow rate with a low differential pressure and a long service life.

Features and advantages

- Manufactured in accordance with cGMP requirements (current Good Manufacture Practice) and complies with FDA requirements for contact with Food in accordance with CFR Title 21.
- no migration of filter medium, non-fibre releasing
- thermally, binderfree welded without chemical additives
- Pre-rinsed with 18MΩ cm water, which leads to extremely low extractables

- Biological liquids
- Chemicals
- Collants
- Compressed air and other gases
- Cosmetics
- Etchants
- Food and beverages
- Jet printer inks
- Pharmaceutics
- Serums
- Syrup
- Solvents
- Water

PF-BEV process filter membrane filter with absolute retention rate

ultrafilter PF-BEV

■ Membrane filter for particle removal from water and aquaeous solutions with an absolute retention rate of 0.2 µm to 0.45 µm.

■ The P-PF-BEV is a polyethersulfone membrane filter with an inner and outer guard of propylene.

■ The filter media polyethersulfone is inherently hydrophilic and distinguishes itself by having an asymetrically designed pore structure. The pore size steadily decreases towards the center of the medium.

Features and advantages

- Manufactured in accordance with cGMP requirements (current Good Manufacture Practice).
- P-PF-BEV meets the FDA requirements for the contact with food in accordance with CFR (Code of Federal Regulations) Title 21.
 P-PF-BEV has passed the USP XX Class VI tests for plastics.
- thermally, binderfree welded without chemical additives

Applications

- Food and beverages
- Rinsing or cleaning water
- Sterile water
- Mixing or blending water

ARMSTRONG PRODUCT PAGES

PF-PES process filter for sterile filtration of aqueous solutions

ultrafilter PF-PES

■ Membrane filter for particle removal from water and aquaeous solutions and solvents with an absolute retention rate of 0.04 µm to 0.6 µm.

■ The P-PF-PES is a polyethersulfone membrane filter with an inner and outer guard of propylene.

The filter media polyethersulfone is inherently hydrophilic and distinguishes itself by having an asymetrically designed pore structure. The pore size steadily decreases towards the center of the medium.

Features and advantages

- Manufactured in accordance with cGMP requirements (current Good Manufacture Practice).
- P-PF-PES meets the FDA requirements for the contact with food in accordance with CFR (Code of Federal Regulations) Title 21.
 P-PF-PES has passed the USP XX Class VI tests for plastics.
- Pre-rinsed with 18MΩ cm water, which leads to extremely low extractables

- Serum & blood-based products
- Antibiotics
- Injectables
- Diagnostic reagents
- Deionised water
- Sterile water
- Chemically treated water
- Acids and bases
- Alcohols
- Aldehydes
- Ketones etc.

PF-PP process filter membrane filter with absolute retention rate

ultrafilter PF-PP

• Membrane filter for filtration of solvents, alcohols, chemicals and gases with an absolute retention rate of 0.04 μ m to 0.2 μ m.

■ The P-PF-PP is a pleated propylene membrane filter with an inner and outer guard of propylene.

The filter media propylene is inherently hydrophobic with a highly porous membrane structure.

Features and advantages

- Manufactured in accordance with cGMP requirements (current Good Manufacture Practice).
- P-PF-PP meets the FDA requirements for the contact with food in accordance with CFR (Code of Federal Regulations) Title 21.
 P-PF-PP has passed the USP XX Class VI tests for plastics.
- The membrane is non-fibre realising and thermally welded without use of binders or chemical additives

- Alcohols
- Bases
- Etchants
- Solvents
- Photoresists
- Photo-lithografical solutions
- Fermentation gases
- Technical gases
- Tank ventilation
- Compressed air

PF-PT process filter for aggresive liquids and gases

ultrafilter PF-PT

Pleated membrane filter for particle removal from aggressive solvents, chemicals and gases with a nominal retention rate.

■ The PF-PP filter is a high quality Teflon filter media, offering maximum assurance of filtration performance and durability against chemicals in severe process conditions.

■ The retention rate extends from 0.1 µm to 1 µm. The Teflon® filter media is inherently hydrophobic with a highly porous membrane structure.

■ All components meet the FDA requirements for the contact with food in accordance with the CFR (Code of FederalRegulations) Title 21. PF-PT filter elements have passed the toxicological tests according to USPXX Class VI forplastics. In particular, the requirements of the chemical, biological, cosmetic, electronic and the pharmaceutical industries are fulfilled.

Features and advantages

- Manufactured in accordance with cGMP requirements (current Good Manufacture Practice).
- The membrane is non-fibre realising and thermally welded without use of binders or chemical additives

- Particle removal from water
- Chemicals
- Biological liquids
- Solvents
- Cosmetics
- Photo-lithografical solutions
- Paints & dyes
- Jet printer inks
- Coatings

process filter Conformity and durability

Chemical durability of filter media

Media		Filte	rtyp	
	PP 100	PF-PES	PF-PP	PP-PT
	PP	PF-BEV		
acetone	1	3	1	1
benzole	3	1	3	2
benzyl alcohol	1	-	1	1
butanol	1	1	1	1
chloroform	2	3	2	2
cyclohexanon	1	3	1	1
steam	1	1	1	1
acetic acid	1	1	1	1
ethanole	1	1	1	1
hydrogen fluoride 50 %	1	-	1	1
formamide	1	-	1	1
formaldehyde	1	1	1	1
fluorosilicic acid	2	-	2	2
hydraulic fluid	1	2	1	1
caustic potash 32 %	1	1	1	1
kerosine	1	-	1	1
adhesives	-	1	-	-
paint	-	1	-	-
methanole	1	1	1	1
motor oil	-	1	-	-
caustic soda 32 %	1	1	1	1
n-hexane	2	1	2	1
ozone	-	1	-	-
perchloric acid 25 %	1	-	1	1
vegetable oil	-	1	-	-
phosphoric acid 25 %	1	-	1	1
phosphoric acid 85 %	1	-	1	1
pyridine	2	3	2	1
nitric acid 25 %	1	3	1	1
lubricant	1	1	1	1
sulfuric acid 25 %	1	1	1	1
sulfuric acid 98 %	2	3	1	1
silicone	1	1	1	1
toluole	3	3	3	2
trichloroacetic acid 25 %	1	-	1	1
water	1	1	1	1
citric acid	1	1	-	-

1 = recommended

2 = limited recommendable

3 = not recommended

- = not tested

A complete list for all filter elements and media can be achieved upon request.

Declaration of Conformity

Quality starts with the right choice of raw materials. Only the best materials are used in our production. We pay total attention to ensuring the highest quality and efficiency levels. This is ensured by continuous quality approvals.

- All products perfectly match to each other and comply highest quality requirements. System solutions with highest operational safety and efficiency can be achieved at any time.
- All process filters are made of inert materials, without adhesives, additives or surface active components.
- To comply with the stringent regulations of the FDA for contact with food the ultrafilter plastic filters have passed the toxicological tests according to USP Class VI and are biologically inert.
- All ultrafilter sterile filter are integrity tested to ensure highest operational safety and continously high quality.

P-EG stainless steel housing for sterile filtration of gases

ultrafilter P-EG

■ The P-EG stainless steel housing was developped for purification of compressed air an other technical gases.

■ With the optimized construction they offer low differential pressure at high flow rates.

Features and advantages

- 18 different sizes for operating volumes from 60 to 23.040 Nm³/h related to 7 bar.
- Complies to the requirements of the European directive 97/23/EG for pressure vessels.
- Plug connection guarantees that the elements remain safely fixed at all times.
- Different element sizes can be installed due to the modular design.

- Chemical & pharmaceutical Industry
- Aseptic packing
- Biotechnology
- Cosmetics Industry
- Breweries
- Dairies
- Food and beverages
- Water treatment systems

type P-EG	volum at 7 ba	e flow r m³/h	connect.	filter el	ement	dimension in mm		weight in kg			
	nom	max		size	qty.	А	В	С	D	Е	
0006	60	90	R 1/4"	03/10	1	215	105	70	55	90	1,7
0009	90	120	R ³/8"	04/10	1	243	105	70	55	120	1,9
0012	120	180	R 1/2"	04/20	1	243	108	70	55	120	1,9
0018	180	270	R 3/4"	05/20	1	266	125	70	55	150	2,0
0027	270	360	R 1"	05/25	1	293	125	85	74	150	2,6
0036	360	480	R 1 ¹ /4"	07/25	1	344	140	85	74	200	3,0
0048	480	720	R 1 ¹ /2"	07/30	1	386	170	104	94	200	4,3
0072	720	1080	R 2"	10/30	1	460	170	104	94	280	4,8
0108	1080	1440	R 2"	15/30	1	587	170	104	94	450	5,3
0144	1440	1920	R 2 1/2"	20/30	1	732	216	129	106	580	9,0
0192	1920	2880	R 3"	30/30	1	987	216	129	106	850	10,8
0288	2880	4320	R 3"	30/50	1	1026	240	154	119	850	16,2
0432	4320	5760	DN 100	20/30	3	1090	410	219,1	200	580	43
0576	5760	7680	DN 100	30/30	3	1350	410	219,1	200	850	44
0768	7680	11520	DN 150	30/30	4	1410	480	273	240	850	70
1152	11520	15360	DN 150	30/30	6	1460	540	323,9	250	850	80
1536	15360	19200	DN 200	30/30	8	1600	660	406,4	300	850	135
1920	19200	23040	DN 200	30/30	10	1600	660	406,4	300	850	135

P-BE stainless steel vent filter for aeration of storage tanks

ultrafilter P-BE

■ P-BE filter are used to ensure 100 % sterility in the storage of pharmaceutical products, chemicals, food or of fermenters.

■ The two-part housing is user-friendly designed and has a splash protection to prevent liquids come in contact with the filter media.

Features and advantages

- 12 different sizes for operating volumes from 3 to 1980 Nm³/h related to 1 bar.
- Complies to the requirements of the European directive 97/23/EG for pressure vessels.
- Different element sizes can be used due to the modular design. Apart from sterile filters, polypropylene or Teflon* membrane filters can be used.

- Chemical & pharmaceutical Industry
- Biotechnology
- Cosmetics Industry
- Breweries
- Dairies
- Food and beverages
- Fermentation processes

type P-BE	volume flow in m³/h at		connect.	filter element		dimensio	weight in kg	
	∆p20 mbar	∆p40 mbar		size	qty.	height	ø	
0006	4,5	9	DN 32	03/10	1	110	85	1,5
0027	12	24	DN 40	05/25	1	168	104	2,2
0032	17	35	DN 50	05/30	1	186	114	2,4
0072	35	70	DN 50	10/30	1	312	114	3,3
0144	70	140	DN 80	20/30	1	550	154	9,2
0192	105	210	DN 80	30/30	1	805	154	11,6
0432	210	420	DN 100	20/30	3	670	219	43
0576	315	630	DN 100	30/30	3	925	219	44
0768	420	840	DN 150	30/30	4	950	273	70
1152	630	1260	DN 150	30/30	6	950	324	80
1536	840	1680	DN 200	30/30	8	960	406	135
1920	1050	2010	DN 200	30/30	10	960	406	135

PG-EG stainless steel housing for gas filtration in sanitary quality

ultrafilter PG-EG

The PG-EG stainless steel housing was developped for purification of compressed air and other technical gases in pharmcaceutical, biotechnology or chemical industry.

■ PG-EG housings are first choice in critical applications in sterile filtration.

Features and advantages

- 14 different sizes for operating volumes from 7,5 to 2.700 Nm³/h related to 7 bar.
- Complies to the requirements of the European directive 97/23/EG for pressure vessels.
- Plug connection guarantees that the elements remain safely fixed at all times.
- Different element sizes can be installed due to the modular design.
- Condensate drain and de-aeration are equipped with pharma valves

Applications

- Chemical & pharmaceutical Industry
- Biotechnology
- Breweries
- Food and beverages
- Water treatment systems
- Fermentation processes

type PG-EG	volume flow at 1 bar m³/h	connect.	filter element		dimensions in mm				weight in kg	
	nom		size	qty.	А	В	С	D	Е	
0006	7,5	DN 10	03/10	1	260	120	70	98	90	1,2
0018	22,5	DN 15	05/20	1	315	120	70	98	150	1,4
0032	45	DN 25	05/30	1	360	160	114,3	136	150	2,8
0048	60	DN 32	07/30	1	410	160	114,3	126	200	3,1
0072	90	DN 40	10/30	1	485	160	114,3	117	280	3,5
0108	135	DN 50	15/30	1	610	160	114,3	125	450	4,0
0144	180	DN 65	20/30	1	820	185	129	150	580	7,0
0192	270	DN 80	30/30	1	1080	185	129	150	850	8,8
0432	540	DN 100	20/30	3	1090	410	219,1	200	580	43
0576	810	DN 100	30/30	3	1350	410	219,1	200	850	44
0768	1080	DN 150	30/30	4	1410	480	273	240	850	70
1152	1620	DN 150	30/30	6	1460	540	323,9	250	850	80
1536	2160	DN 200	30/30	8	1600	660	406,4	300	850	135
1920	2700	DN 200	30/30	10	1600	660	406,4	300	850	135

SECTION

10

section 10

PF-EG stainless steel housing for filtration of liquids

ultrafilter PF-EG

■ The PF-EG stainless steel housing was developped for purification of liquids in pharmaceutical, biochemical and chemical processes, as well as for beverages.

■ PF-EG housings are first choice in critical applications in sterile filtration.

Features and advantages

- 11 different sizes for operating volumes from 3 to 600 l/min.
- Complies to the requirements of the European directive 97/23/EG for pressure vessels.
- Bajonet-connection guarantees that the elements remain safely fixed at all times.
- Different element sizes can be installed due to the modular design.
- DN 40 clamp connection at housing top

- Chemical & pharmaceutical Industry
- Biotechnology
- Breweries
- Dairies
- food and beverages
- Water treatment systems
- Fermentation processes

type PF-EG	volume flow in l/min.	connect.	filter element		dimensio	weight in kg	
			size	qty.	height	ø	
0003	3	DN 10	03/10	1	280	180	1,4
0012	12	DN 25	5/3 Code 7	1	375	250	3,9
0025	25	DN 25	10/3 Code 7	1	505	250	4,8
0050	50	DN 25	20/3 Code 7	1	765	250	6,1
0075	75	DN 25	30/3 Code 7	1	1025	250	7,4
0080	75	DN 40	10/3 Code 7	3	690	330	14,1
0150	150	DN 40	20/3 Code 7	3	935	330	16,5
0225	225	DN 40	30/3 Code 7	3	1205	330	19,6
0250	250	DN 50	20/3 Code 7	5	965	400	20,6
0375	375	DN 50	30/3 Code 7	5	1215	400	23,6
0400	400	DN 65	20/3 Code 7	8	985	500	33,6
0600	600	DN 65	30/3 Code 7	8	1235	500	37,9

section 10

Clean Steam Centrifugal Separator - S-10HV

(Horizontal inlet – Vertical outlet)

DESCRIPTION

When wet steam is used in sterilization, moisture in suspension reduces the heat transfer efficiency and the validity of the sterilization process can be compromised. S-10HV series centrifugal separators remove moisture from steam pipelines. Steam passing through the separator and as a result of centrifugal forces, impact and swirling effects, separate the particles with a heavier specific gravity, such as water droplets and moisture in suspension.

The condensate collected at the bottom of the separator, must be automatically drained by a suitable steam trap.

MAIN FEATURES 316L stainless steel construction No moving parts. Self draining design

STANDARD SURFACE FINISH

Internal parts: 0,5 microns Ra External : Satin bead blast finish – 1,6 microns Ra Mechanical polished as option

OPTIONS: Different kind of connections and dimensions

- Steam, compressed air and other gases (Group 2).
- AVAILABLE MODELS: S10HV

CE MARKING - GROUP 2 GASES CAT.

SIZE

DN1/2" to DN2"

USE:

SIZES: DN1/2", 3/4",1", 11/2" and 2"

CAT.

SFP

- PIPE CONNECTIONS: Clamped ends ASME BPE Other sanitary clamp or tube weld connections available on request.
- INSTALLATION: Always with the condensate discharge pointing downwards.
- HOW TO SELECT: Generally, in an existing plant it is advisable to fit a separator with the same size of the pipe line. Pressure drop is normally negligible. For approximate pressure drop calculation please consult.

LIMITING CONDITIONS					
Rating	Press. bar	Temp. ⁰C			
	10	50			
PN10	8 *	175			
	7,4	200			

*PMO-Max.operating pressure for saturated steam. Minimum operating temp.: -10°C. Design code: AD-Merkblatt

CE Marking

RATING

PN10

This product has been designed for use on water, steam, air and other gases which are in Group 2 of the PED-European Pressure Equipment Directive 97/23/EC and it complies with those requirements. The product carries the CE mark when falling in category 1 and above.

Clean Steam Centrifugal Separator - S-10HV

(Horizontal inlet – Vertical outlet)

	APPROXIMATE DIMENSIONS (mm)							
SIZE DN	А	В	с	D	E	F	VOL. dm3	WGT Kg
1/2"	105	114	307	195	112	1"	2,84	3,8
3/4"	105	114	307	195	112	1"	2,87	3,9
1"	105	114	320	210	112	1"	2,9	4,2
11/2"	120	141	400	260	140	1"	5,82	7,25
2"	120	141	400	260	140	1"	5,93	7,28

Consult factory for certified dimensions. Dimensions subject to change without notice.

		MATERIALS				
POS. DESIGNATION		DESIGNATION	MATERIAL			
	1	Body	AISI 316L / 1.4404			
	2	Cover	AISI 316L / 1.4404			
	3	*Clamp	AISI 316L / 1.4404			
	4 *Seal		VITON			
	5	Internals	AISI 316L / 1.4404			

* Available spare parts.

EN10204 3.1 certificate available if requested along with the order. Remarks: FDA/USP Class VI seals certificate on request. All separators have a serial number. In case of non-standard separator this number must be supplied if spare parts are ordered. SECTION

10

Heating Coils

SECTION

11

Why Leaky Coils Are a Losing Proposition

Leaky coils can be the beginning of the end for efficient heat transfer. Although coils may fail for a variety of reasons, mechanical failure and corrosion are the culprits in the majority of cases. When coils corrode, unwanted moisture and contaminants may foul the air stream or exhaust gases. And a steam leak from a badly corroded coil simply blows precious energy off into the atmosphere.

External corrosion. Contaminants in the airstream cause external corrosion. Dirt buildup intensifies corrosive action by trapping contaminants in concentrated pockets. And it's accelerated when dirt becomes strong airborne mist. Factors such as inappropriate fin pitch, fabricating techniques and material selection may also fuel external corrosion.

Internal corrosion. Retention of contaminated condensate or inadequate venting of non-condensable gases are major causes of internal corrosion. When CO_2 gas dissolves in

condensate that has cooled below steam temperature, it forms highly corrosive carbonic acid. Likewise, oxygen left to stagnate in the system fosters corrosive action by pitting iron and steel surfaces. Joining pipes/tubes in headers of dissimilar materials may spawn galvanic action. Internal stresses due to improper welding may also hasten corrosion damage.

Armstrong to the Rescue

Armstrong's help in coil selection and design is one of the best defenses against external corrosion. We offer a wide selection of fin pitches to help combat dirt buildup. What's more, sturdy fins lend extra strength to withstand high-pressure cleaning without damage or distortion. As a defense against non-environmental factors, Armstrong fabricates coils in a full range of metals and alloys. You may also specify special coatings to increase external corrosion resistance.

Why Leaky Coils Are a Losing Proposition

Proper trapping and venting—a specialty of your Armstrong Representative—is where defense against internal corrosion begins. Armstrong reps are steam specialists with more than 75 years of experience in properly sizing, locating and piping steam traps, strainers, vents and related equipment. That's why only Armstrong gives you quality steam coils—plus the installation and trapping help you need to make them work in your total system.

A System to Make Yours More Efficient

Today, the Armstrong "system" merges coil-building experience, practical knowledge and technical knowhow from years of trapping coil installations. The result: coils that survive the rigors of high pressures, high temperatures and corrosive conditions. For example, Armstrong fabricates standard steel heating coils from 1" OD 12 ga ERW Tube (.109" wall) helically wound with 0.024" thick steel fins at varying fin pitches. Each coil is tested during construction, and the completed unit is again tested hydrostatically to not less than 1.3 times the design pressure with a standard testing pressure at 450 psig for steel or stainless steel cores.

It's this simple: It takes one system to improve another. Exactly how the Armstrong system of product and service carefully matches coils to your specs and applications is the subject of the following pages.

Material Selection for Tubes, Headers and Connections

The choice of tube material depends upon several important factors:

- The corrosive quality of the steam or liquid medium
- The ability to pipe, trap and vent steam coils effectively
- The size and service requirements of the installation
 The external corrosion to which the coils are likely to be subjected

Generally speaking, the heat transfer characteristics of the tube material are of little consequence. The table on the next page illustrates the relative effect of tube materials on overall heat transfer. Because the fin area constitutes the vast majority of the heat transfer surface, it is the most important factor determining heat transfer effectiveness. Therefore, the choice of tube materials should be based on service requirements, not heat transfer efficiency.

Internal corrosion. The base material found in the 6000 Series coils is steel. The minimum wall thickness is .109" for steam coils and liquid coils, which affords both strength and corrosion resistance. All Armstrong coils are of monometallic design, which means that all wetted parts are made of the same materials. This precludes the likelihood of galvanic corrosion often experienced in coils made of dissimilar materials. For most applications, steel will provide very satisfactory service. In order to do this, however, steam coils must be carefully piped, trapped and vented to ensure good condensate and non-condensable gas evacuation.

The cross section of the coil on the right shows how internal corrosion caused by improper piping, trapping and venting may destroy coils from the inside out.

There are many cases where the steam cannot be conditioned enough to be non-corrosive or it is not possible to pipe, trap and vent the coils properly. For those areas, Armstrong recommends stainless steel wetted parts. Choosing which of these is most appropriate depends on the degree and type of problem as well as the steam pressure involved.

External corrosion. In the case of external corrosion, factors concerning the corrosiveness of the airstream enter into the decision. The choice of steel or stainless steel for the wetted parts depends on the compatibility of those materials with the contaminants in the airstream. In addition to the base materials available, Armstrong also offers hot dipped galvanizing, epoxy dip or baked phenolic coatings. These are frequently used when only external corrosion is a consideration.

Service requirements. These may be as important as the above considerations. Coil failures manifest themselves in many forms, but the most prevalent is failure of the tube-to-header joints. This failure occurs as a result of coil design defects, insufficient material at the tube-to-header joints or because of the method of connecting the tubes to the headers.

Armstrong 6000 Series coils are designed to accommodate the service requirements of the particular installation. They are built with enough material at the tube-to-header joints to make them strong. When differential expansion between tubes in steam coils is likely to over-stress the joints, centifeed type coils are recommended. Finally, Armstrong coils are always of welded construction, providing the best method of connecting the two parts together.

Computer-controlled equipment like this simplifies the process of drilling coil headers.

Tube Materials

The best combination of coil materials is the one that delivers maximum heat transfer **and** service life. Tubes, regardless of material, contribute little to heat transfer in extended-surface coils. It is the **fins**, fully exposed to the airstream, that provide the greatest contribution to heat transfer. Therefore, choose tube material on the basis of application.

Material Selection for Fins

The heat transfer coil is essentially a tube on which fins are spirally wound or similarly attached. The fins produce an extended surface to improve heat transfer to or from air or other gases passing over the fins. The effective heat transfer of a coil is based on fin pitch (number of fins per inch), fin height, fin material and method of attachment.

Copper fins offer the best heat transfer, but aluminum fins provide the best overall value. Compared to aluminum fins, steel fins reduce heat transfer. Compared to aluminum and steel, stainless steel fins reduce heat transfer significantly. Fins may be of aluminum, copper, steel, or stainless steel, depending on contaminants, operating conditions and economic considerations. Relative Heat Transfer Capacities of Identical Coils Using Different Tube Materials

Tube Material	Relative HT Capacity		
Copper	1.00		
Aluminum	1.00		
Steel	.98		
Stainless Steel	.95		

The selection of fin materials should be based upon several considerations:

- · The heat transfer characteristic desired
- The compatibility of the material with the air stream
- The amount and type of particulate matter in the air stream
- The frequency and aggressiveness of coil cleaning

The table below illustrates the heat transfer effectiveness of various fin materials with Armstrong coils. Note that these relative heat transfer capacities are for a specific set of conditions. The factors will vary with different conditions.

The fin/tube combinations available are listed on page 321.

Relative Heat Transfer Capacities of Armstrong Coils With Tubes and Fins of Various Materials*				
Tube Material	Fin Material	Relative HT Capacity		
Steel	Copper yfin	Ke 1.05		
Steel	Aluminum yfin	Ke 1.00		
Stainless Steel	Aluminum Keyfin	.94		
Steel	Steel L Fin	.92		
Stainless Steel	Stainless Steel L Fin	.58		

*At 800 ft/min velocity, 7 fins/inch and 300°F steam temperature. Will vary at other conditions.

Fin Types

Keyfin

The keyfin is the standard design for Armstrong's most popular coils. Keyfin coils are manufactured by forming a helical groove in the tube surface, winding the fin into the groove and peening the displaced metal from the groove against the fin. This means a tight fit between the fin and the tube, providing for efficient operation over wide temperature ranges. Keyfin is the superior design for dissimilar fin and tube materials.

L Fin

The L fin has a "foot" at its base and is tension wound on knurled tube material. The L-shaped base provides a large contact area between the tube and the fin, ensuring effective, long-lasting heat transfer. The L fin is recommended when tubes and fins are of the same material.

Overlap L Fin

The overlap L fin is simply an L fin with an extended base. Each fin overlaps the foot of the previous fin, completely covering the tube surface. The overlap technique makes it possible to create a completely aluminumized coil for applications where exposed steel would be vulnerable to corrosion.

SECTION

Why Settle for What's "Available"

When You Can Specify Exactly What You Need?

Armstrong manufactures heavy-duty industrial coils in a wide range of sizes and materials to meet virtually any application demand. Dimensionally duplicated to fit your exact requirements, Armstrong coils are what you need. Whether it's off the shelf or off the wall. Other materials will be considered upon request.

Construction Features						
		Tubes/Pipes				
Carbon Steel Tubes	Standard	12 ga A-214 ERW				
	Optional	10 ga A-214 ERW				
		12 ga A-179 seamless				
		10 ga A-179 seamless				
Carbon Steel Pipes	Optional	Sch 80 seamless; A-106 Gr 'B'				
Stainless Steel Tubes	Standard	14 ga (1" OD) 12 ga (1-1/2" OD) A-249 type 304L				
	Optional	14 ga (1" OD) 12 ga (1-1/2" OD) A-249 type 316L				
		Fins				
Steel	Standard	0.024" thick on 3/4" NPS pipes				
		0.024" thick on 1" OD tubes				
		0.036" thick on 1-1/2" OD tubes & 1" NPS & larger pipe				
Aluminum	Standard	0.020" thick on all tube sizes				
		0.016" thick on 1" OD				
	Optional	0.030" heavy keyfin 1" & 1-1/2" OD steel and stainless steel tube				
Stainless Steel		0.020" thick type 304 & 316 on all sizes				
Copper	Copper 0.016" thick on all sizes					
		Connections				
Steel		Sch 80 (screwed), Sch 40 (flanged)				
Stainless Steel		Sch 40 (screwed), Sch 10 (flanged)				
		Headers				
All coils have headers of the sar	ne material as tubing	and are of welded construction.				
		Casing				
Galvanized Steel	Standard	Minimum 12 ga galvanized for depth 7-1/2" and over				
		Minimum 14 ga galvanized for depth under 7-1/2"				
Stainless Steel	Optional	14 ga type 304 & 316 for all depths				
Aluminum	Optional	12 ga for all depths				
Other gauge material available of	on request. All casing	s have drilled flanges for duct mounting unless specified otherwise.				
Design Pressure						
Standard design pressure for steel coils is 300 psig @ 650°F, stainless steel coils 300 psig @ 500°F. Hot oil coil: 250 psig @ 750°F. Higher pressure and/or temperature construction is available on request. -20°F MDMT, lower MDMT available on request.						
		Testing				
All coils are tested hydrostatical	All coils are tested hydrostatically to at least 1.3 times the working pressure with a standard testing pressure at 450 psig on steel & stainless steel steam coils.					
Options						

Steel tube with steel fin coils can be supplied hot dip galvanized. Steel/steel and steel/aluminum coils can be supplied with baked phenolic or epoxy coatings. Coils are available with ASME Section VIII, Division I, "U" stamps or CRN approval.

SECTION

Model Number Selection Series 6000 Coils

SPECIFY:

Number, Size and Type of Connections

Also call out non-standard items such as:

- Header Inside or Outside of Casing
- Special Casing Flange Width and Drilling
- Airtight Casing
- Mounting Plate (removable type)
- · Coatings, etc.
- Number of Inlets
- Connection Location
- Fluid Circuiting (for Liquid Coil)

*Hand of coil is determined by the position of either the condensate connection or the leaving liquid connection when facing the coil with the airflow to your back.

Longer Life in the Harshest Environments

When it comes to long life under tough industrial conditions, Armstrong is all you need to know about unit heaters. Even in the most severe environments, where coil leaks and corrosion are costly problems, Armstrong coils maintain high efficiency and output.

Armstrong: Why and How

The ability to maintain heat transfer efficiency and resist corrosion—both internally and externally—is why Armstrong unit heaters are uniquely dependable. How we construct them is your assurance of lasting performance, even in severe operating environments.

Consider these measurable benefits at work in your facility:

- Heavy gauge enclosures: Fabricated from 14-gauge steel for protection and durability.
- Corrosion-resistant heating cores: Cores are fabricated in a full range of materials, including steel, stainless steel, copper and others. Special coatings may be applied to increase resistance to external corrosion. Cores feature allwelded construction for durability and ease of repair. Cores can be steam or liquid compatible and can be used for steam, hot water or glycol heating mediums.

- Standard NEMA frame TEFC ball bearing motors: Supplied on all sizes, these heavy-duty motors are totally enclosed to lock out dirt for smooth performance. Quick access to the motor permits easy replacement.
- Thick fins and tubes: Constructed of high-strength, corrosion-resistant materials. Fins are available in a wide variety of thicknesses and pitches to withstand high pressure cleaning without damage or distortion.
- Customizing to your needs: Fans range in size from 10" to 48", and the wide selection of component materials means long, trouble-free service life.

Lightweight coils don't stand a chance in harsh environments. Armstrong coils survive because they're built as tough as your meanest application.

Your Steam Specialist

The first step toward ensuring trouble-free operation is proper unit selection. Your Armstrong Representative will help you select the right unit heater or door heater for any given application.

Our expertise as a manufacturer of unit heaters and door heaters is backed by over 70 years' experience in steam trapping, venting and condensate removal. To you, that means a superior product and an Armstrong Representative who understands how to make it work in your steam system.

If you're losing heat transfer due to deteriorating coils, contact your Armstrong Representative for a complete application analysis. You'll receive top-quality, reliable products from experts who know how to maximize your steam system efficiency.

Compare the Benefits You Can't See

Many of the best reasons to insist on Armstrong unit heaters and door heaters are ones you never even see. Components like motors, bearings, tubes, enclosures and fins are built heavy-duty to ensure lasting performance. Armstrong's options for fin material, pitch, height and type, for example, help explain why our heating cores last longer and perform with greater efficiency. These factors all have a bearing on heat transfer. Knowing how to balance these and other factors is the key to a cost-effective solution. That knowledge is perhaps the most important of Armstrong's many hidden benefits.

The L fin has a foot at its base and is tension wound on knurled tube material. The L-shaped base provides a large contact area between the tube and the fin, ensuring effective, long-lasting heat transfer. The L fin is recommended when tubes and fins are of the same material. L Fin

by form in the ti the fin i peening from th fin. Thi betwee The ke design fin mate

The keyfin is manufactured by forming a helical groove in the tube surface, winding the fin into the groove and peening the displaced metal from the groove against the fin. This means a tight fit between the fin and the tube. The keyfin is the superior design for dissimilar tube and fin material. Keyfin

Mounting Flexibility

Basic units may be used in

either horizontal or two-way

vertical discharge configurations.

Steam or Liquid Compatible Cores are available for steam or liquid, allowing units to be applied in different plant areas where various heating mediums may exist. 24"-48" Size

Model Number Selection

- 3. May be substituted with Sch. 10 SS pipe.
- 4. Add prefix 'D' for dual units (2 fans on wider core). For standard unit with one fan, the Hotbreath type will be missing.
- F Models includes larger motors, cleanout lip, ports for sensors.

Air Vents & Liquid Drainers

SECTION

12

Air Vents

Proven

Same proven, free-floating all stainless steel mechanism as used in Armstrong steam traps.

Leak-tight Positive closing, free-floating stainless steel lever ensures leak-tight closing under all conditions. **Body options** Variety of body materials available: polysulfone, cast High pressure iron, forged steel and all Armstrong air/gas vents can stainless steel. A material for handle applications to 2,700 psi. every application.

Selecting The Armstrong Air/Gas Vent

With the desired CFM capacity known, find the orifice size required from the table on this page. Then find the vent or vents with the correct orifice size on pages 447, 449, 451 or 459 that will operate at the required pressure with a liquid of the specific gravity being handled.

Example—Find a model number that will vent 52 cfm of air (including safety factor of 1.5 - 2.0) from a liquid with a specific gravity of 0.93 at 250 psi. Using the table below, follow the 250 psi line across to the number 60.9. Orifice size is 5/32". Now go to pages 447, 449, 451 or 459 checking the 5/32" orifice lines to locate a vent for 250 psi or higher with 0.90 gravity liquid.

NOTE: Since specific gravity falls between 0.95 and 0.90, use 0.90 gravity data. The model 3-AV on page 446 is the one to use.

For Venting During Filling Only

If a vent is required only for getting rid of air when a system is started up, such as when starting up a deep well pump or filling an empty pipe, tank or other vessel, ability of the vent to open at operating pressure can be ignored. In these cases, a model number with a large orifice for fast venting may be selected, **but the vent will not open after air is expelled and the system reaches operating pressure.**

$$V = \frac{W}{d} = \frac{2.05 \text{ C A } P_2 \text{ x 60}}{d} \sqrt{\left(\frac{P_1}{P_2}\right)^{283} \left[\left(\frac{P_1}{P_2}\right)^{283} - 1\right]}}{T}$$

Where:

- $V = Volume flow rate, ft^3/min$
- W = Mass flow rate, lb/min
- d = Density, 0.07494 lb/ft³ at standard conditions
- C = Flow coefficient = 0.65
- A = Orifice area, in^2
- P1 = Upstream pressure, psia
- P2 = Pressure at throat orifice or downstream pressure = greater of 0.53 P1 or 14.7 psia
- $T = Upstream temperature = 530^{\circ}R$

Ref: Baumeister & Marks, Standard Handbook for Mechanical Engineers, 7th edition.

Discharge	e of Ai	r Thro	ugh an	Orific	e in S	tandaı	rd Cubi	ic Feet	per M	inute a	t a Sta	ndard /	Atmosp	heric P	ressur	e of 14	.7 psia	and 70)°F			
pressure										Or	ifice D	iamete	r, inch	es								
, psig	1/16	5/64	3/32	#38	7/64	1/8	9/64	5/32	3/16	7/32	1/4	9/32	5/16	11/32	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1-1/6
5	0.64	1.00	1.44	1.54	1.96	2.56	3.24	4.00	5.76	7.84	10.2	13.0	16.0	19.4	23.0	31.4	41.0	51.9	64.0	92.2	125	185
6	0.70	1.09	1.57	1.69	2.14	2.80	3.54	4.37	6.30	8.57	11.2	14.2	17.5	21.2	25.2	34.3	44.8	56.7	70.0	101	137	202
7	0.75	1.18	1.70	1.82	2.31	3.02	3.82	4.71	6.78	9.23	12.1	15.3	18.8	22.8	27.1	36.9	48.2	61.1	75.4	109	148	218
9	0.85	1.33	1.91	2.05	2.61	3.40	4.31	5.32	7.66	10.4	13.6	17.2	21.3	25.7	30.6	41.7	54.4	68.9	85.1	122	167	246
12	0.98	1.52	2.19	2.35	2.99	3.90	4.94	6.10	8.78	11.9	15.6	19.8	24.4	29.5	35.1	47.8	62.4	79.0	97.5	140	191	282
15	1.09	1.70	2.44	2.62	3.33	4.34	5.50	6.79	9.78	13.3	17.4	22.0	27.2	32.9	39.1	53.2	69.5	88.0	109	156	213	314
20	1.27	1.98	2.86	3.06	3.89	5.08	6.42	7.93	11.4	15.5	20.3	25.7	31.7	38.4	45.7	62.2	81.2	103	127	183	249	367
25	1.45	2.27	3.27	3.50	4.45	5.81	7.35	9.07	13.1	17.8	23.2	29.4	36.3	43.9	52.3	71.1	92.9	118	145	209	285	420
30	1.63	2.55	3.68	3.94	5.01	6.54	8.28	10.2	14.7	20.0	26.2	33.1	40.9	49.5	58.9	80.1	105	132	163	235	320	472
35	1.82	2.84	4.09	4.38	5.57	7.27	9.20	11.4	16.4	22.3	29.1	36.8	45.4	55.0	65.4	89.1	116	147	182	262	356	525
40	2.00	3.13	4.50	4.82	6.13	8.00	10.1	12.5	18.0	24.5	32.0	40.5	50.0	60.5	72.0	98.0	128	162	200	288	392	578
45	2.18	3.41	4.91	5.26	6.69	8.73	11.1	13.6	19.6	26.7	34.9	44.2	54.6	66.0	78.6	107	140	177	218	314	428	631
50	2.37	3.70	5.32	5.70	7.25	9.46	12.0	14.8	21.3	29.0	37.9	47.9	59.2	71.6	85.2	116	151	192	237	341	464	684
60	2.73	4.27	6.15	6.58	8.37	10.9	13.8	17.1	24.6	33.5	43.7	55.3	68.3	82.6	98.3	134	175	221	273	393	535	790
70	3.10	4.84	6.97	7.46	9.49	12.4	15.7	19.4	27.9	37.9	49.6	62.7	77.4	93.7	112	152	198	251	310	446	607	895
80	3.46	5.41	7.79	8.34	10.6	13.9	17.5	21.6	31.2	42.4	55.4	70.1	86.6	105	125	170	222	281	346	499	679	1,001
90	3.83	5.98	8.62	9.2	11.7	15.3	19.4	23.9	34.5	46.9	61.3	77.5	95.7	116	138	188	245	310	383	551	750	1,107
100	4.19	6.55	9.44	10.1	12.8	16.8	21.2	26.2	37.8	51.4	67.1	84.9	105	127	151	206	268	340	419	604	822	1,212
110	4.56	7.13	10.3	11.0	14.0	18.2	23.1	28.5	41.0	55.9	73.0	92.4	114	138	164	223	292	369	456	657	894	1,318
125	5.11	7.98	11.5	12.3	15.6	20.4	25.9	31.9	46.0	62.6	81.7	103	128	155	184	250	327	414	511	736	1,001	1,477
150	6.02	9.41	13.6	14.5	18.4	24.1	30.5	37.6	54.2	73.8	96.4	122	151	182	217	295	385	488	602	867	1,181	1,741
200	7.85	12.3	17.7	18.9	24.0	31.4	39.8	49.1	70.7	96.2	126	159	196	238	283	385	503	636	785	1,131	1,539	2,269
250	9.68	15.1	21.8	23.3	29.6	38.7	49.0	60.5	87.1	119	155	196	242	293	348	474	620	784	968	1,394	1,897	2,798
300	11.5	18.0	25.9	27.7	35.2	46.0	58.3	71.9	104	141	184	233	288	348	414	564	737	932	1,151	1,657	2,256	3,326
400	15.2	23.7	34.1	36.5	46.4	60.7	76.8	94.8	136	186	243	307	379	459	546	743	971	1,228	1,517	2,184	2,973	4,383
500	18.8	29.4	42.4	45.3	57.6	75.3	95.3	118	169	231	301	381	471	569	678	922	1,205	1,525	1,882	2,711	3,689	5,440
600	22.5	35.1	50.6	54.1	68.8	89.9	114	141	202	275	360	455	562	680	809	1,102	1,439	1,821	2,248	3,237	4,406	6,497
750	28.0	43.7	62.9	67.4	85.6	112	142	175	252	343	447	566	699	846	1,007	1,370	1,790	2,265	2,797	4,027	5,481	8,082
1000	371	58.0	83.5	89.4	114	148	188	232	334	455	594	751	928	1 123	1 336	1 818	2 375	3 006	3 711	5 3 4 4	7 273	10 725

Air Vent ID Charts

Westerling	Toma	Flow	Connection	Max. Allow.	ТМА	De du Material	Madal	Max. Oper.			Conn	ectio	n Siz	e		Located
lliustration	Туре	Direction	Туре	Press. psig	°F	Body Material	Model	Press. psig	1/8"	1/4"	1/2"	3/4"	1"	1-1/2"	2"	on Page
	Series 1-AVCW See-Thru Free Floating Lever Air Vents for Ozone Applications		Screwed	150	150	PBT Cap (Polybutylene Terephthalate) Polysulfone Body	1-AVCW	150				•				445
	Series 1-AVC See-Thru Free Floating Lever Air/Gas Vents	->->	Screwed	150	150	Nylon Cap Polysulfone Body	1-AVC	150			•	**				444
	Series 21-AR Fixed Pivot Ball Float Air/Gas Vents	↑	Screwed	250	450	ASTM A48 Class 30 Cast Iron	21-AR	250			•	•				459
	Series 21-312 Fixed Pivot Ball Float Air/Gas Vents		Screwed Socketweld Flanged †††	600 or 500	100 or 750	ASTM A105 Forged Steel	21-312AR 21-312VAR	68 600			•	•				459
	Series 1, 2, 3, 6 Free Floating	•		300	200	ACTN A 40	1-AV†	300			*	*				
	Lever Air/Gas Vents		Screwed	250	450	Class 30 Cast Iron	2-AV 3-AV 3-AV	250 250 250			•	•	•	•	•	446
	Series 30 Free Floating Lever Air/Gas			600 or 500	100 or 750		32-AV	600			•	•				
	Vents		Screwed Socketweld Flanged †††	1,000 or 600	000 100 600 0r 750	ASTM A105 Forged Steel	33-AV	900			•	•	•			448
				1,000 or 600	100 or 750		36-AV	1000						•	•	
	Series 10 Free Floating Lever Air/Gas		Caravad	500 or 440	100 or 500		11-AV ††	400			•	** •				
	Vents		Socketweld (22 and 13	555 or 475	100 or 500	304-L Stainless Steel	22-AV	555				•				450
			Unity	570 or 490	100 or 500		13-AV	570					•			
	Series HLAR High Leverage		Screwed		100		2313 HLAR				•	•	•			
	Air/Gas vents		Socketweld Flanged †††	100 or 600	or 750	ASTM A105 Forged Steel	2315 HLAR 2316 HLAR	1,000					•	1-1/4 ● 1-1/2 ●	•	452
	Series HLAR High Leverage Air/Gas Vents	A	Screwed	1,500 or 900	100 or 850	ASTM A182	2413 HLAR	1,500			•	•	•			
			Socketweld Flanged †††	1,800 or 900	100 or 900	Gr. F22 Forged Steel	2415 HLAR 2416 HLAR	1,800 1,500					•	1-1/4 ● 1-1/2 ●	•	452

★ 1/4" outlet connection $\pm \pm 1/2$ " outlet connection ± 3 Side connection available ▲ Alternate inlet 1/2"

Air Vent ID Charts

	_	Flow	Connection	Max. Allow.	тма	D. I. M. I I		Max. Oper.			Conr	nectio	n Siz	e		Located	
Illustration	Туре	Direction	Туре	Press. psig	°F	Body Material	Wodel	Press. psig	1/8"	1/4"	1/2"	3/4"	1"	1-1/2"	2"	on Page	
	Series HLAR High Leverage Air/Gas Vents			2,120 or 1,700	100 or 900		25133G- HLAR	2,125			•	•	•				
			Screwed Socketweld Flanged †††	2,520 or 2,000	100 or 900	ASTM A182 Gr. F22 Forged Steel	25155G- HLAR	2,500				•	•	1-1/4 ●		452	
				3,700 or 3,000	100 or 900 26	26155G- HLAR	2,700					•	1-1/4 ●				
	Series TTF Thermostatic Air Vents		Straight-Thru	300	450	304-L Stainless	TTF-1	300			•	•				454	
Ţ			Tight Angle			Steel	TTF-1R										
	Series TV-2 Thermostatic Air Vents	^	Screwed	125	350	ASTM B62 Cast Bronze	TV-2	125			•					455	
	Series TS-2 Thermostatic Air Vents	•	Threaded	50	300	ASTM B62 Bronze	TS-2	50			•	•				456	
	AV-11, AV-13 Air Vents	^	Screwed	50 150	210	Brass	AV-11 AV-13	50 150	•		•	•				457	
	SV-12 Steam Radiator Air Vent		Threaded	15	250	Nickel Plated Brass	SV-12	15	•	•	•	•				458	

★ 1/4" outlet connection ★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★
★ ★ † Side connection available ▲ Alternate inlet 1/2" \star \star 1/2" outlet connection

††† Flange selection may limit pressure and temperature rating.

SECTION

1-AVC See-Thru Air Vent

For Pressures to 150 psig (7 bar) or Specific Gravity Down to 0.80

A See-Thru Body—So You'll Know When It's Working

Now, you can literally see what you've been missing—the early warning signs of a system problem. Since you'll know the operating condition of the air vent, you won't have to waste time and money scheduling maintenance that isn't needed. In other words, you will be able to react to a condition before it becomes a problem.

A simple ball float mechanism requiring no electricity to operate, the new Armstrong 1-AVC discharges automatically only when air/gas are present. That means no liquid loss as with manual venting.

An Inside Look

See-thru body means you can observe changing conditions as they occur. See a problem in the making—instead of having to deal with it after the fact.

Efficient Operation

Simple ball float mechanism discharges only when air is present so it doesn't waste liquid.

Positive Seating

Free-floating valve mechanism assures positive seating so it prevents liquid loss. There are no fixed pivots to wear or create friction, and wear points are heavily reinforced for long life.

Reduced Maintenance

Stainless steel internals mean corrosion resistance and reduced maintenance.

Corrosion Resistance

Long-lasting polysulfone body and reinforced nylon cap resist corrosion and provide long, trouble-free service life.

List of Materials							
Name of Part	Material						
Сар	Reinforced Nylon*						
Body	Polysulfone						
O-Rings (Body Cap and Fitting)	Nitrile Elastomer Compound						
Float Lever and Screws	Stainless Steel						
Valve & Seat	Stainless Steel						
Fitting & Pipe Plug	Reinforced Nylon						
Retainer Ring	Zinc Plated Steel						

*UV sensitive.

Physical Data				
	in	mm		
Inlet Connection	1/2, 3/4	15, 20		
Outlet Connection	1/2	15		
"A" Face-to-Face	3-1/2	89		
"B" Height	6-3/4	171		
"C" Bottom to 🕻	6 1	52		
Maximum Allowable Pressure	150 psig @ 150°F			
(Vessel Design)	(10 bar	@ 65°C)		
Maximum Operating Pressure	150 psi (10 bar)			
Specific Gravity Range	1.00 to 0.80			
Weight, Ib (kg)	1 (.45)			

How to Order

Inlet ①	Alternate Inlet ②	Outlet ③
3/4"	1/2"	1/2"
1/2" or 3/4"	1/2" or 3/4"	1/2"

NOTE: The Armstrong 1-AVC should not be used in an environment where there are high levels of ketones or chlorinated or aromatic hydrocarbons.

For a fully detailed certified drawing, refer to CD #1031.

Model 1-AVC Ca	pacity				
Differentia	l Pressure	Orifing Size	aafm	m³/br	
psig	bar	UTILICE SIZE	SUIII		
15	1.0		4.3	7.3	
30	2.0		6.5	11.0	
50	3.5		9.5	16.1	
75	5.0	1/8"	13.1	22.2	
100	7.0		16.9	28.7	
125	8.5		20.5	34.8	
150	10.5		24.2	41.3	

NOTE: Discharge of air through an orifice in scfm (standard cubic feet of free air per minute) at a standard atmospheric pressure of 14.7 psi (1 bar) and 70°F (21°C).

1-AVCW See-Thru Air Vent for Ozone Applications

For Pressures to 150 psig (10 bar) or Specific Gravity Down to 0.80

What Is Ozone?

Ozone is a gas that forms naturally during thunderstorms when lightning converts normal oxygen molecules (O^2) into ozone (O^3) . The fresh, sweet smell in the air after a storm is the smell of ozone. The unstable ozone molecule reacts rapidly with most substances and is an extremely strong natural oxidant.

How Is Commercial Ozone Produced?

Ozone can be formed by exposing air to ultraviolet light; however, the most common method of generating ozone is by passing air through an electrical discharge. Because ozone has strong oxidizing properties, its production requires corrosion-resistant equipment.

How Is Ozone Used in Water Filtration and Purification?

Because ozone is such an effective oxidant, it kills viruses, bacteria, mold, mildew, fungus and germs. Passing ozone through water achieves high purification rates without any chemical residue. Oxygen is the only by-product.

Typical Customer Applications:

- Purifying standing ground water in Third World countries.
- · Conditioning water for poultry and livestock.
- Purifying water in the bottled water industry.
- Filtering and purifying water for process applications.

A See-Thru Body Shows You It's Working

Now, you can literally see what you've been missing. The Armstrong 1-AVCW See-Thru Air Vent lets you easily check its operating condition. You won't have to waste time and money scheduling maintenance that isn't needed, and you can quickly react to a condition before it becomes a problem.

Efficient Operation

Simple ball-float mechanism doesn't need electricity to operate. The air vent automatically discharges only when air or gas is present. No liquid is lost, as with manual venting.

Positive Seating

Free-floating valve mechanism ensures positive seating and prevents liquid loss. There are no fixed pivots to wear or create friction. Wear points are heavily reinforced for long life.

Corrosion Resistance

Long-lasting PBT (polybutylene terephthalate) cap provides trouble-free operation. Stainless steel internal parts resist corrosion and reduce maintenance.

Compare-and Save the Difference

Seeing really is believing–especially when you compare the Armstrong 1-AVCW See-Thru Air Vent with manual venting. Measure the time and money you can save with a more efficient, easier-to-maintain system. For more information or technical assistance, contact your local Armstrong Representative.

NOTE: The Armstrong 1-AVCW should not be used in an environment where there are high levels of ketones or chlorinated or aromatic hydrocarbons.

1-AVCW

List of Materials	
Name of Part	Material
Сар	PBT (Polybutylene Terephthalate)
Body	Polysulfone*
O-Rings (Body Cap and Fitting)	Viton®
Float Lever and Screws	Stainless Steel
Valve & Seat	Stainless Steel
Fitting	PBT (Polybutylene Terephthalate)
Retainer Ring	Zinc Plated Steel

*UV sensitive

in	mm		
3/4	20		
1/2	15		
1/2	15		
3-1/2	89		
6-13/16	172		
6	152		
150 psig @ 150°F (10 bar @ 66°F)			
150 psi	(10 bar)		
1.00 to 0.80			
1 (.5)			
	in 3/4 1/2 1/2 3-1/2 6-13/16 6 150 psig (10 bar 150 psi 1.00 tr 1.00 tr 1.00 tr 1.00 tr 1.00 tr		

Model 1-AVCW Capacity										
Differentia	I Pressure	Orifico Sizo	oofm	m³/br						
psig	bar	UTILICE SIZE	SUIII	111-/111						
15	1.0		4.3	7.3						
30	2.0]	6.5	11.0						
50	3.5]	9.5	16.1						
75	5.0	1/8"	13.1	22.2						
100	7.0]	16.9	28.7						
125	8.5]	20.5	34.8						
150	10.5		24.2	41.3						

NOTE: Discharge of air through an orifice in scfm (standard cubic feet of free air per minute) at a standard atmospheric pressure of 14.7 psi (1 bar) and $70^{\circ}F$ (21°C).

For a fully detailed certified drawing, refer to CD #1264.

Free Floating Lever Air/Gas Vents—All Stainless Steel

For Pressures to 600 psig (41 bar) or Specific Gravity Down to 0.50

Model 11-AV

Model 22-AV and 13-AV

The Armstrong all-stainless steel guided lever air vents have been developed to provide positive venting of air/gases under pressure.

The body and cap and all working parts of the No. 11-AV, 22-AV and 13-AV are made of high strength, corrosion resistant stainless steel. Body and caps are welded together to form a permanently sealed, tamperproof unit with no gaskets. Elliptical floats and high leverage provide up to 115 SCFM capacity for these compact air/gas vents. Lever action is guided to assure proper seating of the valve under all operating conditions.

11-AV, 22-AV and 13-AV—All stainless steel construction where exposure to either internal or external corrosion is a problem. These air/gas vents have the same proven free floating mechanisms used in other Armstrong steam traps. Pressures to 600 psi @ 100°F (41 bar @ 38°C).

For a fully detailed certified drawing, refer to list below: 11-AV CD #1066 13-AV and 22-AV CD #1086

Physical Data							
Model No.	11-/	V	22-	AV	13-AV		
Pipe Connections	1/2, 3/4**	15, 20**	3/4	20	1	25	
"A"	2-3/4	70	3-7/8	99	4-1/2	114	
"В"	7-1/4	184	8-13/16	224	11-3/8	289	
"D"	-	-	3-3/8	86	6-1/8	156	
"K"	9/16	14	7/8	22	1-3/16	30	
"L"	-	-	2-5/8	67	3-1/4	83	
Weight, Ib (kg)			5 (2	2.3)	7-1/2	(3.4)	
Max. Allow. Pressure (Vessel Design)	500 psig @ 100°F 440 psig @ 500°F ((34 bar @ 38°C) 30 bar @ 260°C)	600 psig @ 100°F 475 psig @ 500°F	(41 bar @ 38°C) (33 bar @ 260°C)	570 psig @ 100°F (39 bar @ 38°C) 490 psig @ 500°F (34 bar @ 260°C)		

** 1/2" (15 mm) outlet.

List of Mat	List of Materials										
Model No.	Valve & Seat	Leverage System	Float	Body & Cap							
11-AV	*440	303/304	304								
22-AV Stainless		Stainless	Stainless	Sealed Stainless Stee							
13-AV	Steel	Steel	Steel								

*Type 316 SS valve and seat available. Consult factory.

Free Floating Lever Air/Gas Vents—All Stainless Steel

For Pressures to 600 psig (41 bar) or Specific Gravity Down to 0.50

Maximum Operating Pressures of free floating lever vents with weighted floats for different orifice sizes, and the specific gravities on which they can be used.

11-AV Maximum Operating Pressures													
Minimum Specific Gravity	0.7	5	0.50										
Float wt., oz (g)	2.90 (82) 8	Standard	2.08 (59	9) Special									
Orifica Siza (in)	Maxi	Maximum Operating Pressure											
Unince Size (iii)	psi	bar	psi	bar									
1/8	178	12	118	8									
#38	267	18	177	12									
5/64	400	28	311	21									

22-AV Maximum Operatin	g Pres	ssure																				
Specific Gravity*	1.	00	0.	95	0.	90	0.	85	0.	80	0.	75	0.	70	0.	65	0.	60	0.	55	0.	50
Float wt., oz (g)	10.0	(282)	9.5	(268)	9.0 ((254)	8.5 ((240)	8.0	(226)	7.5	(212)	5.4 ((152)	5.0 ((141)	4.6 (130)		4.2 ((119)	19) 3.8 (10	
Orifing Size (in)	Maximum Operating Pressure																					
Office Size (iii)	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar
5/16	35	2.4	33	2.3	31	2.2	30	2.0	28	1.9	26	1.8	19	1.3	18	1.2	16	1.1	15	1.0	14	0.9
1/4	57	3.9	54	3.7	51	3.5	49	3.4	46	3.2	43	3.0	31	2.1	29	2.0	27	1.8	24	1.7	22	1.5
3/16	126	8.7	120	8.2	113	7.8	107	7.4	101	7.0	95	6.5	68	4.7	64	4.4	59	4.1	54	3.7	49	3.4
5/32	217	14.9	206	14.2	195	13.5	185	12.7	174	12.0	163	11.2	118	8.1	110	7.6	101	7.0	93	6.4	85	5.8
1/8	371	25.6	352	24.3	334	23.0	316	21.8	297	20.5	279	19.2	202	13.9	187	12.9	173	12.0	159	11.0	145	10.0
7/64	474	32.7	451	31.1	427	29.5	404	27.9	380	26.2	357	24.6	258	17.8	240	16.5	222	15.3	204	14.0	186	12.8
#38	590	40.7	561	38.7	532	36.7	503	34.7	473	32.7	444	30.6	321	22.1	298	20.6	276	19.0	253	17.5	231	15.9
5/64	600	41.4	600	41.4	600	41.4	600	41.4	600	41.4	600	41.4	473	32.6	440	30.3	407	28.1	374	25.8	341	23.5

13-AV Maximum Oper	rating P	ressure	s															
Specific Gravity*	1.	00	0.	95	0.	90	0.	85	0.	80	0.	75	0.70		0.	65	0.60	
Float wt., oz (g)	14.9	(423)	14.2	(402)	13.4	(381)	12.7 (360)		12.0	12.0 (339)		(318)	10.5	(296)	9.7 (275)	9.0 (254)
Orifico Sizo (in)								Maxim	um Ope	rating P	Pressure)						
Unifice Size (iii)	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar
1/2	21	1.5	20	1.4	19	1.3	18	1.3	17	1.2	16	1.1	15	1.0	14	1.0	13	0.9
3/8	45	3.1	43	3.0	41	2.8	38	2.7	36	2.5	34	2.3	32	2.2	30	2.0	27	1.9
5/16	72	5.0	69	4.7	65	4.5	61	4.2	58	4.0	54	3.8	51	3.5	47	3.3	44	3.0
9/32	96	6.6	91	6.3	87	6.0	82	5.6	77	5.3	72	5.0	68	4.7	63	4.3	58	4.0
1/4	144	9.9	137	9.4	130	8.9	123	8.5	116	8.0	109	7.5	102	7.0	94	6.5	87	6.0
7/32	206	14	196	13	186	13	176	12	165	11	155	10.7	145	10.0	135	9.3	125	8.6
3/16	309	21	294	20	279	19	264	18	249	17	234	16	218	15	203	14	188	13
5/32	484	33	460	32	437	30	413	28	389	27	365	25	342	24	318	22	294	20
1/8	570	39	570	39	570	39	570	39	570	39	570	39	570	39	570	39	570	39
7/64	570	39	570	39	570	39	570	39	570	39	570	39	570	39	570	39	570	39

*If specific gravity falls between those shown, use next lowest: e.g., if actual gravity is 0.73, use 0.70 specific gravity data.

Armstrong Stainless Steel Thermostatic Air Vents

For Pressures to 300 psig (20 bar)...Capacities to 104 scfm

Armstrong offers Thermostatic Air Vents for positive venting of air and other non-condensable gases from steam in chamber type heat transfer equipment. Typical applications include jacketed kettles, retorts, vulcanizers, jacketed sterilizers or other contained equipment where air could accumulate in remote areas of the steam chamber and reduce heat transfer capacity. These vents are balanced pressure air vents that respond to the pressure-temperature curve of steam. Air is automatically vented at slightly below steam temperature throughout the entire operating pressure range.

Features

- Suitable for pressures from 0 300 psig
- All 304-L stainless steel bodies—sealed, tamper-proof
- Balanced pressure thermostatic element vents air at slightly below steam temperature over the entire pressure range—no adjustments required
- Dependable, proven phosphor-bronze bellows caged in stainless steel with bronze valve and stainless steel seat
- Available in straight-thru or right-angle connections

Armstrong thermostatic air vents should be installed at the highest point on a steam chamber, with the air vent located above the chamber. This will minimize the possibility of any liquid carryover, and air can be vented at atmosphere without a drain line.

List of Materials	
Name of Part	Material
Body	304-L Stainless steel
Connections	304 Stainless steel
Balanced Pressure Thermostatic Air Vent	Stainless steel and bronze with phosphor-bronze bellows, entire unit caged in stainless steel
Gasket	Copper clad non-asbestos

Optional: All stainless steel thermostatic air vent.

Physical Data													
Model No.	5	Straight-Thru	Connections TTF	-1	Right-Angle Connections TTF-1R								
Bing Connections	in	mm	in	mm	in	mm	in	mm					
Fipe connections	1/2	15	3/4	20	1/2	15	3/4	20					
"A" Diameter	2-1/4	57	2-1/4	57	2-1/4	57	2-1/4	57					
"B" Height	4-1/2	114	4-11/16	119	3-3/4	95	3-15/16	100					
"C" C inlet to face of outlet	-	_		_	2-5/8	67	2-13/16	71					
"D" C outlet to face of inlet		-		-	1-15/16	49	1-7/8	48					
"H"		-		-	3-1/16	78	3	76					
Weight, Ib (kg)	3/4 ((0.4)	1 (0.5)	3/4	(0.4)	1 (0.5)					
Maximum Allowable Pressure (Vessel Design)			3	100 psig @ 450°1	F (20 bar @ 232°	°C)							
Maximum Operating Pressure, psi (bar)		300 (20)											
Discharge Orifice Size	3/16"												

SECTION

12

THERMOSTATIC STEAM TRAPS AND AIR ELIMINATORS - TH13A

DESCRIPTION

The TH 13A series thermostatic steam traps and air eliminators are specifically designed for use on process equipment such as kettle cookers, sterilizers, food, chemical and laundry equipment. The small size makes it ideal for use with a wide variety of this equipment and specifically as air eliminator.

Connections are female screwed.

MAIN FEATURES

Modulating discharge. Discharges condensate close to steam temperature. Thermostats for different sub cooling (5°K to 30°K). Excellent air discharge. Simple and compact design. Built-in strainer.

Saturated steam.
TH13A
DN 1/2"
Female screwed ISO 7/1 Rp (BS21)
Vertical installation, angle connection.

PMA – Max. allowable pressure	16	bar
TMA – Max. allowable temperature	260	°C
PMO – Max. operating pressure	13	bar
TMO – Max. operating temperature	200	°C
How to order: i.e. TH13A DN 1/2" BSP		

	МАТ	ERIALS
POS.N r.	DESIGNATION	MATERIAL
1	Body	Brass EN12165 / CuZn39Pb2
2	Cover	Brass EN12165 / CuZn39Pb2
3	* Gasket	St.St./Graphite
4	* Valve seat	AISI304 / 1.4301
5	* Thermostat	Stainless steel
6	* Spring	AISI302 / 1.4300
7	* Strainer screen	AISI304 / 1.4301

* Available spare parts

4

	D	IMENSI	ONS (mn	ı)-Screw	ed	
SIZE DN	A	В	с	D	E	WGT. Kgs
1/2"	63	22,5	38	54	50	0,5

	FLOW RATE CAPACITY IN Kgs/h													
MODEL SIZE DIFFERENTIAL PRESSURE (bar)														
MODEL	512E	0,2	0,3	0,5	1	1,5	2	3	4	6	8	10	13	
TH13A	1/2''	45	55	70	95	125	135	180	200	270	315	330	360	

Capacities shown refer to condensate at 10°C below saturated steam temperature (standard type-S thermostat). Thermostats for 5° C type-H and 30° type-L, also available.

Capacities for cold condensate discharge at 20°C are two to three times greater.

SECTION

Liquid Drainers

32-LD Forged Steel Free Floating Guided Lever Drain Trap

1-LD Cast Iron Free Floating Guided Lever Drain Trap

11-LD Stainless Steel Free Floating Guided Lever Drain Trap

Liquid Drainers ID Charts

Armstrong Liqui	d Drainers														
Illustration	Тупе	Flow	Connection	Max. Allow.	ТМА	Rody Material	Model	Max. Oper.		(Conne	ction S	ize		Located
musuation	Type	Direction	Туре	Press. psig	°F	Douy Material	WOUGI	Press. psig	1/2"	3/4"	1"	1-1/4"	1-1/2"	2"	Page
	Series 1-LDC See-Thru Free Floating Lever Drain Traps Capacities to 1,500 lb/hr	•	Screwed	150	150	Nylon Cap Polysulfone Body	1-LDC	150	•	**					493
	Series 1-LDCW See-Thru Free Floating Lever Drain Traps for Ozone Applications		Screwed	150	150	PBT Cap (Polybutylene Terephthalate) Polysulfone Body	1-LDCW			** •					495
	Series 200 BVSW Inverted Bucket Drain Traps Capacities to 7,000 lb/hr	A	Screwed	250	450	ASTM A48 Class 30 Cast Iron	211 212 213	250	•	•	•				496
	Series 800 BVSW Inverted Bucket Drain Traps Capacities to 7,000 lb/hr		Screwed	250	450	ASTM A48 Class 30 Cast Iron	800 811 812 813	150 250 250 250	•	• • •	•				496
	Series 880 BVSW Inverted Bucket Drain Traps Capacities to 7,000 lb/hr		Screwed	250	450	ASTM A48 Class 30 Cast Iron	800 881 882 883	150 250 250 250	•	• • •	•				
	Series 300 BVSW Inverted Bucket Drain Traps Capacities to 7,000 lb/hr	A	Screwed Socketweld Flanged†	600 1,080	650 650	ASTM A105 Forged Steel	312 313	600	•	•	•				496
	Series 900 BVSW Inverted Bucket Drain Traps Capacities to 7,000 lb/hr		Screwed Socketweld Flanged†	600	650	ASTM A216 WCB Cast Steel	981 983	300 600	•	•	•				
	Series 1, 2, 3, 6 Free Floating Lever Drain Traps Capacities to 49,000 lb/hr		Screwed	300 250	200 450	ASTM A48 Class 30 Cast Iron	1-LD 2-LD 3-LD 4-LD	300 250	*	•	•				499

★ 1/4" outlet connection
★ ★ 1/2" outlet connection

Flange selection may limit pressure and temperature rating.
 Side connection not available.

Liquid Drainers ID Charts

Armstrong Liqu	uid Drainers			Max.				Max.	Connection Size				Located		
Illustration	Туре	Flow Direction	Connection Type	Allow. Press. psig	°F	Body Material	Model	Oper. Press. psig	1/2"	3/4"	1"	1-1/4"	1-1/2"	2"	on Page
	Series 11, 22, 13 Free Floating Lever		Screwed Socketweld	500 or 440	100 or 500		11-LD††	400	•	** •					
	Diani naps		Screwed Socketweld	600 or 475	100 or 500	304-L Stainless Steel	22-LD	533		•					500
	Capacities to 9,500 lb/hr	•	(22 and 13 Series Only)	570 or 490	100 or 500		13-LD	570			•				
	180-LD/181-LD Free Floating Lever Drain Traps		Screwed	500 or	100 or	304L Stainless	180-LD	229	•						502
	Capacities to 1,100 Ib/hr		Socketweld	440	500	Steel	181-LD	350		•					
	Series 30 Free Floating Lever Drain Traps			600 or 500	100 or 750		32-LD	600	•	•	•				
			Screwed Socketweld Flanged†	1,000 or 600	100 or 750	ASTM A105 Forged Steel	33-LD	900	•	•	•				501
	Capacities to 42,000 lb/hr	+		1,000 or 600	100 or 750		36-LD	1,000					•	•	
	Series 21 Fixed Pivot Drain Trap Capacities to 2,700 lb/hr		Screwed	250	450	ASTM A48 Class 30 Cast Iron	21	250	•	•					
	Series 21-312 Fixed Pivot Drain Traps		Screwed Socketweld	600 or 500	100 or	ASTM A105 Forged Steel	21-312	74	•	•					
	Capacities to 3,900 lb/hr	T	Flangeot		750		21-312V	600	•	•					504
	Series 71-A Snap Action Drain Trap		Screwed	250	450	ASTM A48 Class 30 Cast Iron	71-A	250		•	٠				504
	Series 71-315														-
	Trap Capacities to 1.950 lb/hr		Screwed Socketweld Flanged†	1,000 or 600	100 or 750	ASTM A105 Forged Steel	71-315	1,000		•	•	•			
	Series 2300 High Leverage Spring-Loaded Float Type Drain Trap		Screwed Socketweld Flanged†	1,000 or 600	100 or 750	ASTM A105 Forged Steel	2313-HLS 2315-HLS 2316-HLS	1,000	•	•	•	•	•	•	506

† Flange selection may limit pressure and temperature rating.

Liquid Drainers ID Charts

Armstrong Liqu	iu Drainers			Max.				Max			Co	nnection	Size			
Illustration	Туре	Flow Direction	Connection Type	Allow. Press. psig	°F	Body Material	Model	Oper. Press. psig	1/2"	3/4"	1"	1-1/4"	1-1/2"	2"	3"	Located on Page
	Series 2400 High Leverage Spring-Loaded		Screwed	1,500 or 900	100 or 850	ASTM A182	2413-HLS	1,500	•	•	•					506
	Float Type Drain Traps Capacities to	↓ ↓	Socketweld Flanged†	1,800 or 900	100 or 900	Gr. F22 Forged Stee	2415-HLS 2416-HLS	1,800			•	•	•	•		506
	16,250 lb/hr Series 2500/2600 High Leverage			2,120 or	100 or		25133G HLS	2,120		•	•	•				
	Spring-Loaded Float Type Drain Traps		Screwed Socketweld Flanged†	2,520 or 2 000	100 0r	ASTM A182 Gr. F22 Forged	25155G HLS	2,520			•	•	•			506
	Capacities to 11,000 lb/hr	•		3,700 or 3,000	100 or 900	Steel	26155G HLS	3,700				•	•			
	Series 2 , 3, 6 Free Floating						2-DG	190	•	•						
	Lever Dual Gravity Drain Traps		Screwed	250	450	ASTM A48 Class 30 Cast Iron	3-DG	250		•	•					
	Capacities to 40,000 lb/hr	V					6-DG	250				•	•			
	Series 30 Free Floating Lever Dual			600 or 500	100 or 750		32-DG	325	•	•	•					508
	Gravity Drain Traps Capacities to		Screwed Socketweld Flanged†	1,000 or 600	100 or 750	ASTM A105 Forged Steel	33-DG	700		•	•					
	40,000 lb/hr	+		1,000 or 600	100 or 750		36-DG	1,000				•	•			
	Series JD&KD Ultra-Capacity Drain Traps Capacities to 302,000 lb/hr		Screwed	300	650	ASTM A395 Ductile Iron	JD8 KD8 KD10 KD12	300*					•	•	•	
	Series L&M Ultra-Capacity Drain Traps Capacities to 700,000 lb/hr		Screwed	250	450	ASTM A48 Class 30 Cast Iron	L8 L10 M12	250*					•	•	•	510
	Series LS&MS Ultra-Capacity Drain Traps Capacities to	 +	Screwed Socketweld Flanged†	450	650	ASTM A216 WCB Cast Steel	LS8 LS10 MS12	450*					•	•	•	
	ADP-1 Pneumatically Operated Liquid Drainer Capacities to 1.5 lb liquid per cycle	\	Screwed	180	150	Aluminum ASTM B221 6061-T6511	ADP-1	180		•						514

*For different specific gravities, see table LD-33 on page LD-49.

†Flange selection may limit pressure and temperature rating.

Free Floating Guided Lever Drain Traps

For Loads to 9,500 lb/hr (4,309 kg/hr)...Pressures to 570 psig (39 bar)

Armstrong's stainless steel, free-floating guided lever drain traps use the same bodies, caps, lever mechanisms, valves and seats of Armstrong inverted bucket steam traps that have been proven in years of service. Elliptical floats and high leverage make it possible to open large orifices to provide adequate capacity for drain trap size and weight.

List of Materials

Table LD	-17.				
Model No.	Valve & Seat	Leverage System	Float	Body & Cap	Gasket
11-LD 22-LD 13-LD	St	ainless Steel		Sealed Stainless Steel, 304L	_

For information on special materials, consult the Armstrong Application Engineering Department.

Figure LD-34.

No. 11-LD, 22-LD and 13-LD stainless steel guided lever liquid drain trap with sealed, tamperproof construction.

Physical Data

Table LD-18. Armstrong Guided Lever Liquid Drain Traps

Model No			Stainle	ss Steel			
MUUUUI NU.	11-L	.D**	22-	-LD	13-LD		
Dina Connections	in	mm	in	mm	in	mm	
Pipe connections	3/4*	20*	3/4	20	1	25	
"A"	2-3/4	70	3-15/16	100	4-1/2	114	
"В"	7-1/4	184	8-13/16	224	11-3/8	289	
"D"	—	—	3	76	6-1/8	156	
"K"	9/16	14	7/8	22	1-3/16	30	
"L"	—	—	2-5/8	67	3-9/32	83	
Approx. Wt. lbs (kg)	1-3/4	(0.79)	3-1/4	(1.5)	7-1/2	(3.4)	
Max. Allowable Pressure (Vessel Design)	500 psig @ 100°F 440 psig @ 500°F	- (35 bar @ 38°C) (30 bar @ 260°C)	600 psig @ 100°F 475 psig @ 500°F	- (41 bar @ 38°C) (33 bar @ 260°C)	570 psig @ 100°l 490 psig @ 500°F	- (39 bar @ 38°C) (34 bar @ 260°C)	

Note: Vessel design pressure may exceed float collapse pressure in some cases.

Pipe size of vent connection is same as that of inlet and outlet connections.

*1/2" (15 mm) outlet. **No side connection.

service up to 570 psig (39 bar) with the exception of the addition of a guidepost to assure a positive, leaktight valve closing under all conditions.

The hemispherical valve, seat and leverage of the 11-LD,

materials and workmanship to those for saturated steam

22-LD and 13-LD stainless steel traps are identical in design,

Pipeline Ancillaries

SECTION

13

Y strainer.

- Suitable for steam, water, air, gas and most non corrosive chemicals
- Body & cap: Bronze B-62
- Strainer: 304 stainless steel, 0.5mm holes
- End Connections: Screwed BSP
- Maximum pressure rating 2,100 kpa cold
- Sizes: 15mm to 80mm

HIDROS	TATIC	TES	Т			
BODY		450	PSI	(31	BAR)	

	WOR	KING	CON	IDITIC	INS		
SATURATED	STEAM	150	PSI	(10	BAR)		SUULK
WATER,	OIL	300	PSI	(21	BAR)	NUN	SHUCK

	1/4*	3/8*	1/2'	3/4	1	1 1/4	1 1/2'	2'	2 1/2'	3'
A	50	50	75	80	96	110	130	150	195	230
В	40	40	53	62	73	83	91	108	122	147

4	01	CAP	BRONZE	NBR6314/C83600	B62/C83600
З	01	BONNET	BRONZE	NBR6314/C83600	B62/C83600
2	01	STRAINER	ST. STEEL	NBR5601/304	A276/304
1	01	BODY	BRONZE	NBR6314/C83600	B62/C83600
POS.	QUANT.	DENOMINATION	MATERIAL	ABNT SPECIFICATION	ASTM SPECIFICATION

NOTE: THE DIMENSIONS ARE EXPRESSED IN MILLIMETERS.

STYSD60B

Y strainer.

Suitable for steam, water, air, gas and most chemicals

- Body & cap: 316 stainless steel
- Strainer: 316 stainless steel
- End Connections: Screwed BSP
- Maximum pressure rating 4,135 kpa cold
- Sizes: 15mm to 80mm

600 PSI Y-STRAINER DIMENSION

Valve Size	1/4	3/8	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3
L m/m	57.0		61.0	70.0	86.0	100.0	111.0	138.0	170.0	195.0
H m/m	32.0		37.0	41.0	47.0	54.0	62.0	76.0	110.0	130.0
D m/m	10.0		15.0	20.0	25.0	32.0	38.0	51.0	65.0	80.0
Weight/kgs	Weight/kgs 0.25		0.28	0.4	0.6	0.9	1.15	1.65	3.60	5.00

STYCS15R

Y strainer.

Suitable for steam, water, air, gas and most non corrosive chemicals

- Body & cap: ASTM A216 Gr WCB
- Strainer: 304 stainless steel, 40 mesh
- Gasket: Flexible graphite
- End Connections: Flanged ANSI 150 RF
- Maximum pressure rating 1,964 kpa cold
- Sizes: 15mm to 300mm

1.	Performance Spec	ification	1
-	Class	12	50
ure	Shell test	2.94	
ess	Seal test	-	UP.
t P	Back seal Test	5 .]
Tes	Air Seal Test	. E	

2.RF flanged ends by ASME B16.5 3. Valves tested by API 598 4.Pressure-Temperature Rating as per ASME B16.34 5.Painting is suitable for maximum temperature 200°C

NO	PART NAME	MATERIAL	REMARKS
1	Bonnet Bolt Nut	ASTM A194 Gr.2H	
2	Bonnet Bolt	ASTM A193 Gr.B7	
3	Bonnet	ASTM A216-WCB	
4	Plug Fitting	Corbon Steel	
5	Gasket	FLEXIBLE GRAPHITE/304	
6	Filter Screen	SS304(40mesh)	
7	Body	ASTM A216-WCB	10-

-		Typic	ol Dime	nisions	=	1.	150	Lb Flor	nge Di	ment	sions
NPS	DN	L	NPT	H	HI	0	D1	D2	6	1	z-ød
11/4	÷	190		93	85	115	88.9	63.5	13.2	2	4-16
11/2	-	200	11/2	122	110	125	98.4	73	14.7	2	4-16
2	\sim	203		128	115	150	120.7	92.1	16.3	2	4-19
21/2	-	216	10	145	130	180	139.7	104.8	17.9	2	4-19
3	5	241	110	165	150	190	152.4	127	19.5	2	4-19
4	-	292	3/4	205	190	230	190.5	157.2	24.3	2	8-19
5	-	355	1.	250	235	255	215.9	185.7	24.3	2	8-22
6	÷	406	19	280	165	280	241.3	215.9	25.9	2	8-22
8	1	495		330	310	345	298.5	269.9	29	2	8-22
10	-	622	110	390	365	405	362	323.8	30.6	2	12-26
12	-	699		415	390	485	431.8	381	32.2	2	12-26

STYCS30R

Y strainer.

Suitable for steam, water, air, gas and most non corrosive chemicals

- Body & cap: ASTM A216 Gr WCB
- Strainer: 304 stainless steel, 40 mesh
- Gasket: Flexible graphite
- End Connections: Flanged ANSI 300 RF
- Maximum pressure rating 5,100 kpa cold
- Sizes: 15mm to 300mm

NIN		<u>z-00</u>		1
			D1	٩
A	7			
1.	5 4 3 2	NPI	5	÷
	F		Notice: Design by A	SME 816.3

1	Performance Spec	ification	1
	Class	3	00
ure	Shell test	7.67	_
688	Seal test	-	MPa
t Pr	Back seal Test	-	
68	Air Seal Test	-	

2.RF flanged ends by ASME B16.5 3.Valves tested by API 598 4.Pressure-Temperature Rating as per ASME B16.34 5.Painting is suitable for maximum temperature 200°C

7	Body	ASTM A216-WC8	
6	Filter Screen	SS304(40mesh)	
5	Cosket	FLEXIBLE GRAPHITE/304	-
4	Plug Fitting	Carbon Steel	
3	Bonnet	ASTM A216-WCB	
2	Bonnet Bolt	ASTM A193 Gr.87	
Ŀ.	Bonnet Balt Nut	ASTM A194 Gr.2H	
NO	PART NAME	MATERIAL	REMARKS

	-	Typics	i Dime	nsims	1	300Lb Flonge Dimensions					
NR2	DN	L	-	H	H1	D	DI	D2	ь	1	2-94
11/4	-	180	10	93	85	135	98.4	63.5	19.5	2	4-19
11/4	-	200	1/2	122	110	155	114.3	73	21.1	2	4-22
2	-	267		145	130	165	127	92.1	22.7	2	B-19
21/2	-	292	Ľ .	160	150	190	149.2	104.8	25.9	2	8-22
3	×.	318		185	170	210	168.3	127	29	2	8-22
4	-	356		210	190	255	200	157.2	32.2	2	8-22
5	(Θ)	400	3/4	250	235	280	235	185.7	35.4	2	8-22
6	-	444		285	165	320	269.9	215.9	37	2	12-22
8	*	559		330	310	380	330.2	269.9	41.7	2	12-26
10	-	622		395	365	445	387.4	323.8	48.1	2	16-29
12	3	711	111	425	390	520	450.8	381	51.3	2	16-32

STYSS15R

Y strainer.

- Suitable for steam, water, air, gas and most chemicals
- Body & cap: ASTM A351 Gr CF8M (316 stainless steel)
- Strainer: 316 stainless steel, 40 mesh
- Gasket: Flexible graphite
- End Connections: Flanged ANSI 150 RF
- Maximum pressure rating 1,964 kpa cold
- Sizes: 15mm to 300mm

Performance Specification								
	Class	150						
ure	Shell test	2.85						
ess	Seal test	-	MPa					
st Pr	BacK seal Test	-	in a					
Tes	Air Seal Test	-						

Notice: 1.Design by ASME B16.34 2.RF flanged ends by ASME B16.5 3.Valves tested by API 598 4.Pressure—Temperature Rating as per ASME B16.34

7.	Body	ASTM A351-CF8M	
6	Filter Screen	SS316(40mesh)	
5	Gasket	FLEXIBLE GRAPHITE/316	
4	Plug Fitting	SS316	
3	Bonnet	ASTM A351-CF8M	
2	Bonnet Bolt	ASTM A193 Gr.B8	
1	Bonnet Bolt Nut	ASTM A194 Gr.8	
NO	PART NAME	MATERIAL	REMARKS

		Typico	al Dime	nsions		150Lb Flange Dimensions					
NPS	DN	L	NPT	H	H1	D	D1	D2	b	f	z–ød
11/4	-	180	1/2	93	85	115	88.9	63.5	13.2	2	4-16
11/2	-	200	1/2	122	110	125	98.4	73	14.7	2	4-16
2	-	203		128	115	150	120.7	92.1	16.3	2	4-19
21/2	-	216		145	130	180	139.7	104.8	17.9	2	4-19
3	-	241		165	150	190	152.4	127	19.5	2	4-19
4	-	292	3/4	205	190	230	190.5	157.2	24.3	2	8-19
5	-	355	· / ·	250	235	255	215.9	185.7	24.3	2	8-22
6	-	406		280	165	280	241.3	215.9	25.9	2	8-22
8	-	495		330	310	345	298.5	269.9	29	2	8-22
10	-	622		390	365	405	362	323.8	30.6	2	12-26
12	-	699		415	390	485	431.8	381	32.2	2	12-26

STBCDS15R

Basket strainer.

Suitable for steam, water, air, gas and most non corrosive chemicals

- Body & cap: ASTM A216 Gr WCB
- Strainer: 304 stainless steel, 40 mesh
- Gasket: Flexible graphite
- End Connections: Flanged ANSI 150 RF
- Maximum pressure rating 1,964 kpa cold
- Sizes: 15mm to 300mm

150

MPa

3.0

_

_

_

Notice:

1.RF flanged ends by ASME B16.5 2.Valves tested by API 598

3.Pressure-Temperature Rating as per ASME B16.34 4.Painting is suitable for maximum temperature 200°C

6	Bonnet Bolt	ASTM A193 Gr.B7	
5	Bonnet Bolt Nut	ASTM A194 Gr.2H	
4	Bonnet	Carbon Steel	
3	Filter Screen	SS304	
2 -	Body	ASTM A234-WPB	
1	Plug Fitting	Carbon Steel	
NO	PART NAME	MATERIAL	REMARKS

_											
NDS	DN	Typico	I Dime	nsions	150Lb Flange Dimensions						
	DIN	L	NPT	-	D	D1	D2	ь	f	z-ød	
2	-	270	1/2	-	150	120.7	92.1	16.3	2	4-19	
21/2	-	330	1/2	-	180	139.7	104.8	17.9	2	4-19	
3	-	340	1/2	-	190	152.4	127	19.5	2	4-19	
4	-	430	1/2	-	230	190.5	157.2	24.3	2	8-19	
5	-	480	3/4	-	255	215.9	185.7	24.3	2	8-22	
6	-	500	3/4	-	280	241.3	215.9	25.9	2	8-22	
8	-	560	3/4	-	345	298.5	269.9	29	2	8-22	
10	-	660	1	-	405	362	323.8	30.6	2	12-26	

SPSS32

Safety Relief Valve.

Suitable for steam, air and gas applications such as down stream of pressure reducing valves to protect plant integrity. ASME Section 1 certified, in-house setting available.

- Body & cap: Bronze B62
- Seat & disc: 316 stainless steel
- Lever: Steel (plated)
- Soft seat available on request
- End Connections: Screwed BSP
- Maximum pressure rating 2,100 kpa cold
- Sizes: 15mm to 50mm

SPSS32 Dimensions (mm)

Inlet	Orifice Outlet		A1	B1	C1	D	Weight (kg)
15	D	20	166.7	34.9	57.2	34.9	0.91
20	E	25	181	41.3	58.7	34.9	1.13
25	F	32	228.6	47.6	71.4	42.9	1.81
32	G	40	246.1	54	76.2	42.9	3.18
40	Н	50	308	65.1	88.9	69.9	6.12
50	J	65	338.1	79.4	95.3	69.9	7.94

SPSS32 Capacity Chart

	SPSS32 90% of Actual Capacity @ 3% Over Pressure											
Orifice	D	E	F	G	Н	J						
Valve Size	15 x 20	20 x 25	25 x 32	32 x 40	40 x 50	50 x 65						
Set kpa			Flow in kg/hr Sa	aturated Steam								
103	77	137	215	352	550	903						
138	89	159	249	408	637	1045						
172	102	180	243	463	724	1188						
207	112	202	205	510	911	1220						
207	115	202	251	519	011	1472						
241	120	224	205	620	030	1475						
270	156	240	365	629	965	1015						
310	150	267	419	085	10/1	1/5/						
345	162	289	453	741	1158	1900						
379	1/5	311	487	/96	1245	2042						
414	186	332	521	852	1332	2185						
448	199	354	555	907	1419	2327						
483	211	376	590	964	1507	2472						
517	224	398	624	1021	1596	2619						
552	236	421	660	1078	1686	2766						
586	249	443	695	1136	1775	2912						
620	261	465	730	1193	1864	3059						
655	274	488	765	1250	1954	3205						
689	286	510	800	1307	2044	3352						
724	299	532	834	1364	2133	3499						
758	312	555	869	1421	2222	3654						
793	324	577	905	1479	2312	3792						
827	337	599	940	1536	2401	3939						
862	349	621	975	1593	2490	4086						
896	361	644	1010	1650	2580	4232						
931	374	666	1044	1707	2669	4379						
965	386	688	1079	1765	2759	4526						
1000	399	711	1114	1822	2848	4672						
1034	412	733	1150	1879	2937	4819						
1069	424	756	1185	1936	3027	4966						
1103	437	778	1220	1994	3116	5112						
1138	449	800	1254	2051	3205	5259						
1172	462	822	1289	2108	3295	5405						
1206	474	844	1324	2165	3385	5552						
1241	487	867	1359	2222	3474	5699						
1275	499	889	1395	2279	3563	5846						
1310	512	912	1429	2337	3653	5992						
1344	524	934	1464	2394	3742	6139						
1379	537	956	1499	2451	3831	6286						
1413	549	979	1534	2508	3921	6432						
1448	562	1001	1569	2566	4010	6579						
1482	575	1023	1605	2623	4100	6726						
1517	587	1045	1639	2680	4189	6873						
1551	600	1068	1674	2737	4278	7019						
1586	612	1090	1709	2794	4368	7166						
1620	674	1112	1744	2851	4458	7312						
1655	637	1135	1779	2908	4547	7459						
1689	649	1157	1814	2966	4636	7606						
1724	662	1179	1849	3023	4726	7752						
1758	675	1202	1884	3020	4815	7899						
1792	687	1202	1919	3137	4904	8046						
1827	700	1246	1954	3195	4994	8192						
1861	710	1240	1989	3757	5083	8330						
1806	775	1200	2024	3200	5172	8/86						
1020	723	1271	2024	3366	51/3	0400 8600						
1065	757	1325	2033	2472	5202	8770						
1000	750	1350	2034	2/101	5331	8076						
1333	702	1300	2129	3401	5441	0320						
2034	//5	1402	2104	3038	5530	90/3						
2068	/8/	1402	2199	3595	5020	9218						

Pipeline Ancillaries Relief & Safety Relief Valves 13

FGX

Relief Valve.

All stainless steel construction, enclosed cap design, suitable for air and gas and liquid applications, in-house setting available.

- Body & cap: 316 stainless steel
- Seat: 316 stainless steel
- Disc seal: PTFE
- End Connections: Screwed BSP
- Maximum pressure rating 2,000 kpa cold
- Maximum temperature 185 deg C Sizes: 15mm to 50mm

SIZE	P1	D	P2	LIFT	L1	L2	H1	H2	KG	PART NAME	MATERIAL
	BSP		BSP							BODY	A351-CF8M
15	1/2"	21	1"	2.5	40	66	201	180	1.3	SEAT	A351-CF8M
20	3/4"	21	1"	3.2	40	66	201	180	1.3	SPINDLE	A351-F16M
25	1"	21	1"	4.0	40	66	201	183	1.3	RETAINER	A351-CF8M
32	1- 1/4"	32	2"	6.5	66	102	286	264	4.9	DISC	A351-CF8M
40	1- 1/2"	38	2"	7.3	66	102	286	264	5.0	DISC SEAL	PTFE
50	2"	50	2"	8.0	66	105	289	267	5.3	САР	A351-CF8M
										SPRING	A351-CF8

	FGX Liquid Capacity											
Set Pr	Set Pressure Litres / Min - Water @ 20 Deg C. 25% Pverpressure											
Кра	Psi	15mm	20mm	25mm	32mm	40mm	50mm					
100	15	21	33	60	97	141	234					
200	29	29	46	85	138	199	331					
300	44	36	57	104	169	244	405					
400	59	42	66	120	195	282	468					
500	73	47	74	134	218	315	523					
600	87	51	81	147	239	345	573					
700	100	55	87	159	258	373	619					
800	116	59	93	170	276	398	662					
900	130	63	99	180	293	423	702					
1000	145	66	105	190	308	445	740					
1100	160	70	111	200	323	463	778					
1200	175	76	120	215	340	485	815					
1300	190	82	129	230	365	512	835					

JUR1068

Relief Valve.

- Suitable for water, air and gas, in-house setting available.
- Body & cap: Bronze
- Seat & disc: Bronze
- End Connections: Screwed BSP
- Maximum pressure rating 1,000 kpa cold
- Sizes: 15mm to 50mm

NO	NAME	MATERIAL	074	FLUID SYMBOL		
T.	VALVE BODY	BRONZE	11	NONCOBROSIVE GAS	NG	
2	VALVE SEAT	BRASS	11	CORROSIVE GAS	CG	
3	DISC	BRASS	TP	STEAM	5	
4	STEM	BRASS	11	SUPER STEAM	55	
5	SPRING	STEEL.	1.1	HOT WATER	HW	
6	SPRING SEAT	BRASS	1.2	NONCORROSIVELIOUID	/NL	
T^{*}	ADJUST THREAD	BRASS	1.5	CORROSICELIOUID	CL	
¥.	ADJUST NUT	BRASS	11			
ų.	CAP	BRONZE	- U	1.2		
VC.	REPHYSICKERS	(m/?)	0.1	- 204 g	_	
WORKING TEMPLIC: 1			- 4	5 C - 185 C		
WORKING FLLID			NG CG SS S HW NL CL			

Lift	Tν	pe I	Din	nensi	UN	_			
-	N	OMIN.	AL.		LIFT	FT LI	1.12	н	WEIGHT (KG)
P1		DN	1.5	. 63			1.1.4		
1/2	8	15		1/2	0.52	21.5	-49	140	0.51
34		20		314	11.76	- 15	-41	150	20.63
THC:	Ψ.	25		1	111	70.	69.5	185	1,14
1,174	19	32	1	1-1/4	1.28	- 51 -	- 61	208	- 1.05
1 1/2		-410	1.11	11/2	1.52	50	14	236	26
2	Ч.	50		2	2	65	100	244	2.68

JUR1069

Safety Relief Valve.

- Suitable for low pressure steam, air and gas, in-house setting available.
- Body & cap: Bronze
- Seat & disc: Bronze
- End Connections: Screwed BSP
- Maximum pressure rating 1,000 kpa cold, 350 kpa steam
- Sizes: 15mm to 50mm

LIFT TYPE SAFETY VALVE

_				
NO	NAME	MATERIAL	OTY	REMARK
1	VALVE BODY	CASTING-BRONZE	1	
2	VALVE SEAT	FORGING-BRASS	1	-
3	SPINDEL.	BRASS	1	
4	SPRING SEAT	BRASS	2	
5	DISC	FORGING-BRASS	1	
6	CAP	CASTING-BRONZE	1	
7	SPRING	STEEL.	1	
8	ADJUST NUT	BRASS	1	
9	ADJUST THREAD-ROD	BRASS	1	
10	HANDEL	STEEL.	1	
11	HEXGON NUT	STEEL	1	
12	STOPPER PIECE	BRASS	1	
13	INSERT PIN	STEEL.	1	
14	CLIP	STEEL.	1	
15	FIXTURE SCREW	STEEL.	1	

LIFT TYPE SERIES DIMENSIONS

UNIT:mm

NOMINAL SIZE PI X D X P2	Pl	P2	D	ш	1.2	HI
1/2 X13 X 1/2 3/4 X 19 X 3/4	1/2 3/4	1/2 3/4	13 19	32 36	52 58	162 172
1 X 25 X 1 1-1/4 X 32 X 1-1/4	1-1/4	1-1/4	32	40	83	204
1-1/2 X 38 X 1-1/2 2 X 50 X 2	1-1/2	1-1/2	50	58	103	243

						1
1069					Unit · Ko/h	Steam
Size	1/2"	3/4"	1"	1-1/4"	1-1/2"	2"
D	13	19	25	32	38	- 50
Area	21.2	45.3	78.5	128.6	181.4	314.0
Pressure	Capacity (Kg/H)					
Kg/cm2	1/2"	3/4"	1"	1-1/4"	1-1/2"	2"
10	96	205	355	581	813	1420
2	26	56	96	157	233	384
3	35	74	128	210	305	514
4	43	93	161	263	378	643
5	52	112	193	316	450	773
6	61	130	225	369	523	902
7	70	149	258	422	595	1031
8	78	168	290	475	668	1161
9	87	186	323	528	741	1290
10	96	205	355	581	813	1420
11	105	224	387	634	886	1549
12	113	242	420	687	958	1678
13	122	261	452	740	1031	1808
14	131	280	484	793	1103	1937
15	140	298	517	846	1176	2067
16	148	317	549	899	1248	2196
17	157	336	581	952	1321	2325
18	166	354	614	1005	1394	2455
19	175	373	646	1058	1466	2584
20	183	392	678	1111	1539	2713
21	192	411	711	1164	1611	2843
22	201	429	743	1217	1684	2972
23	210	448	775	1270	1756	3102
24	218	467	808	1323	1829	3231
25	227	485	840	1376	1902	3360
26	236	504	872	1429	1974	3490
27	245	523	905	1482	2047	3619
28	253	541	937	1535	2119	3749
29	262	560	970	1588	2192	3878
30	271	579	1002	1641	2264	4007

1069					Unit : Kg/h	Air
Size	1/2"	3/4"	1"	1-1/4"	1-1/2"	2"
D	13	19	25	32	38	50
Area	21.2	45.3	78.5	128.6	181.4	314.0
Pressure	Capacity (Kg/H)					
Kg/cm2	1/2"	3/4"	1"	1-1/4"	1-1/2"	2"
17.6	466	1282	2220	3637	5129	8880
10.6	290	37094	64221	105220	148377	256885
3	5988	12791	22145	36283	51164	88581
4	7485	15989	27682	45354	63956	110726
5	8982	19187	33218	54424	76747	132872
6	10479	22384	38754	63495	89538	155017
7	11976	25582	44291	72566	102329	177162
8	13473	28780	49827	81636	115120	199308
9	14970	31978	55363	90707	127911	221453
10	16467	35176	60900	99778	140702	243598
11	17964	38373	66436	108849	153493	265744
12	19461	41571	71972	117919	166285	287889
13	20958	44769	77509	126990	179076	310034
14	22455	47967	83045	136061	191867	332179
15	23952	51164	88581	145131	204658	354325
16	25449	54362	94117	154202	217449	376470
17	26946	57560	99654	163273	230240	398615
18	28443	60758	105190	172344	243031	420761
19	29940	63956	110726	181414	255822	442906
20	31437	67153	116263	190485	268614	465051
21	32934	70351	121799	199556	281405	487196
22	34431	73549	127335	208626	294196	509342
23	35929	76747	132872	217697	306987	531487
24	37426	79945	138408	226768	319778	553632
25	38923	83142	143944	235838	332569	575778
26	40420	86340	149481	244909	345360	597923
27	41917	89538	155017	253980	358151	620068
28	43414	92736	160553	263051	370942	642213
29	44911	95933	166090	272121	383734	664359
30	46408	99131	171626	281192	396525	686504

1069					Unit : Kg/h	Water
Size	1/2"	3/4"	1"	1-1/4"	1-1/2"	2"
D	13	19	25	32	38	50
Area	21.2	45.3	78.5	128.6	181.4	314.0
Pressure	Capacity (Kg/H)		44 BAR=44	X 1.02 = 44.8	88 KG	
Kg/cm2	1/2"	3/4"	1"	1-1/4"	1-1/2"	2"
44.88	4326	9240	15998	26210	36961	63990
2	913	1951	3377	5533	7802	13508
3	1118	2389	4136	6777	9556	16544
4	1291	2759	4776	7825	11034	19104
5	1444	3084	5340	8749	12337	21359
6	1582	3379	5849	9584	13514	23397
7	1708	3649	6318	10351	14597	25272
8	1826	3901	6754	11066	15605	27017
9	1937	4138	7164	11737	16551	28656
10	2042	4362	7551	12372	17447	30206
11	2142	4575	7920	12976	18298	31680
12	2237	4778	8272	13553	19112	33089
13	2328	4973	8610	14107	19892	34440
14	2416	5161	8935	14639	20643	35740
15	2501	5342	9249	15153	21368	36994
16	2583	5517	9552	15650	22069	38208
17	2662	5687	9846	16131	22748	39383
18	2740	5852	10131	16599	23407	40525
19	2815	6012	10409	17054	24049	41636
20	2888	6168	10679	17497	24674	42717
21	2959	6321	10943	17929	25283	43772
22	3029	6469	11201	18351	25878	44802
23	3097	6615	11452	18763	26459	45809
24	3163	6757	11699	19167	27028	46794
25	3229	6896	11940	19562	27586	47759
26	3292	7033	12176	19950	28132	48705
27	3355	7167	12408	20330	28668	49633
28	3417	7299	12636	20703	29194	50544
29	3477	7428	12860	21069	29711	51438
30	3537	7555	13079	21429	30219	52318

SECTION

DOUBLE WINDOW SIGHT GLASS

DW16SS (Stainless Steel)

DESCRIPTION

For monitoring the right operation of a steam trap to avoid leakage of live steam and consequently big energy losses, a sight glass is recommended to be installed downstream the steam trap.

Double window DW sight glass, has been designed for this particular application.

Connections are female screwed or flanged.

OPTIONS:	Different glasses and design on request.					
USE:	Condensate pipes downstream steam traps.					
AVAILABLE MODELS:	DW16SS - double window borosilicate glass.					
SIZES:	¹ ⁄2" to DN 1" - DN15 to DN25. 11/2" and 2" on request.					
CONNECTIONS:	Female screwed ISO 7/1Rp(BS21). NPT (ANSI B1.20.1). Flanged EN 1092-1 or ANSI (welded flanges). Special flanges upon request.					
INSTALLATION:	Horizontal or vertical installation. See IMI installation and maintenance					

PMO – Max. operating pressure	12	bar
TMO – Max. operating temperature	280	°C
How to order: i.e. DW16SS DN 1/2" BSP		

instructions.

MATERIALS								
POS. Nr.	DESIGNATION	MATERIAL						
1	Body	AISI316 / 1.4401						
2	Cover	Brass (NickelPl.)						
3	* Gasket	St.St./Graphite						
4	* Glass	Borosilicate						

* Available spare parts

EN 1092-1 Flg. DIMENSIONS (mm)-Screwed SIZE WGT. WGT. В С D Α DN Kgs Kgs 1/2" 103 80 65 1,3 130 2,4 3/4" 80 65 130 3,4 103 1,3 90 65 130 4,5 1" 100 1,9

Different face-to-face dimensions on the flanged version, under request.

DOUBLE WINDOW SIGHT GLASS

DW12G – DW12SS

DESCRIPTION

For monitoring the right operation of a steam trap to avoid leakage of live steam and consequently big energy losses, a sight glass is recommended to be installed downstream the steam trap. Double window DW sight glass, has been designed for this particular application. Connections are flanged.

OPTIONS: USE:	Tempered glass. Condensate pipes downstream steam traps.
AVAILABLE	·
MODELS:	DW12G – PN16 Cast iron
	DW12SS – PN25 Stainless steel
SIZES:	DN15 to DN150
CONNECTIONS:	Flanged EN 1092-1/-2 PN16-PN25
INSTALLATION:	Horizontal or vertical installation. See IMI installation and maintenance instructions.

LIMITING CONDITIONS DW12G (Tempered glass)		LIMITING C DW12SS (Te	ONDITIONS emp. glass)	LIMITING CONE (Boros	DITIONS DW12G silicate)	LIMITING CONDITIONS DW12SS (Borosilicate)	
ALLOWABLE PRESSURES	RELATED TEMP.	ALLOWABLE PRESSURES	RELATED TEMP.	ALLOWABLE PRESSURES	RELATED TEMP.	ALLOW ABLE PRESSURES	RELATED TEMP.
16 bar	-10 /120º C	25 bar	-10 /37º C	16 bar	-10 /120º C	25 bar	-10 /37º C
/	/	18 bar	93 °C	14,4 bar	150 ⁰C	18 bar	93 °C
/	/	17 bar	120 °C	12,8	200 °C	16 bar	148 °C
/	/	/	/	11,8	230 °C	14 bar	204 °C
/	/	/	/	10,5	280 °C	11 bar	280 °C

DIMENSIONS (mm)									
0175		Weigh	nt (kgs)						
DN	A	В	С	DW12G	DW12SS				
15	130	95	44	3	3				
20	150	105	44	3,5	4				
25	160	115	44	4	5				
32	180	140	50	6	6,5				
40	200	150	50	6,5	7,3				
50	230	165	60	9	10,5				
65	290	185	90	17	17				
80	310	200	90	18	20				
100	350	220	110	23	26,5				
125	400	250	142	50	52				
150	480	285	160	63	68				

CEMARKING (PED-European Directive 97/23/EC)										
PN 16 Category PN 25 Category										
DN15 to DN50	SEP - art. 3, paragraph3	DN15 to DN40	SEP - art. 3, paragraph3							
DN65 to DN150	1 (CE Marked)	DN50 to DN125	1 (CE Marked)							
-	-	DN150	2 (CE Marked)							

MATERIALS									
POS.	DESIGNATION	MATERIAL DW12G	MATERIAL DW 12SS						
1	Body	GJL-250 / 0.6025	CF8M / 1.4408						
2	Cover	GJL-250 / 0.6025	CF8M / 1.4408						
3	* Gasket	Graphite	Graphite						
4	* Window	Borosilicate glass	Borosilicate glass						
4	villaow	Tempered glass **	Tempered glass **						
5	Bolts	Steel 8.8	A2-70						

* Available spare parts.** Option

DOUBLE WINDOW SIGHT GLASS

DW40S (DN15 – DN25)

DESCRIPTION

For monitoring the right operation of a steam trap to avoid leakage of live steam and consequently big energy losses, a sight glass is recommended to be installed downstream of the steam trap.

Double window DW sight glass, has been designed for this particular application.

Connections are female screwed or flanged.

USE:	Condensate pipes downstream steam traps.					
AVAILABLE MODELS:	DW 40 S					
SIZES:	DN 1/2" to DN 1"; DN 15 to DN 25					
CONNECTIONS:	Female screwed ISO 7/1Rp(BS21). NPT (ANSI B1.20.1) Flanged EN 1092-1 or ANSI					
INSTALLATION:	Horizontal or vertical installation. See IMI, installation and maintenance instructions.					

PMO – Max. operating pressure	40 bar
TMO – Max. operating temperature	280 °C
How to order: i.e. DW40 DN 1/2" BSP.	

DI	MENSIO	EN 1092-1	Flanges			
SIZE DN	А	в с И		WGT. Kgs	D	WGT. Kgs
15	90	80	60	1,25	150	2,8
20	90	80	60	1,25	150	3,4
25	100	87	65	2,1	160	4,7

MATERIALS									
POS.Nr.	DESIGNATION	MATERIAL							
1	Body	P250GH / 1.0460							
2	Glass nut	P250GH / 1.0460							
3	* Gasket	St.Steel / Graphite							
4	* Window glass	Borosilicate							

*Available spare parts.

SECTION 13

Armstrong MS-6 Noiseless Heater

The use of hot water is indispensable in food processing, cleaning, and plating operations. Although the simplest and most efficient way to provide the water is by direct steam sparging, such a format often results in vibration and noise caused by steam blowing into the water tank. These problems can be greatly reduced by mounting an MS-6 noiseless heater at the end of the pipe.

Features

- · Stainless steel construction for greater durability
- Mounting is simple and economical
- Maintenance free

Formula for Calculating Steam Load to Heat Water in Tank

> $lbs/hr = Gal x \Delta T x 8.3$ Lat x T

- Gal = Gallons of water to be heated
- ΔT = Temperature rise °F
- Lat = Latent heat of steam (Btu/lb) Т
 - = Time in hours

Specifications	
Fluid	Steam
Pressure Range	7 - 100 psi (0.5 - 7 bar)
Silencing Limit Temperature	190°F (90°C)
Material	304 Stainless Steel
Connection	NPT

Steam 🔿

Dimensions and Weights												
Connection Size	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
	1/2	15	3/4	20	1	25	1-1/4	32	1-1/2	40	2	50
"L"	1-15/16	49	1-15/16	49	2-1/16	52	2-3/16	55	2-5/16	59	2-9/16	65
"D"	1-3/8	35	1-1/4	45	2	50	2-3/8	60	2-3/4	70	4-1/8	105
"A"	1-3/16	30	1-7/16	36	1-5/8	41	2	50	2-3/8	60	3-9/16	90
Weight, Ib (kg)	0.55 (0	.25)	0.88 (0	.40)	1.15 ((0.52)	1.70 (0.77)	2.54	(1.15)	6.59 ((2.99)

Capacities - Steam, Ib/hr (kg/h	r)												
		Connection Size											
Inlet, psi (bar)	1/	1/2"		3/4"		1"		1-1/4"		1-1/2		2	
	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr	lb/hr	kg/hr	
7 (0.50)	54	25	129	58	157	71	190	86	291	132	362	164	
10 (0.70)	65	30	147	67	179	81	222	101	323	147	413	187	
15 (1.00)	84	38	177	80	214	97	276	125	376	171	498	226	
20 (1.38)	103	46	208	94	250	113	330	150	430	195	582	264	
30 (2.00)	140	63	269	122	321	146	439	199	536	243	751	341	
40 (2.76)	177	80	330	149	392	178	547	248	643	292	921	418	
50 (3.45)	214	97	390	177	463	210	655	297	749	340	1,090	494	
60 (4.14)	251	114	451	205	534	242	764	346	856	388	1,259	571	
70 (4.83)	289	131	512	232	605	275	872	395	963	437	1,428	648	
80 (5.52)	326	148	573	260	676	307	980	445	1,069	485	1,597	725	
90 (6.20)	363	165	634	288	748	339	1,088	494	1,176	533	1,767	801	
100 (6.90)	400	181	695	315	819	371	1,197	543	1,282	582	1,936	878	

EXHAUST HEADS - EH

DESCRIPTION

The EH Exhaust Head is designed to protect the personnel from injury and exterior of buildings from the harmful effects of steam ejection to atmosphere. The head is fitted to the end of a vertical exhaust pipe and thus breaks the beat and muffles the noise of escaping steam whilst effectively retaining the moisture for draining.

Connections are female screwed or flanged.

MAIN FEATURES Stainless steel separating element. Quite operation. Reduces discharge velocity.

OPTIONS:	Corrosion protection (metal abrasive blasted, metalized and painted)
	Complete stainless steel construction.
USE:	Opened vertical steam vent pipes in blowdown vessels, boiler feedtanks,
CAUTION:	Not recommended for safety valves
AVAILABLE	
MODELS:	EH/S - carbon steel body. EH/SZ - metalized and painted. EH/SS - stainless steel body.
SIZES:	Screwed: DN1" to DN4". Flanged: DN25 to DN150.
CONNECTIONS:	Female screwed ISO 7/1Rp(BS21) Flanged EN 1092-1 PN16 or ANSI Class 150.
NSTALLATION:	Vertical installation. The drain should be piped to a safe position.

NSTALLATION: Vertical installation. The orain should be piped to a safe position. The exhaust head should be selected so that it is the same nominal size as the vent pipe. How to order: i.e.EH/S PN16 DN 65

Note:

Dimensions are subject to change without notice. Consult factory for certified dimensions. Other sizes and designs can be supplied under request.

LIMITING CONDITIONS

0,5 bar

PS - Maximum Allow able Pressure

Minimum operating temp.: -10°C. Design code: AD-Merkblatt Other conditions and CE marking on request.

	DIMENSIONS (mm)												
	FLANGED EN 1092-1												
SIZE DN	SIZE A B C WGT DN Kg												
25	168	345	1/2"	15									
32	168	345	1/2"	16									
40	168	400	1/2"	18									
50	273	450	3/4"	26									
65	273	450	3/4"	28									
80	273	495	3/4"	29									
100	273	495	1"	33									
125	356	525	1"	42									
150	356	525	1"	48									
200	508	650	11/2"	95									
250	508	650	11/2"	110									

MATERIALS									
DESIGNATION MATERIAL									
Body	Carbon steel P235GH / 1.0305								
Separating element Stainless steel AISI304 / 1.4									

section 13

HUMIDITY SEPARATORS - S16/S PN 16

DESCRIPTION

S-16 series centrifugal separators remove moisture from steam and compressed air pipelines. Steam and compressed air passing through the separator and as a result of centrifugal forces, impact and swirling effects, separate the particles with a heavier specific gravity, such as water and oil droplets, moisture in suspension, dirt and scale.

The condensate collected at the bottom of the separator, must be automatically drained by a suitable steam or compressed air trap. Connections are threaded.

MAIN FEATURES Several possibilities of installation. No moving parts.

OPTIONS:	Zinc plated (compressed air)							
USE:	Steam, compressed air and other gases (Group 2).							
AVAILABLE MODELS:	S16/S - carbon steel body.							
SIZES:	DN 1/2" to DN 2".							
PIPE CONNECTIONS:	Screwed BSP or NPT							
INSTALLATION:	Always with the condensate discharge pointing downwards. See IMI, installation and maintenance instructions.							
HOW TO SELECT:	Generally, in an existing plant it is advisable to fit a separator of the same size of the pipe line. Pressure drop is normally negligible. For approximate pressure							

drop calculation please consult.

LIMITING CONDITIONS **										
Rating	Press. bar	Temp. ⁰C								
	16	50								
PN16	14	100								
11110	13 *	195								
	12	250								

*PMO-Max.operating pressure for saturated steam. Minimum operating temp.: -10°C. Design code: AD-Merkblatt ** Rating according to EN1092:2007.

CE MARKING - GROUP 2 GASES CAT.									
RATING SIZE CAT.									
DN// C	DN 1/2" to DN 1"	SEP							
FINIO	DN 11/4" to DN 2"	1							

CE Marking: This product have been designed for use on water steam, air and other gases which are in Group 2 of the PED-European Pressure Equipment Directive 97/23/EC and it comply with those requirements. The product carries the CE mark when falling in category 1 and above.

HUMIDITY SEPARATORS - S16/S PN 16

APPROXIMATE DIMENSIONS (mm)												
DN	A	B	c	D	E	F **	VOL. dm3	WGT Kg				
1/2*	218	114	260	185	70	1/2"	2	5				
3,44"	218	114	260	185	75	1/2"	2,5	6				
1"	230	114	300	200	100	1/2"	3	7				
11/4"	263	140	395	285	110	1/2"	5	12				
11/2"	263	140	435	325	110	1/2"	5,7	13,8				
2*	322	168	505	385	120	1/2"	10.5	19.5				

Weight and dimensions to be confirmed in case of order

** F-screwed drain connection as standard Alternatively can be supplied flanged EN1092-1 or ANSI on the same class of main dimensions.

Consult factory for certified dimensions. Dimensions subject to change without notice.

Note: the top of separator is supplied with a threaded connection with size not exceding the size of drain one. This connection is always supplied closed with a threaded socket. It can be used for air vent or balancing pipe connection.

MATERIALS									
DESIGNATION MATERIAL									
Body	EN10216-2 / P235GH / 1.0325								
Heads	EN10028-2 / P265GH / 1.0425								
Inlet / Outlet pipes	EN10216-2 / P235GH / 1.0325								
Sockets Inlet / Outlet	ASTM A105 / 1.0432								
Sockets	ASTM A105 / 1.0432								
Internals	EN10025-2 / S235JR / 1.0038								

EN10204 3.1 certificate available if requested with the order.

HUMIDITY SEPARATORS - S25/S

PN16 – PN40

DESCRIPTION

S-25 series centrifugal separators remove moisture from steam and compressed air pipelines. Steam and compressed air passing through the separator and as a result of centrifugal forces, impact and swirling effects, separate the particles with a heavier specific gravity, such as water and oil droplets, moisture in suspension, dirt and scale.

The condensate collected at the bottom of the separator, must be automatically drained by a suitable steam or compressed air trap. Connections are flanged.

Connections are nanged.

OPTIONS:

MAIN FEATURES Several possibilities of installation. No moving parts.

Zinc plated (compressed air) Condensate flanged connection.

USE: Steam, compressed air and other gases (Group 2).

- AVAILABLE MODELS: S25/S carbon steel body. S25/SZ - zinc plated body
- SIZES: DN15 to DN300.

PIPE CONNECTIONS: Flanged EN1092-1 PN16 and PN40 ANSI Class 150 lbs and Class 300 lbs Female screwed BSP or NPT on request.

INSTALLATION: Always with the condensate discharge pointing downwards. See IMI, installation and maintenance instructions.

HOW TO SELECT: Generally, in an existing plant it is advisable to fit a separator of the same size of the pipe line. Pressure drop is normally negligible. For approximate pressure drop calculation please consult.

HUMIDITY SEPARATORS - \$25/\$

PN16 - PN40

	LIMITING CONDITIONS **														
Rating	Press. bar	Temp. ⁰C	Rating	Press. bar	Temp. ⁰C	Rating	Press. bar	Temp. ⁰C	Rating	Press. bar	Temp. ⁰C				
	16	50		16	50	PN25	25	50	PN40 ANSI CL 300lbs	40	50				
DN16	14	100	ANSI	14	100		23	100		37	100				
PN16	13 *	195	Cl.150 lbs	13 *	195	CL.300lbs	20 *	216		31 *	239				
	12	250		-	-		17	300		27	300				

*PMO-Max.operating pressure for saturated steam. Minimum operating temp.: -10°C. Design code: AD-Merkblatt

** Rating according to EN1092:2007.

	CE MARKING - GROUP 2 GASES CATEGORIES													
RATING SIZE CAT. RATING SIZE CAT. RATING SIZE														
	DN15 to DN25	SEP		DN15	SEP		DN15 to DN32	1						
	DN32 to DN50	1		DN20 to DN40	1		DN40 to DN80	2						
PN16	DN65 to DN125	2	PN25	DN50 to DN100	2	PN40	DN100 to DN150	3						
	DN150 to DN200	3		DN125 to DN150	3		DN200 to DN300	4						
	DN250 to DN300	4		DN200 to DN300	4		-							

CE Marking

This product have been designed for use on water steam, air and other gases which are in Group 2 of the PED-European Pressure Equipment Directive 97/23/EC and it comply with those requirements. The product carries the CE mark when falling in category 1 and above.

	APPROXIMATE DIMENSIONS (mm)																	
	FLANGED EN1092-1 - ANSI																	
SIZE DN	A PN16	A PN25	A PN40	A 150 Ibs	A 300 Ibs	В	с	D	E	J	L PN16	A PN25	L PN40	L 150 Ibs	L 300 Ibs	F	VOL. * dm3	WGT ** Kg
15	230	230	230	250	259	114	260	185	75	115	144	144	144	135	130	1/2"	2	5
20	230	230	230	255	264	114	260	180	80	115	136	136	136	123	119	1/2"	2,5	6
25	230	230	230	262	274	114	300	215	85	135	142	142	142	126	120	1/2"	3	7
32	260	260	260	290	303	140	395	285	110	155	194	194	194	200	215	1/2"	5	12
40	260	260	260	294	307	140	435	325	110	165	243	243	243	226	220	1/2"	5,7	13,8
50	310	310	310	341	354	168	505	380	125	190	281	281	281	265	259	1/2"	10,5	19,5
65	380	394	394	430	442	219	550	410	140	240	275	268	268	250	244	3/4"	18,5	32
80	400	416	416	440	459	219	610	462	148	260	306	298	298	286	277	3/4"	25	38
100	470	490	490	520	530	273	715	528	187	330	326	313	313	302	293	3/4"	35,4	57
125	535	561	561	605	622	324	845	630	215	403	380	367	367	346	337	1"	50	81,5
150	565	605	605	633	652	356	960	690	270	457	428	408	408	394	385	1"	75	153
200	605	641	650	685	700	406	1170	880	290	545	485	467	459	446	436	1"	140	195
250	720	756	790	784	815	508	1540	1140	400	671	714	696	679	682	666	11/2"	280	321
300	840	868	914	913	944	610	1700	1172	528	800	662	648	625	626	597	11/2"	400	465

* Volume correspond to the class PN16 design.Classes PN25 and above may have slightly lower volumes. ** Weight correspond to the class PN16 design.

F-screwed drain connection as standard. Alternatively can be supplied flanged EN1092-1 or ANSI on the same class of main dimensions.

Consult factory for certified dimensions. Dimensions subject to change without notice.

Note: the top of separator is supplied with a threaded connection with size not exceding the size of drain one. This connection is always supplied closed with a threaded socket. It can be used for air vent or balancing pipe connection.

HUMIDITY SEPARATORS - S25/S

PN16 – PN40

	MATERIALS	FLANGE CONNECTIONS							
DESIGNATION	Rating	Sep. SIZE	EN STD.	ANSI STD.					
Body	EN10216-2 / P235GH / 1.0325	PN16	* DN15 to DN50	EN1092-1 PN40	ANSI B16.5 Cl.150 lbs				
Heads	EN10028-2 / P265GH / 1.0425	PN16	DN65 to DN300	EN1092-1 PN16	ANSI B16.5 Cl.150 lbs				
Inlet / Outlet pipes	EN10216-2 / P235GH / 1.0325	PN25	DN15 to DN150	EN1092-1 PN40	ANSI B16.5 Cl.300 lbs				
EN flanges	EN10222-2 / P250GH / 1.0460	PN25	DN200 to DN300	EN1092-1 PN25	ANSI B16.5 CI.300 lbs				
ANSI flanges	ASTM A105 / 1.0432	PN40	DN15 to DN300	EN1092-1 PN40	ANSI B16.5 Cl.300 lbs				
Sockets	ASTM A105 / 1.0432	* Flanges EN 1092-1 PN16 and PN40 from DN15 to DN50 has the same							
Internals	EN10025-2 / S235JR / 1.0038	number and size of holes.							

EN10204 3.1 certificate available if requested with the order.

EVH-Elbow vertical inlet / horizontal outlet

HUMIDITY SEPARATORS - S25/SS (Stainless steel)

PN16 – PN40

DESCRIPTION

S-25SS series centrifugal separators remove moisture from steam and compressed air pipelines. Steam and compressed air passing through the separator and as a result of centrifugal forces, impact and swirling effects, separate the particles with a heavier specific gravity, such as water and oil droplets, moisture in suspension, dirt and scale.

The condensate collected at the bottom of the separator, must be automatically drained by a suitable steam or compressed air trap. Connections are flanged.

MAIN FEATURES Several possibilities of installation. No moving parts.

- OPTIONS: Condensate flanged connection.
- USE: Steam, compressed air and other gases (Group 2).
- AVAILABLE MODELS: S25/SS Stainless steel body.

SIZES: DN15 to DN300.

PIPE CONNECTIONS: Flanged EN1092-1 PN16 and PN40 ANSI Class 150 lbs and Class 300 lbs Female screwed BSP or NPT on request.

INSTALLATION: Always with the condensate discharge pointing downwards. See IMI, installation and maintenance instructions.

HOW TO SELECT: Generally, in an existing plant it is advisable to fit a separator of the same size of the pipe line. Pressure drop is normally negligible. For approximate pressure drop calculation please consult.

HUMIDITY SEPARATORS - S25/SS (Stainless steel)

PN16 – PN40

				LI	MITING CO	ONDITIONS	**				
Rating	Press. bar	Temp. ⁰C	Rating	Press. bar	Temp. ℃	Rating	Press. bar	Temp. ℃	Rating	Press. bar	Temp. ℃
	16	50		16	50		25	50		40	50
DN16	16	100	ANSI	16	100		25	100		40	100
FINIO	13 *	195	Cl.150 lbs	13 *	195	CL 300lbs	21 *	217	CL 300lbs	32 *	240
	12	250		-	-		18	300	02.000100	30	300

*PMO-Max.operating pressure for saturated steam. Minimum operating temp.: -10°C. Design code: AD-Merkblatt

** Rating according to EN1092:2007.

			CEMARKIN	G - GROUP 2 GASES	CATEGORIES	;		
RATING	SIZE	CAT.	RATING	SIZE	CAT.	RATING	SIZE	CAT.
	DN15 to DN25	SEP		DN15	SEP		DN15 to DN32	1
	DN32 to DN50	1		DN20 to DN40	1		DN40 to DN80	2
PN16	DN65 to DN125	2	PN25	DN50 to DN100	2	PN40	DN100 to DN150	3
	DN150 to DN200	3		DN125 to DN150	3		DN200 to DN300	4
	DN250 to DN300	4		DN200 to DN300	4		-	

CE Marking

This product have been designed for use on water steam, air and other gases which are in Group 2 of the PED-European Pressure Equipment Directive 97/23/EC and it comply with those requirements. The product carries the CE mark when falling in category 1 and above.

					APPROXIM	ATE DIMEI	NSIONS (m	m)				
					FLANGE	ED E N1092	2-1 - ANSI					
SIZE DN	A PN16	A PN25	A PN40	A 150lbs	A 300lbs	В	с	D	E	F	VOL. * dm3	WGT ** Kg
15	230	230	230	250	259	114	260	185	75	1/2"	2	5
20	230	230	230	255	264	114	260	185	75	1/2"	2,5	6
25	230	230	230	262	274	114	300	200	100	1/2"	3	7
32	260	260	260	290	306	140	395	285	110	1/2"	5	12
40	260	260	260	294	307	140	435	320	115	1/2"	5,7	13,8
50	310	310	310	341	354	168	505	385	120	1/2"	10,5	19,5
65	380	394	394	430	442	219	550	410	140	3/4"	18,5	32
80	400	416	416	440	459	219	610	462	148	3/4"	25	38
100	485	511	511	533	553	273	715	528	187	3/4"	35,4	57
125	535	561	561	605	622	324	845	630	215	1"	50	81,5
150	585	605	605	635	652	356	962	692	270	1"	75	153
200	605	641	657	685	703	406	1170	880	290	1"	140	195
250	720	756	790	784	815	508	1540	1140	400	11/2"	280	321
300	840	868	914	913	944	610	1700	1172	528	11/2"	400	465

* Volume correspond to the class PN16 design. Classes PN25 and above may have slightly lower volumes. ** Weight correspond to the class PN16 design.

F-screwed drain connection as standard. Alternatively can be supplied flanged EN1092-1 or ANSI on the same class of main dimensions.

Consult factory for certified dimensions. Dimensions subject to change without notice.

Note: the top of separator is supplied with a threaded connection with size not exceding the size of drain one. This connection is always supplied closed with a threaded socket. It can be used for air vent or balancing pipe connection.

HUMIDITY SEPARATORS - S25/SS (Stainless steel)

PN16 – PN40

	MATERIALS		FLANGE CONNECTIONS							
DESIGNATION	MATERIAL	Rating	Sep. SIZE	EN STD.	ANSI STD.					
Body	EN10216-5 / ASTM A312TP316L	PN16	* DN15 to DN50	EN1092-1 PN40	ANSI B16.5 Cl.150 lbs					
Heads	EN10028-7 / ASTM A403 WP316L	PN16	DN65 to DN300	EN1092-1 PN16	ANSI B16.5 Cl.150 lbs					
Inlet / Outlet pipes	EN10216-5 / ASTM A312TP316L	PN25	DN15 to DN150	EN1092-1 PN40	ANSI B16.5 Cl.300 lbs					
EN flanges	EN10222-5 / ASTM A182 F316/316L	PN25	DN200 to DN300	EN1092-1 PN25	ANSI B16.5 Cl.300 lbs					
ANSI flanges	ASTM A182 F316/316L	PN40	DN15 to DN300	EN1092-1 PN40	ANSI B16.5 Cl.300 lbs					
Sockets	AISI 304 (1.4301) / AISI316 (1.4401)	* Flanges	s EN 1092-1 PN16	and PN40 from DN15 to	DN50 has					
Internals	EN10272 / ASTM A479/A276-316/316L	the same	e number and size	of holes.						

EN10204 3.1 certificate available if requested

with the order.

EVH-Elbow vertical inlet / horizontal outlet

SC32 - SC132

DESCRIPTION

ADCA sample coolers are specially designed to cool samples of boiler water or steam for analysis. Sample coolers prevent steam flashing-off from hot pressurised liquid samples, which can be dangerous and will result in an incorrect water sample. This device may be used for boiler water analysis and

other sampling or cooling applications compatible with construction materials.

MAIN FEATURES

Corrosion-resistant body and internals. Self draining sample (inlet top, outlet bottom).

OPTIONS:

Sample inlet valve. Cooling water inlet valve. Temperature indicator Bolted top plate. Different connection sizes and materials under request against extra price. Double coil high pressure design for larger capacities

USE: Steam boilers and hot water systems. AVAILABLE

MODELS: SC32/SS - SC132/SS - stainless steel body and coil.

SIZES AND CONNECTIONS : SC32 – SC132 Cooling water inlet/outlet : 1/2" on body (BSP or NPT) Sample tube inlet/outlet : 8 mm O/D

INSTALLATION: Vertical installation.

OPERATION: Cooling water must be in its maximum flow before open or close the sample inlet valve, in order to avoid the risk of scalding. The sample valve must also be closed before the cooling water valve.

PERFORMANCE: 30 to 60 kg/hr of sample water at \approx 30°C with 1m3/h -15°C inlet cooling water (boilers up to 20 bar-220°C), for other pressures, temperatures and /or certified figures please consult.

	LIMITING CONDITIONS				
	BC	BODY		OIL	
Model	Pressure bar	Related Temp. ⁰C	Pressure bar	Related Temp. ⁰C	
SC32 - SC132	20	120	110	400	
3032 - 30132	20	120	90	450	

Minimum operating temperature : -10°C Design code : AD - Merkblatt

SC32 - SC132

		DIME	NSIONS (mm)		
MODEL	A	В	С	D	Ε	WGT Kg
SC 32	90	420	300	26	30	3,9
SC 132	90	520	400	26	30	4,8

MATERIALS				
DESIGNATION	MATERIAL			
DESIGNATION	SC32 - SC132			
Body	AISI 304 / 1.4301			
Covers	AISI 304 / 1.4301			
Coil	AISI 316L / 1.4404			
Compression fittings *	Fe / Zn 12 - ISO 2081 - Cl. L			
Discharge tube	ASI 316L / 1.4404			
Thermometer connector	AISI 316 / 1.4401			

EN10204 3.1 certificate available if requested with the order.

* Stainless steel available against extra price

(4)

TYPICAL INSTALLATION

SC332 - SC432 - SC532

DESCRIPTION

ADCA sample coolers samples of boiler water of Sample coolers preven pressurised liquid sample will result in an incorrect This device may be us other sampling or coolic construction materials.	are specially designed to cool or steam for analysis. Int steam flashing-off from hot les, which can be dangerous and water sample. ed for boiler water analysis and ing applications compatible with
MAIN FEATURES Corrosion-resistant body Counter-current flow for	and internals. better performance
OPTIONS:	Sample inlet valve. Cooling water inlet valve. Temperature indicator Bolted top plate. Different connection sizes and materials under request against extra price.
USE:	Steam boilers and hot water systems.
AVAILABLE MODELS:	SC332/SS – SC432/SS – SC532/SS - stainless steel body and coil.
CONNECTIONS :	SC332 and SC332H Cooling water inlet/outlet : 1/2" (BSP or NPT) Sample tube inlet/outlet : 10 mm O/D SC432 and SC532 ; SC432H and SC532H Cooling water inlet/outlet : 3/4" (BSP or NPT) Sample tube inlet/outlet : 10 mm O/D
INSTALLATION:	Vertical installation.
OPERATION:	Cooling water must be in its maximum flow before open or

OPERATION: Cooling water must be in its maximum flow before open or close the sample inlet valve, in order to avoid the risk of scalding. The sample valve must also be closed before the cooling water valve.

PERFORMANCE: 30 to 60 kg/hr of sample water at \approx 30°C with 15°C inlet cooling water, for certified figures please consult.

			LIMITING C	ONDITIONS			
	SC332 - SC	432 - SC532			SC332H - SC4	32H - SC532H	
B	ODY	C	OIL	B	ODY	COIL	
Pressure	Related Temp.	Pressure	Related Temp.	Pressure	Related Temp.	Pressure	Related Temp.
bar	℃	bar	℃	bar	°C	bar	℃
		130	300			280	300
20	120	120	400	20	120	268	400
20	120	110	450	20	120	260	450
		100	500			245	550

Minimum operating temperature : -10°C

		D	MENSIC	NS (mm)			
MODEL	А	В	с	D	E	F	WGT Kg	
SC332	90	610	15	18	35	35	9	
SC432	140	585	20	30	55	55	18,3	
SC532	140	685	20	30	55	55	22,3	
								1

Note: same dimensions for the version "H" (higher temperatre)

	MATERIALS
DESIGNATION	MATERIAL
DESIGNATION	SC332 - SC432 - SC532
Body	AISI 304 / 1.4301 or AISI 316 / 1.401
Cover	AISI 304 / 1.4301 or AISI 316 / 1.401
Coil	AISI 316Ti / 1.4571
Compression fittings *	Fe / Zn 12 - ISO 2081 - Cl. L
Discharge tube	AISI 316Ti / 1.4571

EN10204 3.1 certificate available if requested with the order. Same materials for the version"H", except the coil thickness.

* Stainless steel available against extra price

Sample Cooler
* Sample inlet valve NV-400
Cooling water inlet valve ADCA GV32B
Comp. fitting DN1/4"x 10 (2) Fe/Zn - ISO 2081 - CI.L
*Comp. fitting DN1/4"x 10 (2) Cl. S (316Ti / 1.4571)

Limited to max. 400 °C ; * Option, against extra price.

VACUUM BREAKER - VB 21

DESCRIPTION

The VB21 vacuum breakers are simple and reliable devices that automatically relieve or "break" an unwanted vacuum condition, restoring the atmospheric pressure. This device is particularly suitable for steam heated units of

small and medium volume as heat exchangers, heating coils, calorifiers, jacketed kettles, steam boilers, etc. Connections are female screwed.

USE:	Saturated and superheated steam
AVAILABLE MODELS:	VB21; VB21M
SIZES:	1⁄2" x 1/8"
CONNECTIONS:	Inlet ½" vertical Outlet 1/8" horizontal VB21-Female screwed ISO 7-1 Rp (BS21) VB21M-Male screwed ISO 7-1 R (BS21)
INSTALLATION:	Vertical installation angled connection. See IMI, installation and maintenance instructions.
LIMITING	
CONDITIONS:	13 bar at 400 °C 21 bar at 220 °C
0	2
0- 1	

MATERIALS										
POS.Nr.	DESIGNATION	MATERIAL								
1	Body	AISI304 / 1.4301								
2	Cover	AISI304 / 1.4301								
3	* Ball valve	Stainless steel								

*Available spare parts.

DIMENSIONS (mm)										
MODEL	A	B	c	D	WGT. Kgs					
VB21	32	25	27	50	0,17					
VB21M	25	25	27	50	0,13					

LIFTING POTS - LIPO

DESCRIPTION AND OPERATION

LIPO condensate lifting pots are used for rising condensate pipes eliminating steam and water hammering.

When the condensate is elevated to the condensate main in a higher level, the flash steam formed at a steam trap's outlet condenses in contact with colder condensate and steam bubbles implode, reducing its volume while passing to the liquid state. Vacuum is then suddenly formed and when filled again with the incoming condensate, it causes water hammer.

The air and flash steam cushion formed in the upper part of the lifting pot absorbs any shock while, in the bottom the condensate operates as a sealing liquid.

OPTIONS:	
----------	--

Stainless steel construction.

USE: Condensate lines where condensate has to be lifted.

SIZES: DN 15 to DN100

CONNECTIONS: Flanged EN1092-1 or ANSI. Different connections on request.

CONSTRUCTION: Carbon steel or stainless steel under request.

INSTALLATION: Vertical installation (inlet/outlet angle connections) The differential pressure must be enough to overcome the pressure head and pipe friction.

LIMITING CONDITIONS									
	Flanged PN16	Flanged PN40							
PS - Maximum Allow able Pressure	12 bar	18 bar							
TS - Maximum Allow able Temperature	250ºC	250°C							

Minimum operating temp.: -10°C. Design code: AD-Merkblatt Other conditions on request.

CE MARKING (PED - European Directive 97/23/EC)									
12 bar 18 bar Category									
DN 15 to 50	DN 15 to 50	1 (CE Marked)							
DN 65 to 100	DN 65 to 100	2 (CE Marked)							

LIFTING POTS - LIPO

	DIMENSIONS (mm)													
DN	Н	H1	H2	L	L1	D	D1	D2	D3	WEIGHT *				
15	384	240	325	180	180	170	DN15	DN15	DN15	9				
20	384	240	325	180	180	170	DN20	DN20	DN15	10				
25	384	240	325	180	180	170	DN25	DN25	DN15	11				
32	450	275	370	210	210	220	DN32	DN32	DN20	18,5				
40	450	275	370	210	210	220	DN40	DN40	DN20	19				
50	450	275	370	210	210	220	DN50	DN50	DN20	21				
65	630	425	540	240	240	275	DN65	DN65	DN20	35				
80	630	400	540	240	240	275	DN80	DN80	DN20	38				
100	660	400	545	350	350	400	DN100	DN100	DN20	72				

* Weight in kgs to be confirmed .

TYPICAL INSTALLATION

Armstrong Simplifies Your Tracing Line Systems

Designed to simplify and supply all the components (steam traps, manifolds, valves, etc.) necessary for your drip and tracer line applications, Armstrong's new Steam Distribution and Condensate Collection Manifolds bring all components together to reduce installation costs and provide a compact, easily accessible, centrally located assembly.

Armstrong's manifold series includes four different configurations, a Steam Distribution (MSD/SMSD), and a Condensate Collection Assembly (CCA/CCAF). As an option, the condensate manifolds can offer freeze protection.

In either case, you will save the expensive headaches of trying to fabricate in-house. What's more, your manifold will be backed by the famous Armstrong quality-and a standard three-year limited warranty.

Steam Distribution Manifolds

As a Steam Distribution Assembly (MSD/SMSD), the manifold places all steam supply valves in one location. Standardizing components and centralizing their location simplifies installation, cutting costs from the beginning. You also save because routine maintenance is faster.

Condensate Collection Manifolds

To make industry's trapping and valving more efficient, Armstrong combines its stainless steel steam trap valve stations with manifolds into a package called the Condensate Collection Assembly (CCA). This prepackaged assembly offers many great benefits-cost savings in installation, design flexibility, and reduced purchasing time. CCAF would also include syphon tube freeze protection.

Whatever your condensate collection or steam distribution needs, Armstrong has the manifold for savings over the long term.

Shown are typical locations for Armstrong manifolds. The many manifolds in chemical/petrochemical plants consume valuable floor space and often block movement among the units. Operating costs are high, and installation requires expensive custom fabrication on site. Clearly, a prefabricated manifold permitting standardization of components offers substantial savings over conventional units. Shaded products are available from Armstrong. Call or consult your Armstrong Representative if additional product details are required.

The Proof Is in the Piston

Many of Armstrong's manifolds utilize the piston valve because of its years of excellent performance in steam systems all over the world. The proof of Armstrong's long service life for manifolds...is in the piston.

All types of valves-plug valves, gate valves, piston valves and even ball valves-have been summoned for duty in steam service. Due to its excellent sealing characteristics in steam service, and because it has no gland packing, the piston valve is frequently selected for steam systems.

People who have used it over the past 90 years can testify that leakage to atmosphere is extremely rare, even without any maintenance. The elastic contact between piston and valve sealing rings provides a perfect tightness, both in-line and to atmosphere.

Steam system valves, whatever their design, are used to isolate steam and condensate lines or when a faulty steam trap needs to be removed from the line. This means the valves stay in the open position for long periods and are nearly always in contact with the atmosphere. It is not surprising, therefore, that when the valves need to be closed, they can often prove difficult to operate. Our experience and the demands from end users for energy efficiency have led us to a sealing system designed especially for steam service.

The Piston Valve

Armstrong Steam Distribution Manifolds (MSD/SMSD) and TVS 4000 Trap Valve Stations incorporate advanced piston sealing technology for safer, longer lasting steam isolation service.

Open Position

- · Dual sealing action. The piston valve is a seatless valve that includes two graphite and stainless steel valve sealing rings that seal the stem and function as a seat. This combination provides long-term protection against leaks to the atmosphere and downstream piping.
- Self-cleaning action. Stainless steel piston slides without rotating between the two valve sealing rings, preventing dirt from damaging the surfaces.
- · Sealing integrity. Flexible disc springs automatically provide leak tightness by exerting pressure, which keeps the upper and lower valve sealing rings compressed at all times. Sealing tightness is ensured by the compression of the sealing rings against the

Closed Position

piston and valve body. This combination of disc springs and dual valve seal rings protects against expansion and contraction due to heating and cooling. This ensures dependable operation, even after years of service.

- · Protected valve stem. The valve stem and sealing surfaces are completely protected from dirt and corrosion by the stem cap, whether in an open or closed position.
- . In-line repairability. All sealing valve components may be easily replaced in-line.
- · Long-term operation. Piston valve design ensures actuation even after many years without operation.

Steam Distribution Manifold (MSD/SMSD)

As Steam Distribution Assemblies (MSD/SMSD), the manifolds place all steam supply valves in one location. Standardizing components and centralizing their location simplifies installation while providing cost savings. You also save because routine maintenance is faster. Insulation can also be provided...and can be a major savings in most installations.

(shown with optional nipples and TVS 4000 Trap Valve Station with

Cost Savings

- · Reduced design specification costs
- · Prefabrication vs. field assembly for easy installation
- · Reduced shipping and field handling costs
- · Lower long-term maintenance and operating costs
- 3-year guarantee

Design Flexibility

- Dimensional consistency
- Space savings
- Insulation package available

SMSD may also be used on systems utilizing glycol, Dowtherm and other heat transfer liquids.

Steam Distribution Manifold (MSD/SMSD)

Physical Data												
			MSD Se	ries					SMSD S	eries		
Model	MSD-	04	MSD-I	08	MSD-1	12	SMSD-	04	SMSD	-08	SMSD-12	
	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
"A" n (OpibeionP)os	8	203	8	203	8	203	8	203	8	203	8	203
"B" ighte	11-1/2	292	24-1/4	615	37-1/8	243	10-1/4	260	19-3/4	501	29-1/4	743
"C" 🕻 to 🕻	6-3/8	162	6-3/8	162	6-3/8	162	4-3/4	120	4-3/4	120	4-3/4	120
"D" Blowdown Connection	3/4 SW	20	3/4 SW	20	3/4 SW	20	3/4 SW	20	3/4 SW	20	3/4 SW	20
"E" Number of Holes for Mounting (M14)	2	2	4	4	6	6	2	2	4	4	6	6
"G" Inlet	1-1/2 SW	40	1-1/2 SW	40	1-1/2 SW	40	1-1/2 SW	40	1-1/2 SW	40	1-1/2 SW	40
"F" et*Outl	1/2	15	1/2	15	1/2	15	1/2	15	1/2	15	1/2	15
Weight, Ib (kg)	21 (1))	46 (2	1)	67 (30))	20 (9)	40 (1	8)	59 (27	7)
Maximum Operating Pressure					464 psi (32	bar) @ 3	752°F (400°	C)				

*3/4" (20 mm) available – contact factory.

List of Materials	
Name	Material
Manifold Body	ASTM A105 forged steel
Handwheel	Ductile iron
Bonnet	ASTM A351 Gr. CF8M
Spring Washer	Stainless steel
Bonnet, Bolts	DIN 933, Gr. 8.8 per DIN 267
Piston & Stem	17% Chrome stainless steel
Valve Sealing Rings	Expanded graphite & stainless steel

For a fully detailed certified drawing, refer to CD #1097.

Steam Distribution Manifold

Steam Distribution Manifold With TVS 4000, Inverted Bucket Drip Trap and Optional Stand

Pre-Assembled...Condensate Collection Assembly (CCA)

Armstrong combines its Trap Valve Stations (TVS) with manifolds into a package called the Condensate Collection Assembly (CCA). This prepackaged assembly offers many great benefits—cost savings in assembly, design flexibility and reduced purchasing and design time. The CCA with TVS 4000 Trap Valve Station and 2000 Series Inverted Bucket Traps is guaranteed for 3 years.

Cost Savings

This preassembled concept offers tremendous savings by reducing multiple component purchases that cause additional purchase order monitoring and shipping costs. Other savings include far less labor time required for field assembly

This modular forged steel body design provides quick assembly/delivery, reducing overall project costs

- · Minimal welding vs complete manifold fabrication
- · Eliminates multiple component purchases
- Reduced design specification costs
- Prefabrication vs. field assembly for easy installation · Reduced shipping and field handling costs
- · Lower long-term maintenance and operating costs
- · 3-year guarantee

Design Flexibility

Armstrong can meet virtually any design parameter, including dimensional consistency, with your choice of socketweld or threaded connections. Armstrong inverted bucket, thermostatic, thermostatic wafer, bimetallic or disc steam traps can be provided or any other manufacturer's two-bolt steam trap can be used. If you require a specific piping arrangement, Armstrong can offer the flexibility to meet your specifications.

Materials Manifold body:

ASTM A105 forged steel

Removable Insulation Package

A removable insulation package is available for all steam and condensate manifolds.

- Inexpensive
- Quick to install
- Removable for maintenance Reusable after maintenance
- · Weatherproof
- Formed to cover all manifold elements
- Strong, durable cover
- · Available to fit all manifold sizes

Freeze Protection Package (CCAF)–Optional

A manifold assembly for more efficient condensate return has another benefitfreeze protection. Armstrong's innovative manifold design actually serves as a heat station, heating one or more traps if the steam supply is interrupted or shut off to the traps. The protection is accomplished as long as one trap continues to discharge into the manifold. The manifold's internal syphon tube creates a water seal, which contains the flash steam from the discharge of the live trap. This allows radiant heat to protect shut-off traps from freezing

An optional freeze protection valve package senses condensate temperature. When this device opens, it drains condensate from the manifold assembly. thus providing further freeze protection.

CCAF 212 Condensate Collection Assembly

(Shown with TVS 4000 Trap Valve Station with 2000 Series Inverted Bucket all stainless steel steam traps with optional removable insulation package including nipples, drain valve and stand.)

12-1/2" (318 mm)³ 8" (203 mm) Π Optional steam-jackete syphon lift tube adds freeze protection _____ Optional 3/4" NPT Drain Valve

CCAF Condensate Collection Assembly with TVS 4000 Trap Valve Station, Optional Freeze Protection and Drain Valve. Available with Armstrong's inverted bucket, disc, thermostatic, thermostatic wafer or bimetallic steam traps. Any manufacturer's 2-bolt steam trap can also be applied to Armstrong's trap connectors.

CCA Condensate Collection Assembly With IS-2 Connectors with Strainer, Blowdown Valve and Optional Drain Valve Available with Armstrong's inverted bucket, disc, thermostatic, thermostatic wafer or bimetallic steam traps. Any manufacturer's 2-bolt steam trap can also be applied to Armstrong's trap connectors.

Physical Data										
Model	CCA-204		CCA-206		CCA-208		CCA-210		CCA-212	
"[]]33	in	mm	in	mm	in	mm	in	mm	in	mm
"H"	23-1/8	587	31-1/8	790	39-1/8	994	47-1/8	1,197	55-1/8	1,400
Maximum Allowable Pressure				604	osi @ 800°F	(42 bar @ 4	27°C)			

Physical Data										
Model	CCAF-204		CCAF-206		CCAF-208		CCAF-210		CCAF-212	
"Н"	in	mm	in	mm	in	mm	in	mm	in	mm
	27-5/16	694	35-5/16	897	43-5/16	1,100	51-5/16	1,303	59-5/16	1,506
Maximum Allowable Pressure		604 psi @ 800°F (42 bar @ 427°C)								

How to Order Manifold Packages

CCA	208	2NPT	6PE	3DVN	TVS 4000 SCH80
Manifold Model	Number of Take-offs Per Manifold	Connection Size Take-offs, NPS in (mm)	Connection Size Top, NPS in (mm)	Connection Bottom, NPS in (mm)	Trap Valve Station
MSD Steam Distribution Manifold	04		6SW = 1-1/2 (40) SW ¹ 6FW150 = 1-1/2 (40) 150# RF Flange	3SW = 3/4 (20) SW ¹ 3NPT = 3/4 (20) NPTF	
SMSD Small Steam Distribution Manifold	12	2NPT = 1/2 (15) NPTF ¹	8FW150 = 2 (50) 150# RF Flange 8FW300 = 2 (50) 300# RF Flange	3WD = 3/4 (20) Welded Dripleg ² 3TD = 3/4 (20) Threaded Dripleg ²	TVS 4000 IS2 with BD
CCA Condensate Collection Assembly	204 206	$2SW = 1/2$ (15) SW^2 3NPT = 3/4 (20) $NPTF3SW = 3/4$ (20) Socketweld	6PE = 1-1/2 (40) Plain End ¹ 6FW150 = 1-1/2 (40) 150# RF Flange	3NPT = 3/4 (20) NPTM ¹	IS2 Standard None
CCAF Condensate Collection Assembly Freeze Protection	CCAF 208 208 210 densate Collection Assembly 212 Freeze Protection		3PE = 3/4 (20) Plain end ¹ 3NPT = 3/4 (20) NPTM 3FW150 = 3/4 (20) 150# Flange	3DVN = 3/4 (20) Drain Valve NPTM/NPTM 3DVS = 3/4 (20) Drain Valve SW/NPTM	

1. Armstrong stocks manifold cores (less nipples, drain valves and trap stations) in these connections.

Must pick this bottom connection to use trap station (TVS 4000 only choice) and trap on MSD and SMSD.
 Nipples connecting manifold to trap station can be Schedule 80 (standard) or schedule 160 (optional).

ALL STAINLESS STEEL FILLED PRESSURE GAUGES

APPLICATIONS

For corrosive atmospheres and fiuids, resistant to high dynamic pressure loads and vibrations.

Well suited for the process industry applications inluding: Petrochemical, Chemical plants, and energy etc.

SPECIFICATIONS	CONTENTS
DIMENSIONS	100mm
ACCURACY	Class \pm 1.0 %
	-1/0 to -1/+20 kg/cm ² (bar)
FRESSURE RANGES	0/1 to 0/1500 kg/cm ² (bar)
	Working temperature 100°C max.
	Ambient temperature around: -20°C~60°C
	AISI 316, LM or LBM/CBM
CONNECTIONS	Size : 22mm
CONNECTIONS	3/8", PT, NPT, PF, BSP
	1/2", PT, NPT, PF, BSP
	Bourdon Tube, AISI 316
SENSING ELEMENT	DIN 50049 (AISI 316 Ti)
	<70 kg/cm² (bar) Coil
	≧70 kg/cm² (bar) Helicoil
MOVEMENT	AISI 316
DIAL	White aluminium, black lettering
POINTER	Black aluminium
CASE	AISI 304
UPPER RING	AISI 304
FILLING	Glycerine (99.5%)
	Normal glass,
WINDOW	Laminated safety glass
	Acrylic
	Filling fluids optional
ORDER OPTIONS	Flange
SHOEN OF HONO	Red mark pointer
	U-shape clamp

BI-METAL THERMOMETERS

APPLICATIONS

Transformer dyeing, drier, food processing, boiler, air conditioning equipment, and other industrial machines

SPECIFICATIONS	CONTENTS
DIMENSION	26.5mm, 35mm, 50.6mm, 65mm, 80.5mm, 118mm, 130mm, 160mm
CASE	AISI 304
SENSOR STEM MATERIAL	AISI 304 or AISI 316
DIAL	White aluminium, black lettering
TEMPERATURE	-50~+600°C
O.D. OF SENSOR STEM	Standard: ø6.5mm, range 4~12mm
LENGTH OF	
SENSOR STEM	2~20
ACCURACY	± 1.0%

PRESSURE GAUGE ACCESSORIES

PIPE SEPARATOR

SIPHON

FEATURES

Connective thread includes four parts-cap nut, front ring, rear metal ring, divert connector. Applications include chemical fluid industry, manufacturing control, petroleum, equipment testing etc. Except for highly corrossive fluid, most of other fluids are safe to use this divert connector without leakage.

SPECIFICATIONS	CONTENTS
	Direct connector, L-shape connector,
SPECIFICATIONS	three-way connector
MATERIAL	AISI 316
	Female thread inner diameter:
DIMENSION	6mm~25mm
	Male thread length: 1/8"~1"
*Customized designs	available

*Customised designs available

APPLICATIONS

Widely used in vapourised high temperature equipments or the vaporisation from percolated & saturated fluid.

SPECIFICATIONS	CONTENTS
CONNECTION	1/4" > 3/8" > 1/2" PT, NPT, PF, BSP F/M
	Carbon steel (150 bar 430℃ max.)
PRESSURE RANGE	AISI 316 stainless steel (135 bar 450℃
	max.)

*Customised designs available

System Monitoring

SECTION

14

The New Standard for Steam Trap Management

According to the Alliance to Save Energy, facilities have saved as much as 17% of fuel use when implementing energysaving processes. Establishing a consistent, long-term steam trap management process is one way to achieve savings.

Historical Approach to Steam Trap Program*

Trap inspections are typically performed one time per year. The problem with this approach is that steam traps fail every day. These undetected failures lead to system irregularities, which, when left undetected long enough, can result in severe problems and equate to many dollars lost.

Proactive Approach to Best Practice Steam Trap Management*

Early detection means being able to act on a trap failure before the associated problem becomes severe. Therefore, immediate evaluation of the situation and measurement of the results are critical for continued best practice process improvement, yearly steam loss reductions and sustained monetary savings.

*Schavey, L. and Stout, J., "Achieving Operational Excellence in Gas Plants," Hydrocarbon Processing, January 2005.

Wireless, Labor-free, Instant Notification of Steam Trap Failure!

If you were to describe your vision for steam trap best practice, what would it look like?

Awareness

- The ability to constantly monitor the steam trap population without labor allocation
- · Instant notification of steam trap failure

Action

• Quick diagnosis and action on best trap replacement based on return on investment (ROI)

Accountability

• A reporting system that provides tracking, measurement, ROI analysis and easy company-wide communication

SteamEye[®] and SteamStar[®] bring steam savings through instant notification of steam trap failure.

SteamEye® is the tool to reduce labor and energy costs by constantly monitoring the steam trap population. SteamStar® is the measurement software that will create company-wide awareness for a a whole new level of steam savings. When working together, SteamEye® will feed the momentto-moment steam trap data into SteamStar®. SteamStar® will instantly report this information through Web-based software that allows easy access for company personnel to make timely, money-saving decisions.

SteamStar[®] Easy-to-use and Very Affordable Steam Trap Database

SteamStar[®] is the first Web-based software for recording, monitoring and managing steam trap information.

Improve steam system efficiency.

Steam system efficiency can be directly linked to how well the system is managed. SteamStar® provides diagnostic reporting at various levels of organizational responsibility. The reports permit the evaluation of current conditions and provide the knowledge necessary to make moneysaving decisions.

Achieve best practice energy management goals.

History has shown that companies maximize sustainable cost savings when energy goals are measured, monitored, and managed on a consistent basis. SteamStar® is the Web-based tool that will bring data together by site, by region and by company to help achieve best practice energy management goals.

Save valuable time.

Typically steam trap data are presented from multiple sites in different software formats and with different qualifying terminology. These variables make managing steam system information difficult and time-consuming. SteamStar® offers a platform for company-wide steam data to be viewed and analyzed without wasted time.

Eliminate costs associated with software

licensing agreements. Licensing agreements can cost tens of thousands of dollars for initial software purchase. For the software to facilitate multiple users, additional capital outlay is required. The Web-based platform of SteamStar® eliminates licensing fees and dramatically reduces the required investment. A one month return on investment!

Improve company-wide communication.

Users at the plant level can perform evaluations to determine root causes of steam system issues. Using the same platform, the global energy manager has the ability to analyze data for sites around the world. This level of communication promotes understanding of steam system efficiency.

Screen shot of SteamStar® home page.

SteamStar[®] Easy-to-use and Very Affordable Steam Trap Database

SteamStar[®] Web-based software will evaluate steam system data.

Continuous Steam Trap Monitoring captures real time steam trap operation from SteamEye[®]. SteamEye[®] is the automated steam trap monitoring tool that provides accurate and constant information from each steam trap. This information is translated by SteamStar[®] into actionable reports. All of the reports available in SteamStar[®] are designed for best practice measurement.

- · Executive Summary
- Steam and Monetary Loss
- Defective Trap Report
- Manufacturer Summary
- Trap Evaluation by Application

Company Benchmarking

This premium report establishes a comparison to sister sites and industry peer best practices. The user has a choice of which sites to benchmark and which factors to compare. Steam losses and monetary losses can be compared by site, by type of application, by type of trap, and more. This report will offer management a wide analysis of which sites are working to reduce steam losses and which lag behind. It will also highlight any areas of concern in terms of high steam trap failure rate compared to total monetary losses. This report is a valuable tool for facility managers and global energy managers alike.

Prioritized Work Orders

The work order report is a premium report that was designed for optimum facility payback on labor and material while keeping energy losses to a minimum. This report is available at the site or unit level and will create a work order for steam trap repairs based on payback.

Trend History

The premium trend analysis report will assist a manager with the comparison of multiple years of data. The data available for comparison are steam loss, monetary loss, fuel consumed, and emissions created. Like the other premium reports, the trend analysis report can be compared by site and/or region. It will also track emissions—CO₂, SOx, NOx—and highlight the progress made toward steam system efficiency and dollars saved.

Emissions Summary

The premium emissions report is valuable for its ability to focus on the quantifiable emissions of CO_2 , SOx, and NOx in one summarized view. Steam system efficiency is not only viewed as important in terms of energy losses but also in terms of environmental impact. The emissions report is especially beneficial to users that are penalized by world governments for high emission factors.

Screen shot of executive summary.

Renderwing Report. Presting Andream Report. Results Report Report Results

Site 1							
Ting Number	Candition	Annual Cost (USI)	Loadian	Manufacturer - Model	1.0	commendations	Comment
114	Ellow Thru	11374	030M by Absorber above pumps	Yarway - 50			
108	Blow Thru	5343	Penthouse, Domestic hot water heaters supply	Armstrong - 3083	strong - 3083		
104	Leaking	1917	074M PRV station	Watson Mcdaniel - WD600	Replace w	th Armstrong model 2011	
122	Leaking	1560	228M, MP drip	MEPCO - 44-2154			
105	Leaking	1484	1284	Spirax Sarco - UTD52L			
115	Leaking	877	030M PRV by Absorber	Spirax Sarco - UTD52L	rax Sarco - UTD52L		
105	Flooded		Penthouse, Domestic hot water heater 27-0088	MEPCO-44-215A	PCD - 44-215A		
112	Plugged	· · · · · · · · · · · · · · · · · · ·	074M Flash tank by condensate pump	Spirax Sarco - B1H			
113	Flugged		030M Next to Absorber	+			
115	Flooded		Penthouse, Domestic hol water heater 27-0088	A MEPCO - 44-215A			
Site 2							
Tag Number	Canalife	a Annaal Cost (U	(10) Location	Manufacture	er-Model	Recommendations	Comneals
113	Blow This	C C	6319 Penthouse, domestic water heater	Spirax Sarco -	FT75		
115	Blow Thn.		4514 Penthouse, domestic water heater	Spirax Sarco -	FT30		
104	Ellow Thru		2901 6th floor, Bollier Room, domestic hot water	heater Armstrong-8	51		

Screen shot of prioritized work order.

System Monitoring

Cut The Cord

Is your plant monitoring system held back by outdated technology or devices that can't think for themselves? It's time to cut the cord and enter the world of intelligent wireless monitoring from Armstrong International.

AIM[™] brings intelligence to wireless technology by applying smart thinking devices to monitor critical plant applications in real time.

Three Challenges - One System Solution

Three constant challenges that plant managers and maintenance personnel face in the operation of any system include:

- Identifying a failure ability to immediately pinpoint what has failed, when it failed and where it failed.
- Evaluating the scope comprehending the magnitude of the failure especially in terms of energy lost and emissions discharged to the atmosphere.
- Measuring the impact accurately calculate the costs including wasted energy, process disruptions and plant shut downs, safety hazards and fines levied.

AIM[™] enables your team to tackle all three challenges with one system solution that combines a mix of methods including acoustic and temperature monitoring with integrated software through a smart wireless gateway to deliver:

- · Immediate failure notification of devices such as steam traps
- · Immediate notification of release to flare for emissions mitigation
- · Pinpoint accuracy of failure location for fast resource deployment
- · Detection of "sizzling" relief valves for proactive maintenance scheduling
- · Preemptive warning of hazardous vapor release to improve worker safety

Result

· A safe and reliable methodology

for testing inaccessible steam

Significant cost avoidance from

· Significant energy savings due

root cause problem to reduce

to reduced consumption.

· Immediate identification of

potential production loss.

potential turbine blade damage.

traps for immediate failure

notification.

ARMSTRONG

Ready, AIM[™], Fire

Problem

- · Identifying condition of critical steam traps that are difficult to access.
- · Condensate backing up into turbine caused by plugged steam trap.
- · Significant energy loss due to failed steam traps on high pressure steam lines.
- · Reboiler not draining properly due to plugged steam trap.

Problem

• Excessive use of flare due to

· Leaking isolation and bypass

· Gas pressure regulator failure.

valves for critical process.

safety relief valve lift.

Solution

0 0

0 0

0

0 0

0 0

0

0

Result

- Reduced hydrocarbon emissions to the environment and significant cost avoidance from potential environmental fines.
- Material loss reduction due to immediate location identification.
- · Reduced process loss due to immediate identification and location of the root cause; Reduced safety issues.

Problem

- · High viscosity in bulk storage tanks causing potential pumping issues due to inadequate temperature.
- · Potential solidification in sulfur/asphalt transfer lines due to inadequate temperature.
- Pump trap failure (Flooded).
- · Electric pump cavatation/seal failure.

AD5000

Acoustic Monitoring

0

0

0 0

Result

- Immediate low temperature indication and location on the storage tank to prevent transfer/tank loading problems due to high viscous material.
- · Immediate low temperature indication and location on sulfur line to prevent material solidification.
- · Early detection of reduced inlet condensate temperature to pump trap.
- · Early detection of high temperature condensate into electric pump receiver.

Smart Mesh Technology

Self Organizing.

- · Devices automatically establish routes for efficient and reliable communication.
- Expansion is simple... additional devices seamlessly integrate into existing networks.
- · Mesh topology allows for easy network reconfiguration.

Self Healing.

• If obstructions are introduced within an existing network, the system will automatically adjust communication paths for continuous and reliable data flow.

Industry Standard IEEE 802.15.4.

- 2.4 GHz 16 band.
- · Continuously hops across 16 channels to reduce potential interference.

No Blind Spots.

• Utilizing industry standard *Wireless*HART[™], an open mesh networking design, AIM[™] communicates through and around stacks, silos, cranes and other obstructions.

Harsh Environments? No Worries.

AIM[™] is designed to withstand extreme ambient temperature conditions (-40°F - 194°F) (-40°C - 90°C).

No Plant Disruptions.

• Installing AIM[™] won't disrupt plant processes. There's no shutdown required to perform an installation and AIM is non-intrusive to valves, pipes and system equipment.

Wireless HART

The HART Communication Protocol has served as the world's leading process communication technology for smart instruments since 1989. Today, more than 30 million HART devices are installed and in service worldwide.

Industry suppliers are manufacturing and shipping HART products in record numbers—75% of the smart devices installed are HART-enabled.

Simple

- Reduced installation and wiring costs
- · Always on security
- Adjusts as new instruments are added and to changes in plant infrastructure

Reliable

- "Hops" across channels
- Co-existence with other wireless networks
- Optimizes bandwidth and radio time
- · Mesh network and multiple access points

Secure

- Protects valuable information with multilayered security
- Robust multi-tiered always on security
- Protects wireless network with channel hopping
- Reports message integrity failures and authentication failures

Transmitted Information • The following information is sent from the nodes.

Information	Device ID	HART Tag	Primary Variable (PV)	Secondary Variable (SV)	Tertiary Variable (TV)	Quaternary Variable (QV)
Acoustic Model AD5000	V	\mathbf{N}	Counts (0-255)	Current temperature reading (°F or °C)	Alarm Setting (default 0)	Estimated Battery Life (Days)
Steam Trap Model ST5700			 Trap Condition 1 – OK = no alarm; steam trap is functioning properly. 2 – CD = alarm; steam trap plugged/locked or steam supply valve off. 3 – BT = alarm; steam trap failed open, experiencing steam loss. 	Current temperature reading (°F or °C)	Temperature Setting*	Estimated Battery Life (Days)
Temperature Model TD5100	V	V	Temperature (°F or °C)	Status Bit • 1 – Temp. above setting • 2 – Temp. below setting	Temperature Setting	Estimated Battery Life (Days)

More HART products are installed in more plants around the world than any other. No other communication protocol comes close.

Wireless technology allows users to access the vast amount of unused information stranded in these installed HART smart devices— 85% of the installed HART devices. It also provides a cost-effective, simple and reliable way to deploy new points of measurement and control without the wiring costs.

ltem	Description
Based on Industrial Standards	HART - IEC 61158 <i>Wireless</i> HART - IEC/PAS 62591Ed.1 EDDL - IEC 61804-3 Radio & MAC - IEEE 802.15.4(TM)-2006 IEC/PA
Radio Standard	IEEE 802.15.4-2006 @ 250kbps
Frequency Band	2.4GHz
Frequency Management	Channel hopping on a per packet basis
Distance	Up to 250 m (820 ft) line-of-sight between devices
Power	Battery
Topologies	<i>Wireless</i> HART Mesh

Work Smarter - Not Harder

AIM[™] helps you work smarter by anticipating your needs and taking the guess work out of system troubleshooting enabling you to address problems before they spiral out of control. Here's how.

Smart Thinking is in the Box

AIM[™] works through a centrally located wireless gateway that enables real time, 24/7 monitoring.

The AIM[™] Wireless Gateway easily connects and organizes WirelessHART devices to your host system while providing industryleading security, scalability, and data

reliability. The Gateway interface is easily viewed in a web browser.

Wireless Gateway Specifications

- Burst rate: User Selectable 4, 8, 16, 32 second or 1 to 60 minutes
- Network Size: Up to 100 devices
- Output: Ethernet, Modbus (485 or TCP), OPC, HART IP
- Approvals: FM, CSA, ATEX, IECEx

AIM[™] Wireless Gateway Web Browser Interface

Other Interfaces:

 Data historian connectivity for trending and analysis (Note: Data historian not included with AIM[™] Wireless Gateway).

Wireless Architecture

SteamLogic[™] Program Interface

Ster	amLog	10						
-	Walking Streements in	1 Tax 1 1994	second large lines	w		Arr. 10.1	as here had been	
	0		Contraction in the local distance			1.0		
-	0		water state in the					
	W met in	-	ALC: NOTICE ALC: N			- 0	A8	
	9		and the second second				-	
	0		and the second second			444 .0	AL	
	A		CONTRACTOR IN			- 8-10 Q		
-	9		-					
_	0		and a second second			and D		
	0		all and a second second			- 0	·	
	O that is	- 12	ACCOUNTS OF					
	9		and the second se					
	9	server 10.1	and a second second			100 Q		
	2		A COLUMN T			- 0		
			and the second second					
-	Y	100 C			_			_
1.4			CONTRACTOR OF STREET,					
	-			Television of the local division of the loca	-	1000	Aug. 1 (1)	
a real	too the state of t		4			And the state		
						-		
			× *					
the second second	the local data of the		· M-	and the second se	1.0	20		

ARMSTRONG PRODUCT PAGES

ARMSTRONG

INTELL

IGENT MONITO

NO

Ready, AIM[™], Fire

Adjustable

Extreme Weather

Factory Mutua	I (FM) Approval
United States	Intrinsic Safe for Class I/II/III, Division 1, Groups A, B, C, D, E, F, and G Zone Rating: Zone 0, AEx ia IIC Temperature Code: T3 Ambient Temperature Range: T_{amb} -40°C to 90°C (-40°F to 194°F) For use with TADIRAN model TLH-5920 lithium ion battery only Standards used for Certification: FM3600, FM3610, FM3810, ANSI/ISA 60079-0, ANSI/ISA 60079-11
Canada	Intrinsic Safe for Class I/II/III, Division 1, Groups A, B, C, D, E, F, and G Zone Rating: Zone 0, Ex ia IIC Temperature Code: T3 Ambient Temperature Range: T_{amb} -40°C to 90°C (-40°F to 194°F) For use with TADIRAN model TLH-5920 lithium ion battery only Standards used for Certification: CSA 1010.1, CSAC22.2No.157, CSAC22.2No.25,CAN/CSAE60079-0, CAN/CSA60079-11
European Certification	ATEX Intrinsic Safety Ex ia IIC T3 Ambient Temperature Range: T _{amb} -40°C to 90°C (-40°F to 194°F) For use with TADIRAN model TLH-5920 lithium ion battery only Standards used for Certification: EN60079-0,EN60079-11, EN 60079-26
IECEx Certification	Equipment Protection Level: Ga Gas/Vapour: EX ia IIC T3 Ambient Temperature Range: T _{amb} -40°C to 90°C (-40°F to 194°F) For use with TADIRAN model TLH-5920 lithium ion battery only Standards used for Certification: IEC 60079-0. IEC 60079-11. IEC 60079-26

Output	WirelessHART 2.4 GHz	
Local Display (if applicable)	Liquid Crystal Display Viewing Area: 1.34" x 0.55" (34 mm x 14 mm)	
Temperature Operating Range	With display: -30°C to 80°C (-22°F to 176°F) Without display: -40°C to 90°C (-40°F to 194°F)	
Materials of Construction	Housing – Aluminum Paint – Powder Coat O-ring – Nitrile Stem – 304 SS Antenna – Nylon 6,6 Nampelate – 304 SS	
Battery Type	Tadiran Lithium Ion Model – TLH-5920	
Weight	2.2 lbs (1 Kg)	
ST5700 Note: For proper operation, node must be installed on a steam trap operating at no less than 15 psig (1 bar).		

Steam System Survey

History

Industries use approximately 42% of the total energy consumed annually in the United States. Of this, about half (or 21% of total U.S. energy consumption) is used to generate steam in more than 54,000 large industrial-sized boilers.

Unfortunately, much of that steam is lost through leaks in the distribution system, including piping, valves and steam traps. Lost steam must be replaced, which can only be done in a boiler that consumes fuel.

The cost of replacing wasted steam can be enormous in terms of system efficiency, lost production, fuel consumption, makeup water treatment cost, and maintenance. These additional costs must be factored into the bottom line of every organization.

Environmental Considerations

Inadequate trapping on steam mains not only results in economic losses, it also creates environmental concerns as additional fuel is burned to replace lost steam. For example, assume the steam-main pressure is 150 psig and the leak size is 5/64"—about the thickness of a penny. In this instance, approximately 27 lb of steam will be wasted per hour—escaping from the system or blowing through a trap and into the return line.

Twenty-seven pounds per hour may not sound significant, but over one year (8,400 hours), that small leak will waste the following equivalent amounts for fuel:

- 1.9 tons of bituminous coal at a value of \$679 (coal cost \$57/ton)
- 2,385 gal of residual oil at a value of \$978 (oil cost \$0.41/gal)
- 3,141 ccf of natural gas at a value of \$1,272 (gas cost \$4.05/mcf)

Pulverized bituminous coal in a dry bottom-firing boiler will generate the following pollutants per year:

- 727 lb of particulate matter
- · 465 lb of sulfur oxides
- 250 lb of nitrogen oxides
- 7.2 lb of carbon monoxide
- 9.7 tons of total carbon

These figures represent a case in which just one trap has blown through—typical failure mode of many steam traps. Compound the figures by the number of potential failed traps and you can begin to understand the value of trap maintenance, both in terms of energy and the extra load placed on your environmental cleanup systems.

Evaluation = Efficiency = Dividend

Reliable evaluation of steam trap operation is necessary for traps to work at peak efficiency. Trap testing is a key element in a complete energy management program, and an essential skill for protecting your investment.

Accurately evaluating steam trap operation can pay dividends in energy conservation, save countless maintenance hours, and reduce unscheduled downtime caused by trap failure.

Steam-Trap Survey

To ensure that your steam traps are maximizing the return on your product investment, your first steps should be to conduct a steam-trap audit or trap survey, then implement a comprehensive trap-maintenance program. Proper trap maintenance requires someone who knows how each type of trap functions and can determine if each trap is operating as required.

Armstrong has the ability and trained personnel to conduct steam system energy audits for any facilities in the world. Our factory-trained technicians have decades of experience and have tested tens of millions of steam traps worldwide.

Test and Replace Just the Failed Traps

The sooner a trap is identified as an energy waster, the sooner it can be replaced. Since newer testing methods require minimal labor, traps can be tested more frequently and failed traps can quickly be identified. In addition, perfectly good traps that may be misdiagnosed as failed by less reliable testing techniques will no longer be routinely replaced, thus saving the expense of a new trap and related labor costs.

Armstrong continues to lead the industry with innovative testing and tracking tools such as SteamStar[®], SteamEye[®] and TrapAlert[™].

By using SteamEye[®] technology, you can better spend your maintenance time repairing only defective traps and not evaluating traps that have been misdiagnosed as failed. In conjunction with SteamStar[®], the system becomes the premier steam trap management package for maintaining a healthy steam system.

Maintaining the Boiler Plant

Boiler plant reliability and efficiency depend on the stability and success of each component of the steam generation, distribution and condensate return system. Maintaining a boiler plant means paying close attention to components including flanges, elbows, valves, unions and steam traps, since each component has the potential to waste steam.

We can help with proper system evaluations, as well as piping recommendations, replacement-trap sizing and troubleshooting.

Training

ARMSTRONG PRODUCT CATALOGUE

SECTION

15

"Knowledge Not Shared is Energy Wasted"

Armstrong Flow Control runs a comprehensive range of training seminars covering everything from basic steam / hot water system layout to the responsibilities under the latest Workplace Health and Safety Standards. These seminars can be conducted in-house or off site and range from 1.5 hours to a full day course. All seminars are conducted by professional trainers and all participants receive a certificate on completion.

(A) Steam Systems

Topics to be covered:-

- Steam fundamentals
- Boilers
- Steam distribution
- Steam trapping and common applications
- Air venting
- Pressure reduction
- Control valve sizing
- Condensate return
- Waste Heat recovery
- Safety

(B) National Workplace Health and Safety Certification 1010 Standard

Topics to be covered:-

- Boiler design
- · Boiler safety valves
- Boiler operation
- Boiler inspection and maintenance
- Gas compliance and installation
- Boiler registration
- Boiler TDS control and blowdown
- Boiler water carryover
- Feedwater tanks
- Steam tables
- Heat load formula
- Steam pipe sizing
- Steam distribution
- Steam trapping
- Temperature and pressure control
- Condensate return
- Waste heat recovery
- Safety

Armstrong also provides a vast array of training aids including video's / CD's, booklets, pamphlets, cut-away samples and the world recognised Armstrong University online training course. One of Armstrong's key mottos is "Knowledge Not Shared is Energy Wasted".

Armstrong University Energy Seminar

Knowledge Not Shared Is Energy Wasted®

Since Armstrong designed and manufactured its first steam trap in 1911, we've solved virtually every imaginable problem in steam trapping and steam humidification. In the process we've accumulated a substantial body of information. It's practical know-how, not just theory. And for years we've shared this knowledge with anyone interested. We go to great lengths to share what we know because we're convinced that this kind of interaction is the best way to solve problems, meet individual needs and maximize the return on your energy investment.

Steam Energy Seminars are held at Armstrong's manufacturing headquarters in Three Rivers, Michigan. Armstrong also operates seminar facilities in Liege, Belgium, and Beijing, China.

All three facilities are fully equipped training centers. With the help of sophisticated sound and projection equipment and an elaborate working model of a steam system with live steam and glass piping, you'll see how different types of steam traps perform under various conditions.

Starting With the Basics

At an Armstrong University Energy Seminar, you'll learn how to cash in on long-term labor, material and energy savings. Starting with the basics, you'll review the fundamentals of steam.

Your Armstrong instructors have both the technical background and the field experience to make information relevant. Understandable. With their help, you'll walk step-by-step through the installation, operating/energy characteristics and maintenance of all kinds of steam traps.

Sessions are informal, with plenty of chances to participate and ask pointed, specific questions. (If you desire, a presentation can be tailored to your specific needs.) You'll also be able to listen to the questions and problems of others in the industry and discuss how their solutions may benefit your steam system.

At Armstrong University, there's no pressure selling. Basic information is presented honestly. And the demonstrations speak for themselves.

Applying Know-How

When you come to Armstrong University, you'll see firsthand the importance of trap selection and sizing-and why savings begin with proper installation and integration of steam system components.

You will also examine how steam trap selection, sizing and installation bear on energy consumption, downtime and maintenance. What's more, you'll review the guidelines for trapping steam distribution systems, tracer lines and various types of heating, process and heat exchange equipment.

In short, you'll learn about savings. Not as some loosely defined goal, but as hard, no-nonsense gains you can measure on a year-end chart.

Topics such as corrosion, water hammer and thermal stress will be discussed. And because each seminar can be tailored to your specific interests, special topics of individual concern may also be covered. Tell us what you want to know, and we'll emphasize it for you.

Reference Guide to Armstrong's Training Aids

Classroom Training Aids

Training for Energy Conservation

In a survey of plant engineers, plant managers and key maintenance engineers, 89% said that there will be a greater need for training in the years ahead. One of the primary areas of training will be in the arena of steam system maintenance because of the great potential to save energy and money.

Since building its first steam trap in 1911, Armstrong has been committed to sharing information and technical knowledge on steam energy conservation. Armstrong not only shares this information with its Representatives, but for years it has conducted seminars for its customers. Seminars have been conducted in our facilities as well as in customers' plants.

To extend its training program further, Armstrong assists many companies in developing their own in-house training activities. This guide is published to inform these trainers of the educational resources available from Armstrong. Many of the training aids are available at no charge. Other resource materials are available at a nominal charge. These items are marked with a dollar sign (\$). For prices, contact Armstrong's Marketing Department.

Armstrong offers an extensive list of handbooks, catalogs and bulletins covering a wide range of topics. Some of these publications provide valuable resource material for classroom instruction.

Armstrong also provides many other training aids to help trainers conduct programs on various aspects of steam system operation and maintenance. Following are some of the materials for planning and implementing an effective steam system maintenance program.

Line Card 320 with Catalog CD-ROM: Line Card 320 includes a CD-ROM of Armstrong's catalog, Solution Source for Steam, Air and Hot Water Systems. The CD also features "Steam Conservation Guidelines for Condensate Drainage," which is recognized as one of the most authoritative discussions on steam, steam traps and steam energy conservation available today.

Sectional Models: Being able to see inside steam traps has been effective in helping people who work with traps to understand how they operate. Armstrong offers more than a dozen different sectional models of its steam traps and related products. Also available are glass traps, which allow students to view the operation of various steam trap types.

Videotapes: While Armstrong has more than a dozen different videotapes available, three have been found most useful in training situations.

- Let's Talk Steam Traps/Update is a two-part, 32-minute videotape that discusses the operating principles of mechanical, thermostatic and thermodynamic steam traps. Designed to be used in conjunction with the Conservation Guidelines section of this catalog, the tape discusses 10 steam system operating conditions that must be considered in evaluating steam trap performance.
- Guidelines for Steam System Efficiency is a 15-minute educational program covering basic considerations in the design, piping and trapping of steam systems. Topics covered in the tape include correct sizing and installation of steam supply and condensate return lines, steam velocities in the system, the use of air vents, vacuum breakers and safety drains, and much more. This videotape stresses how low energy, maintenance and operational costs in your system can be achieved by proper design, installation and maintenance.
- Guidelines for the Prevention of Water Hammer is a 16-minute videotape explaining three types of conditions that cause water hammer. The damaging effects of water hammer to steam system components also are described. Recommendations are made in the videotape on the proper trapping and piping to reduce the potential for water hammer. The results of reducing or eliminating water hammer are a safer work environment, lower maintenance costs and reduced system downtime.

Steam-A-ware[™] Sizing and Selection Software: Proper sizing and specifying of steam traps, pressure reducing valves and water heaters is critical in order to save energy and extend equipment life. For users, this has continued to be a confusing and complex process. Now the easy-to-use Armstrong Steam-A-ware software program for sizing and selecting steam traps, pressure reducing valves and water heaters can be downloaded from Armstrong's Web site, armstronginternational.com.

Reference Guide to Armstrong's Training Aids

Training for the Trainer

Armstrong recognizes the need to train the people who will be teaching others about the value of steam. In-house trainers are encouraged to avail themselves of the resources offered by Armstrong to make training programs effective and productive.

Seminars: One of the most effective means for trainers to learn about steam energy conservation is to attend and participate in Armstrong's steam energy seminars. Thousands of people have participated in these seminars, held monthly at Armstrong's demonstration laboratories in Three Rivers, Michigan; Liege, Belgium; and Beijing, China. These multi-media seminars provide practical experience for trainers, engineers, maintenance personnel and energy managers.

Representatives

In-house trainers are encouraged to call their Armstrong Representatives as a valuable resource in planning and implementing programs. The Representative can serve as a catalyst in moving your program forward, and virtually all the training aids outlined in this bulletin are available through your Armstrong Representative.

Often, training items may be borrowed from your Representative. He or she may be called on for advice and counsel and may serve as an authoritative resource speaker for your employees.

Continuing Education Aids

"Knowledge not shared is energy wasted[®]" is a philosophy of Armstrong, and the company is dedicated to the premise of sharing knowledge on a continuing basis. Furthermore, knowledge not applied is knowledge wasted. For example, a person may learn the techniques of testing steam traps in a classroom setting, but if it is not applied, the skill is quickly lost. Following are some training aids involving hands-on experience that are useful on a day-to-day basis.

Reprints: Sharpen Trap Testing Skills to Save Maintenance Hours and Conserve Energy is a reprint from **POWER** Magazine. It was authored by Armstrong's technical staff, including engineers and research staff members. It stresses the importance of individual training and plenty of practical experience. The article also includes a copy of the steam trap testing flow chart.

Flow Chart: The flow chart poster can help guide a person through logical steps of diagnosing a trap's performance. It lists a number of conditions to look for and identifies steam system conditions that impact on troubleshooting steam traps, regardless of the type.

Bulletin No. 310: Steam Trap Testing Guide for Energy Conservation is a small, shirt-pocket guide loaded with tips for effectively testing all types of steam traps. This step-bystep testing guide gives helpful hints on how to test traps by the sound method.

Bulletin No. 301: Service Guide is a 36-page handbook and fits easily into a pocket for on-the-job reference relating to inverted bucket steam traps. It contains valuable information ranging from installing traps to inspecting/testing, troubleshooting and a wide range of other helpful tips.

armstrong international.com

Armstrong's new and improved Website offers a userfriendly navigational interface to encourage all visitors to find product and service information with a few less clicks of a mouse. Completely reorganized and expanded, the site makes it possible to review every Armstrong product, service and system solution by industry or application. Product literature and technical specifications are available as downloads, as are CAD drawings. Requests for quotes are also available for more than 20 product families. Stop by today to learn more about Armstrong's intelligent system solutions!

Interactive Plant and Facility Tours

Take Armstrong's interactive tour to get an overview of how utility systems function in realistic settings. Navigate through a typical food plant, a pharmaceutical facility, many institutional buildings, and a hydrocarbon and chemical processing refinery to learn how solutions and products are applied in each atmosphere.

Learn about Intelligent System Solutions at armstronginternational.com

- System Solutions. Armstrong System Solutions are more than the sum of their parts. At Armstrong, it is the system that solves—and saves.
- **Product Solutions.** Every system solution begins with a smart, practical product that solves a problem. Hardworking products are at the heart of every Armstrong solution in steam, air or hot water.
- Service Solutions. Finally, the talent, personnel and financing to affordably optimize your utility operation— Armstrong will work with you to assess your system and identify your needs.
- Industry Solutions. The power of world-class energy expertise zeroes in on industry-specific targets. A longtime player in key global businesses, Armstrong understands the specific challenges of individual industries.

Armstrong University

At Armstrong, "Knowledge Not Shared Is Energy Wasted[®]" has been a theme and a way of life for years. For us, it's how we go about our business, how we build relationships with customers and solve problems—both inside and outside the company.

For you, it's a promise. It's our pledge to use what we know to make your business more efficient, more profitable and more rewarding. In many ways, Armstrong University is the capstone for a tradition of knowledge-sharing. It is certainly the most ambitious and comprehensive effort we've ever undertaken. That's why we're using "Knowledge Not Shared Is Energy Wasted" as both a motto and a statement of purpose for Armstrong University.

Whether you prefer to learn online or by participating in a seminar at one of our worldwide, fully equipped global learning centers, you're encouraged to enroll today.

Earn CEUs once you've completed

Armstrong University!

- The Continuing Education Unit (CEU) is a nationally recognized standard for assessing the time spent in educational, professional development, or training activities.
- Armstrong in partnership with Kalamazoo Valley Community College's Michigan Technical Education Center (M-TEC) is proud to advise you that Armstrong University courses deliver training that carries CEUs from an accredited institution of higher education.

Check out what else you can do on the AU Campus:

- Enroll in "Undergraduate" and "Graduate" courses that lead you through theory and system operation, installation, and maintenance. Pay close attention; there is a quiz after each course!
- Access and learn via our vast library of video, animation and technical information.
- Explore Armstrong's unparalleled information library using our search engine.
- Use online calculators to determine steam loss, flash steam and annual savings by returning condensate.

Armstrong Videotapes/DVDs

What Is Steam?

15:07 Minutes

This is the basics-of-steam primer... the "Steam 101" short course on the principles of steam that leads to a thorough understanding of the concepts outlined in the many Armstrong training tapes and materials. Both live action video and clear, simple animation are used to illustrate steam properties and behavior. Everyday demonstrations and a straight-forward style help make this an informative and entertaining tape, whether used as an introduction or as a refresher.

Guidelines for Steam System Efficiency 15:17 Minutes

This educational program covers basic considerations in the design, piping and trapping of steam systems. Topics include correct sizing and installation of steam supply and condensate return lines; steam velocities in the system; proper steam trap installation; trap safety factors; the use of air vents, vacuum breakers and safety drains; and how non-condensables affect the performance and service life of heat exchanger equipment.

Guidelines for the Prevention of Water Hammer 16:15 Minutes

The purpose of this educational tool is to help customers understand the nature and severity of the water hammer problem.

Using live action video and computer animation, this program identifies the most likely causes of water hammer and provides solutions that can be implemented to prevent its occurrence. With a better understanding of the problem, more preventive measures and equipment can be designed into new or existing installations. The results will be safety for personnel, lower maintenance costs and reduced system downtime.

Let's Talk Steam Traps/Update 32:00 Minutes

Part one uses animation techniques to help viewers see and understand the operating principles of the three types of traps: mechanical, thermostatic and thermodynamic. In addition, the tape helps steam trap users understand the internal operation of inverted bucket steam traps, differential condensate controllers, float and thermostatic traps, thermostatic traps, and disc traps.

The second part of this 32-minute videotape discusses 10 steam system operating conditions that must be considered in evaluating steam trap performance. The five types of traps are then rated on how they respond to these 10 different operating conditions.

Guidelines for Steam Trap Troubleshooting and Testing 18:40 Minutes

Just as properly functioning steam traps contribute to the efficient operation of a steam system, those that are malfunctioning can result in lost steam, lost heat and, especially, lost dollars. Guidelines for Steam Trap Troubleshooting and Testing not only outlines the need for establishing a preventive maintenance program, but details what to look and listen for in your testing.

This videotape recommends a step-by-step approach plant energy technicians can take to steam trap testing and problem solving. It emphasizes use of the faculties of both sight and hearing in gathering information, then applying training and experience to properly evaluate the results.

The Anatomy of the I.B.

15:00 Minutes

The Anatomy of the I.B. uses production techniques to look inside the inverted bucket steam trap. This videotape uses both cell animation and an operating glass-bodied model of an inverted bucket steam trap to show its components and observe its performance.

Guidelines for Unit Heater Efficiency 9:44 Minutes

Every winter industry relies on unit heaters to provide a comfortable environment for workers. The heating season is no time for the nuisance and discomfort of unit heater repair or replacement.

This video program discusses how correct selection, installation, and maintenance of steam supplied unit heaters ensures longer service life and reduces unnecessary repair and replacement costs.

Guidelines for Freeze Prevention 10:52 Minutes

Freezing in outdoor steam systems is a costly maintenance and production problem. Certain guidelines can be followed to minimize damage and process interruptions due to freezing. In addition to highlighting these piping and trapping guidelines, the tape covers an often overlooked problem that can prevent total drainage of the system.

Graphics and glass piping illustrate why condensate remains in or upstream of various types of traps after steam systems are shut down. The tape discusses what can be done to get rid of remaining condensate by the use of temperature and pressure actuated safety drains.

Armstrong Videotapes/DVDs

It's the Humidity

Part 1—24:58 Minutes Part 2—20:57 Minutes

Part one is a video documentary covering the essentials of humidity and outlining the primary reasons for humidity control. What is humidity? Relative humidity? What is dew point? Enthalpy? How does evaporation affect comfort? How does humidity conserve energy? All of these questions are answered in practical and entertaining demonstrations.

Part two is a look at the four basic methods of large scale humidification. Through animation, the tape discusses the operation of evaporative pan, wetted element, water spray and steam humidifiers, and rates their ability to meet efficiency, maintenance, controllability, sanitation and cost requirements.

Guidelines for Steam Trap Repair

20:41 Minutes

This tape begins by outlining a plan for identifying faulty traps and returning them to effective operation. The first part of the tape provides guidelines for the inspection and repair of any trap.

The second part addresses specific trap types—inverted bucket, float and thermostatic, disc, and thermostatic. Each trap requires individual considerations, and attention is given to the differences as well as the common concerns.

The Armstrong Differential Condensate Controller 18:36 Minutes

To the paper, textile and boxboard industries, proper condensate drainage from steam heated cylinder dryers is necessary to optimize production and conserve heat energy.

This videotape discusses the standard steam trap drainage method and the blow-through method of condensate removal.

The Armstrong differential condensate controller, the tape points out, combines features of both methods, and overcomes the drawbacks of both. The result is efficient removal of condensate and air, minimum steam loss, and higher and more uniform temperatures across the dryer surface.

Let's Talk PRVs

30:00 Minutes Pressure reducing valves, or PRVs, are important to the efficient use of fluids and gases in industry.

Let's Talk PRVs is an in-depth look at the reasons for, configurations of, and means of evaluating pressure reducing valves.

Through animation, the viewer looks inside several different types of PRVs to gain an understanding of their operating principles. This understanding will help the viewer select the right PRV for a particular application.

Guidelines for Steam/Air Coil System Design 13:12 Minutes

This educational video program explains the major causes of frozen steam coils, and the steps that can be taken to prevent the problems. The program uses the air handling system assembled in the Armstrong demonstration lab to illustrate problems and solutions. Glass piping and glassbodied traps allow viewers to see the flow of condensate and to witness adverse effects of improper system design, as well as the benefits of corrective measures.

Guidelines for Ultra Capacity Steam Trap Repair 23:00 Minutes

This tape begins by outlining a plan to return individual faulty traps to effective operation. The first part of the tape provides guidelines to be followed in the inspection and repair of any trap.

In the second part, Armstrong's ultra capacity F&Ts (Models J, K, L and M) are disassembled, repaired and returned to service. Both single orifice and dual orifice variations are covered.

Technical References

ARMSTRONG PRODUCT CATALOGUE

SECTION

16

SEG	TION
	16

Dry Satur	atad Steam Tabl	AC				
Pressure		Temperature		Specific enthalpy		Specific
			Water (hf)	Evaporation	Steam (hg)	volume
bar	kPa	°C	k l/ka	(hfg)	k l/ka	steam
0.30	30	69.1	289.33	2 335.28	2 624.61	5.230
0.50	50	81.3	340.58	2 304.77	2 645.35	3.241
0.75	75	91.8	384.47	2 278.10	2 662.57	2.218
1.00	100	99.6	417.55	2 257.63	2 675.18	1.694
1.013 25	101.325	100.0	419.10	2 256.66	2 675.76	1.674
0	0	100.0	419.10	2 256.66	2 675.76	1.674
0.1	20	102.7	440.76	2 243.05	2 683.81	1.414
0.3	30	107.4	450.51	2 236.86	2 687.37	1.313
0.4	40	109.6	459.68	2 231.02	2 690.69	1.226
0.6	60	113.6	476.53	2 220.19	2 696.72	1.083
0.7	70	115.4	484.34	2 215.13	2 699.47	1.024
0.8	80	117.2	491.78	2 210.29	2 702.07	0.9/1
1.0	100	120.4	505.73	2 203.04	2 704.34	0.880
1.1	110	122.0	512.28	2 196.83	2 709.12	0.841
1.2	120	123.5	518.60	2 192.65	2 711.25	0.806
1.4	140	124.9	530.57	2 184.67	2 715.29	0.743
1.5	150	127.6	536.27	2 180.86	2 717.13	0.715
1.6	160	128.9	541.78	2 177.15	2 718.93	0.690
1.8	170	130.2	552.32	2 173.34	2 722.34	0.644
1.9	190	132.6	557.37	2 166.58	2 723.96	0.623
2.0	200	133.7	562.29	2 163.23	2 725.52	0.603
2.4	240	138.0	580.74	2 150.74	2 731.27	0.508
2.6	260	140.0	589.33	2 144.55	2 733.89	0.509
2.8	280	141.9	597.56	2 138.80	2 736.36	0.484
3.2	320	145.5	613.04	2 133.24	2 740.92	0.401
3.4	340	147.2	620.36	2 122.67	2 743.02	0.422
3.6	360	148.9	627.42	2 117.61	2 745.03	0.404
4.0	400	150.4	640.85	2 107.92	2 748.77	0.374
4.5	450	155.6	656.52	2 096.49	2 753.00	0.342
5.0	500	158.9	671.12	2 085.70	2 756.82	0.315
6.0	600	165.1	697.72	2 065.72	2 763.44	0.292
6.5	650	167.9	709.94	2 056.39	2 766.33	0.255
7.0	700	170.6	721.56	2 047.43	2 768.99	0.240
8.0	800	175.5	743.24	2 030.49	2 773.72	0.215
8.5	850	177.8	753.40	2 022.43	2 775.83	0.204
9.0	900	1/8.0	763.17	2 014.63	2 770 62	0.194
10.0	1 000	184.2	781.66	1 999.67	2 781.33	0.177
10.5	1 050	186.1	790.43	1 992.49	2 782.92	0.170
11.0	1 100	188.0	<u> </u>	1 985.48	2 785.80	0.163
12.0	1 200	191.7	815.17	1 971.94	2 787.11	0.151
12.5	1 250	193.4	822.95	1 965.38	2 788.33	0.146
13.0	1 300	<u> </u>	830.52	1 958.96	2 789.48	0.141
14.0	1 400	198.4	845.08	1 946.49	2 791.57	0.132
14.5	1 450	199.9	852.09	1 940.42	2 792.51	0.128
<u> </u>	1 500	201.5	865.65	1 934.46	2 793.40 2 794 94	0.124
16.0	1 600	204.4	872.20	1 922.82	2 795.02	0.117
17.0	1 700	207.2	884.91	1 911.53	2 796.44	0.110
19.0	1 900	209.9	908.87	1 889 89	2 797.68	0.105
20.0	2 000	214.9	920.22	1 879.49	2 799.71	0.095
21.0	2 100	217.3	931.19	1 869.32	2 800.51	0.091
23.0	2 200	219.0	941.82	1 809.38	2 801.20	0.087
24.0	2 400	224.0	962.13	1 840.11	2 802.24	0.078
25.0	2 500	226.1	971.87	1 830.74	2 802.62	0.077
27.0	2 700	230.1	990.60	1 812.51	2 803.11	0.074
28.0	2 800	232.0	999.62	1 803.61	2 803.24	0.069
29.0	2 900	233.9	1 008.44	1 794.86	2 803.30	0.067
31.0	3 100	230.7	1 025.49	1 777.72	2 803.28	0.062
32.0	3 200	239.3	1 033.74	1 769.32	2 803.07	0.061
33.0	3 300	241.0	1 041.83	1 761.04	2 802.87	0.059
35.0	3 500	242.1	1 049.77	1 744.77	2 802.32	0.057
36.0	3 600	245.8	1 065.20	1 736.77	2 801.97	0.054

bles	16

Dry Satu	rated Steam Tak					
Pressure		Temperature		Specific enthalpy		Specific
11000010		lomporataro	Water (hf)	Evaporation	Steam (hq)	volume
				(hfa)		steam
bar	kPa	°C	kJ/ka	kJ/kg	kJ/ka	m3/kg
37.0	3 700	247.4	1 072.71	1 728.86	2 801.57	0.052
38.0	3 800	248.9	1 080.09	1 721.04	2 801.13	0.051
39.0	3 900	250.4	1 087.35	1 713.29	2 800.64	0.050
40.0	4 000	251.9	1 094.50	1 705.62	2 800.12	0.049
41.0	4 100	253.3	1 101.53	1 698.02	2 799.55	0.047
42.0	4 200	254.7	1 108.46	1 690.49	2 /98.95	0.046
43.0	4 300	256.1	1 100.01	1 683.02	2 798.30	0.045
44.0	4 400	207.0	1 122.01	1 668 28	2 797.03	0.044
45.0	4 500	260.2	1 125.04	1 660 99	2 796 18	0.043
47.0	4 700	261.5	1 141.64	1 653.76	2 795.40	0.041
48.0	4 800	262.7	1 148.02	1 646.58	2 794.60	0.040
49.0	4 900	264.0	1 154.31	1 639.45	2 793.76	0.039
50.0	5 000	265.2	1 160.53	1 632.36	2 792.90	0.039
51.0	5 100	266.5	1 166.68	1 625.33	2 792.00	0.038
52.0	5 200	267.7	1 172.75	1 618.33	2 791.08	0.037
53.0	5 300	268.8	1 178.75	1 611.38	2 790.14	0.036
54.0	5 400	2/0.0	1 184.69	1 604.48	2 /89.16	0.036
55.0	5 500	2/1.2	1 190.56	1 597.60	2 /88.1/	0.035
56.0	5 600	272.3	1 196.37	1 590.77	2 /8/.14	0.034
59.0	5 700	273.4	1 202.12	1 577 01	2 780.10	0.034
59.0	5 900	274.0	1 213 /5	1 570 / 8	2 783 9/	0.033
60.0	6,000	276.7	1 219 04	1 563 78	2 782 82	0.002
61.0	6 100	277.8	1 224 56	1 557 12	2 781 68	0.002
62.0	6 200	278.8	1 230.04	1 550.48	2 780.52	0.031
63.0	6 300	279.9	1 235.47	1 543.87	2 779.34	0.030
64.0	6 400	280.9	1 240.85	1 537.29	2 778.14	0.030
65.0	6 500	281.9	1 246.19	1 530.73	2 776.92	0.029
66.0	6 600	282.9	1 251.48	1 524.20	2 775.67	0.029
67.0	6 700	283.9	1 256.72	1 517.69	2 774.41	0.028
68.0	6 800	284.9	1 261.93	1 511.20	2 773.13	0.028
69.0	6 900	285.9	1 267.09	1 504.74	2 //1.82	0.027
70.0	7 000	286.8	12/2.21	1 498.29	2 770.50	0.027
	7 100	287.8	1 277.29	1 491.87	2 769.16	0.027
72.0	7 200	288.7	1 282.34	1 480.47	2 707.80	0.026
74.0	7 300	209.7	1 207.04	1 479.00	2 765 03	0.020
75.0	7 500	290.0	1 297 25	1 466 36	2 763 61	0.025
76.0	7 600	292.4	1 302.15	1 460.03	2 762.18	0.025
77.0	7 700	293.3	1 307.02	1 453.71	2 760.73	0.024
78.0	7 800	294.2	1 311.86	1 447.40	2 759.26	0.024
79.0	7 900	295.1	1 316.67	1 441.11	2 757.78	0.024
80.0	8 000	295.9	1 321.45	1 434.83	2 756.27	0.023
81.0	8 100	296.8	1 326.19	1 428.56	2 754.75	0.023
82.0	8 200	297.6	1 330.91	1 422.31	2 753.22	0.023
83.0	8 300	298.5	1 335.60	1 416.06	2 /51.66	0.022
84.0	8 400	299.3	1 340.26	1 409.83	2 / 50.09	0.022
0.08	<u> </u>	300.1	1 244.90	1 207 20	2 748.50	0.022
87.0	<u> </u>	201.U 201.R	1,35/ 00	1,301,18	2 7/5 97	0.021
88.0	8 800	302.6	1 358 65	1 384 98	2 743 64	0.021
89.0	8,900	303.4	1 363 19	1 378 79	2 741 98	0.021
90.0	9 000	304.2	1 367.70	1 372.61	2 740.31	0.020
92.0	9 200	305.8	1 376.66	1 360.25	2 736.91	0.020
94.0	9 400	307.3	1 385.53	1 347.92	2 733.45	0.019
96.0	9 600	308.8	1 394.32	1 335.60	2 729.93	0.019
98.0	9 800	310.3	1 403.04	1 323.30	2 726.34	0.018
100.0	10 000	311.8	1 411.68	1 311.00	2 722.68	0.018
102.0	10 200	313.2	1 420.25	1 298.70	2 718.95	0.017
104.0	10 400	314.6	1 428.76	1 286.40	2 / 15.16	0.017
100.0	10 000	310.1	1 437.20	1 2/4.10	2711.30	0.010
110.0	11 000	317.4 218.8	1 440.09	1 201.79	2 702 22	0.010
112.0	11 200	200.0	1 /62 20	1 007 10	2 600 31	0.010
114.0	11 400	320.1	1 470 43	1 201.12	2 695 18	0.015
116.0	11 600	322.8	1 478.61	1 212.36	2 690.97	0.015
118.0	11 800	324.1	1 486.76	1 199.94	2 686.70	0.014
120.0	12 000	325.4	1 494.86	1 187.48	2 682.35	0.014

							Capa	city (kg	/hour)						
D	Steam							Nomir	al Pipe	e Size (r	nm)				
bar)	Velocity (m/s)	15	20	25	32	40	50	65	80	100	125	150	200	250	300
	15	7	14	24	37	52	99	145	213	394	648	917	1606	2590	3680
0.4	25	10	25	40	62	92	162	265	384	675	972	1457	2806	4101	5936
	40	17	35	64	102	142	265	403	576	1037	1670	2303	4318	6909	9500
	15	7	16	25	40	59	109	166	250	431	680	1006	1708	2791	3852
0.7	25	12	25	45	72	100	182	287	430	716	1145	1575	2816	4629	6204
	40	18	37	68	106	167	298	428	630	1108	1715	2417	4532	7251	10323
	15	8	17	29	43	65	112	182	260	470	694	1020	1864	2814	4045
1	25	12	26	48	72	100	193	300	445	730	1160	1660	3099	4869	6751
	40	19	39	71	112	172	311	465	640	1150	1800	2500	4815	7333	10370
	15	12	25	45	70	100	182	280	410	715	1125	1580	2814	4545	6277
2	25	19	43	70	112	162	195	428	656	1215	1755	2520	4815	7425	10575
	40	30	64	115	178	275	475	745	1010	1895	2925	4175	7678	11997	16796
	15	16	37	60	93	127	245	385	535	925	1505	2040	3983	6217	8743
3	25	26	56	100	152	225	425	632	910	1580	2480	3440	6779	10269	14316
	40	41	87	157	250	357	595	1025	1460	2540	4050	5940	10479	16470	22950
	15	19	42	70	108	156	281	432	635	1166	1685	2460	4618	7121	10358
4	25	30	63	115	180	270	450	742	1080	1980	2925	4225	7866	12225	17304
	40	49	116	197	295	456	796	1247	1825	3120	4940	7050	12661	1963	27816
	15	22	49	87	128	187	352	526	770	1295	2105	2835	5548	8586	11947
5	25	36	81	135	211	308	548	885	1265	2110	3540	5150	8865	14268	20051
	40	59	131	225	338	495	855	1350	1890	3510	5400	7870	13761	23205	32244

SE	TION
1	6

Pressu re	Steam Velocity														
(bar)	(m/s)	15	20	25	32	40	50	65	80	100	125	150	200	250	300
	15	26	59	105	153	225	425	632	925	1555	2525	3400	6654	10297	14328
6	25	43	97	162	253	370	658	1065	1520	2530	4250	6175	10629	17108	24042
	40	71	157	270	405	595	1025	1620	2270	4210	6475	9445	16515	27849	38697
	15	29	63	110	165	260	445	705	952	1815	2765	3990	7390	12015	16096
7	25	49	114	190	288	450	785	1205	1750	3025	4815	6900	12288	19377	27080
	40	76	177	303	455	690	1210	1865	2520	4585	7560	10880	19141	30978	43470
	15	32	70	126	190	285	475	800	1125	1990	3025	4540	8042	12625	17728
8	25	54	122	205	320	465	810	1260	1870	3240	5220	7120	13140	21600	33210
	40	84	192	327	510	730	1370	2065	3120	5135	8395	12470	21247	33669	46858
	15	41	95	155	250	372	626	1012	1465	2495	3995	5860	9994	16172	22713
10	25	66	145	257	405	562	990	1530	2205	3825	6295	8995	15966	25860	35890
	40	104	216	408	615	910	1635	2545	3600	6230	9880	14390	26621	41011	57560
	15	50	121	205	310	465	810	1270	1870	3220	5215	7390	12921	20538	29016
14	25	85	195	331	520	740	1375	2080	3120	5200	8500	12560	21720	34139	47128
	40	126	305	555	825	1210	2195	3425	4735	8510	13050	18630	35548	54883	76534

Nominal Pipe Size (mm)

The values above are calculated for steel pipes <u>BS 1387:1985</u> (replaced with the European standard EN 10255:2004) medium thickness. Using other standards with different inside diameters, the values above should be compensated.

SE	CT	0	2
	7		2
	Ľ		

Warning The information on this chart was collected from reputable sources and is to be used ONLY as a guide by experienced personnel. We make no representations on the suitability of any materials for your applications.			=)	B C= D=	A = 1 Mod Se ata	No e Inor Iera Vere - Re	effec effe te e effer	t ffect fect to A	t 	F			Des ch cc This	pite narts onc SE s is	bein s, va entr RIC for i	ng l arlat atlo DU initi	ndia ion n of S I al re	DA cate s in f chi NJ efero	d as ten emi UR enci	GE iper cals Cals Cals Cals Cals Cals Cals Cals C	ER mer ratur s ma MA MA	ally re, p iy ci Y ind	suit auso RE mus	sur e fai SU	e in e an ilune ILT e cre	the id e.	
Chemical	303 Stainless Steel	304 Stainless Steel	316 Stainless Steel	440 Stainless Steel	Aluminium	Titanium	Hastelloy C	Cast Bronze	Brass	Cast Iron	Carbon Steel	PVC	Teflon PTFE	Noryl	Nylon	Polyethylene PE	Polypropylene PP	Ryton	Carbon	Ceramic Aleos	Viton (FPM)	Buna N - Nitrile - NBR	Silicon	Neoprene	EPDM	Natural Rubber	Epoxy
Max Temperature in Deg C for Elastomers / Plastics												60	200	60	60		26 - 60				180	80		10	120	80	
Acetaldehyde	A	A	A	1.	B	A	A	D	-	-	C	D	A	Ξ	A	c	B	A	A	A	A	B	B	D	B	C	A
Acetamide	-	B	A	1.	-	-	-	-	-	-	C	-	-	-	-	1	-	-	-	A	A	A	-	A	A	D	A
Acetate Solv.	A	в	A	В	B	-	-	A	C	B	A	B	A	-	A	в	D	-	A	A	D	D	-	D	-		A
Acetic Acid, Glacial	-	в	A	A	B	A	A	C	C	D	A	C	A	C	D	B	в	A	A	A	D	D	B	C	B	C	B
Acetic Acid 20%	-	- 1	A	-	-	A	A	-	C	-	-	в	A	A	D	-	A	A	-	A	D	C	-	C	-	-	B
Acetic Acid 80%	-	-	A	1-	-	A	A	-	C	-	-	D	A	B	D	-	B	-	-	A	D	C	-	D	-	-	В
Acetic Acid	-	B	A	B	B	A	A	C	C	D	C	A	A	A	D	B	A	A	A	A	C	C	-	C	в	C	λ
Acetic Anhydride	в	A	A	B	В	A	A	C	D	B	D	D	A	D	D	A	A	A	A	A	D	A	C	В	в	C	A
Acetone	A	A	A	B	A	A	A	A	A	A	A	D	A	D	A	C	B	A	A	A	D	D	B	C	A	D	B
Acetyl Chloride	-	C	A	-	-	-	-	D	12	-	-	1	A	-	-	-	-	A	-	-	-	-	-	-	-	A	A
Acetylene	A	A	A	A	A	-	-	B	-	A	A	В	1-	-	A	-	D	A	A	A	A	A	C	B	A	¢	A
Acrylonitrile	A	A	C	14	B		B	A	1	C	•	-	-	-	1	-	B	A	A	A	c	D	-	D	D	-	A
Aluminium Chloride 20%	-	D	C	D	B	A	A	D	-	D	A	A	-	A	A	B	A	A	A	A	A	A	-	A	A	A	A
Aluminium Chloride	C	D	C	1.5	D	C	A	C	-	D	B	A	A	A	D	-	A	A	A	A	A	A	C	A	-	-	A
Aluminium Hudrovide	-	10	C	D	-	D	В	-	-	-	A	٩.	A	A	10	B	A		A		A	-	C	<u>^</u>	-	10	A
Alum Potasolum Sulfato (ALLIM) 10%	-	-	A	A	A	-	12	A	-	-	A	A	A	A	A	-	A	-	-	1÷	A	A	1÷	A	10	A	A
Alum Potassium Sulfate (ALUM) 100%	1	-	1.	-	n	-		10	-	-	A	-	A	÷	A	n	1	13	~	A	- A	1	1-	2	12	1 2	
Aluminium Sulfate	10	10	C	D N	1 D	A	-	1 C	10	1	2	ŝ	n	A	A	8	X	1	h	1	1 A	n n	1÷	n h	2	2	1
Amines	1 A	1 A	A	12	A	1	2	E.	12	n	8	ĉ	1 n	n n	A	2	2	12	2	A	D	r n	C	1	12	6	in a
Ammonia 10%	-	1.	A	1	-	A	A	-	-	1	1	Ä	A	A	A	-	A	A	1	A	A	D	-	Ã	12	1-	B
Ammonia Anhydrous	A	B	A	A	B	B	A	D	-	D	B	A	A	A	A	B	A	B	C	A	D	B	B	A	A	D	A
Ammonia, Liguids	-	A	A	A	D	1-	в	D	12	A	A	A	A	A	-	D	A	1-	A	A	D	B	B	A	A	D	A
Ammonia, Nitrate	-	A	A	A	C	-	-	D	-	-	A	B	1-	A	-	-	λ	-	A	A	-	A	-	C	-	-	A
Ammonium Bifluoride	-	C	A	1-	D	-	B	-	1	-	-	A	-	A	-	-	A	-	1	A	A	A	-	A	1-	1.0	A
Ammonium Carbonate	в	A	A	A	Ċ	A	B	B	-	C	в	A	A	A	A	- 1	A	-	A	A	B	D	C	A	A	-	A
Ammonium Casenite	-	-	A	-	1.	-	-	1.	-	(.=.)	÷	-	1.4	A	1.00	-	-	1.	-		-	-	-	A	1 =	1.4	A
Ammonium Chloride	C	A	C	A	C	A	A	D	C	D	D	A	A	A	A	в	A	A	A	A	A	A	C	A	A	A	A
Ammonium Hydroxide	A	Ą	A	A	C	A	A	D	D	A	C	A	A	A	A	B	A	A	A	A	B	B	в	A	A	С	A
Ammonium Nitrate	A	A	A	A	B	A	A	D	D	A	D	A	A	A	D	в	A	A	A	A	A	A	C	A	A	A	A
Ammonium Oxalate	-	A	A	A	1.5	-	A	12	-	-	A	-	15	-	1-	-	-	-	A	-	1.5	A	-	A	1-	1-	A
Ammonium Persultate	-	A	A	A	C	A	A	A	17	D	A	A	A	A	D	1	A	ļĽ.	A	A	c	A	12	A	A	A	A
Ammonium Phosphate, Dibasic	B	A	A	A	B	A	A	C	-	=	D	A	A	A	A	B	A	1-	A	A	A	A	B	A	A	A	A
Ammonium Phosphate, Monobasic		A	A	A	B	A	A	D	17	1	A	A	A	A	A	B	A	-	A	A	A	A	B	A	A	A	A
Ammonium Phosphate, Tribasic	8	A	A	A	8	- A	A	C	-	G	D	LA.	A	A	A	B	A	-	A	A	A	A	H	A	A	A	A
Ammonium Sullate	C	A	18	A	8	A		18	C	15	10	10	A	-	10	B	10	A	1	A	D	- ?	B	A.	A	A	-
Amul-Acetate	B	1.0	12	Ē	1	-	1	10	18	10	10	l n	1 2	'n	B	n	n	1 A	ĥ	1	In	D	n	n	1	n	-
Amyl Alcohol	1-	A	12	-	B	h	A	A	12	1-	A	A	A	c	2	1 m	A	12	A	A	B	B	D	A	A	C	1 m
Amyl Chloride	12	C	R	1.	n	12	A	1 a	12	1.	a	1 n	A	n	In	1 m	1 n	1-	h	TA	A	D	1-	D	In	n	A
Aniline	B	A	A	A	C	c	B	C	÷	-	C	D	A	D	C	ĉ	B	A	A	A	D	D	C	D	B	D	A
Anti-Freeze	12	A	A	-	A	-	A	B	8	B	C	A	A	A	A	B	A	A	A	A	A	A	C	A	A	A	A
Antimony Plating 54°C	1-	12	A	1-	1-	A	A	12	17	12	1-	A	A	A	D	12	A	12	1-	A	A	A	D	A	-	14	B
Antimony Trichloride	-	D	D	-	D	-	A	1-	1.	TF	-	A	A	-	D	A	1-	1-	1-	A	-	1-	-	C	-	A	A
Aqua Regla (80%, HCI, 20%, HNO)	1.7	D	D	1-	D	A	D	D	-	1-	-	D	A	D	D	D	C	-	-	D	C	D	C	D	D	D	D
Arochlor 1248	-	1.5	-	1 -	1-	-	15	-	-	12	A	-	1 -	D	1-	-	-	-	A	1.2	A	D	-	D	B	D	A
Aromatic Hydrocarbons	-	1.5	A	-	A	-	-	A	-	A	A	D	-	D	1-	C	1.5	-	A	13	A	D	-	D	D	D	A
Arsenic Acid	B	A	A	-	D	1=	15	D	B	D	D	A	A	A	A	B	A	-	A	A	A	A	-	A		C	A
Arsenic Plating 43°C	1-	12	A	1-	1-	A	A	10	-	1.7	1-	A	A	A	A	15	A	1-	1-	C	A	A	D	A	12	1	8
Asphalt Redum Cathonista	-	8	A	17	C	1.00	17	A	-	C	12	A	1	15	A	12	A	A	1-	A	A	B	C	B	D	D	A
Banum Carbonate	H	A	A	A	B	A	A	B	-	B	B	A	A	A	A	H	A	15	A	A	A	A	1.	A	17	A	A
Barlum Cranida	C	A	A	A	D	A	A	B	1-	N	C	A	A	A	H	B	A	A	A	A	A	A	B	A	A	A	A
Barlum Hydrovida	-	15	A	+-	-	1-	12	C	1-	12	A	1-	1-	-	÷	B	+-	45	-A	1.	A	10	10	A	A	문	A
Barium Nitrate	HB	10	A	A	D	H	H	B	1-	1C	10	A	A	A	A	B	A	A	+	A	A	A	10	A	A	A	A
Barium Sulfate	1.	14	-	4-	12	A	1.	-0		A	A	1.		-	1	-	1 2	-	-	1	-	+?	1	1 1	1	15	H
Barium Sulfide	10	1.8	A	A	- 12	A	A	6	1-	10	10	1.	A	10	A	B	A	A	A	12	-	1.	10		A		13
Beer	-		-	15		1	-	L.	10	0	m	13	A	-	n	B	10	1	1	12	12		10	-	17	1 2	-
	1.	- 3	1.		A	-	-	-	E	1 2	10	1.	h	17	2	1	1 2	15	-	7			1	1	1	1.2	10

	men
6	
	(\bullet)

Warning The Information on this chart was collected from reputable sources and is to be used ONLY as a guide by experienced personnel. We make no representations on the suitability of any materials for your applications.		đ	- N	B = I D = lod	= Mi Mod Se ata	No e nor lerat vere - Re	ffec offc eff eff fer	t ffect ect to A	.S.E	L.			Desj ch cr This	pite narts onc SE s is	bei s, va entr RIC for l	ng in iriati atio DUS initia	ndia ioni n of S 1 al re ked	DA sate s in f che f che NJI efere	d as tem emi UR enco	GE per cals Y e on evan	R nen atur ma MA MA	ally e, p y ci Y nd	suit ress use RE: mus	able sure fai SU	e in e an ilure ILT e cro	the d	
Chemical	303 Stainless Steel	304 Stainless Steel	316 Stainless Steel	440 Stainless Steel	Aluminium	Titanium	Hastelloy C	Cast Bronze	Brass	Cast Iron	Carbon Steel	PVC	Tellon PTFE	Noryl	Nylon	Polyethylene PE	Polypropylane PP	Ryton	Carbon	Ceramic Ab 0,	Viton (FPM)	Buna N - Nitrile - NBR	Silicon	Neoprene	EPOM	Natural Rubber	Epoxy
Max Temperature in Deg C for Elastomers / Plastics	1											60	200	60	60		25 - 60				180	80		20	120	60	60
Benzaldehyde	A	A	A	0	в	A	A	A	-	в	A	D	A	D	c	D	D	A	A	A	D	D	в	D	A	D	A
Benzene	в	A	A	A	B	A	B	в	A	B	C	D	A	D	A	D	D	A	A	A	A	D	-	D	D	D	A
Benzoic Acid	8	A	A	A	в	A	A	B	-	D	-	A	A	A	D	В	D	-	A	B	A	D	-	D	D	D	A
Benzol Benzul Alechol	-	A	A	-	B	A	A	B	A	-	-	D	A	D	A	-	A	-	A	A	D	D	-	D	-	-	A
Borax (Sodium Borate)	1.	A	A	A	C	-	A	A	B	A	c	A	2	A	A	B	A	A	A	A	A	B	C	A	A	C	A
Boric Acid	B	A	A	A	B	A	A	B	C	D	-	A	A	A	A	B	A	-	A	A	A	A	-	A	A	A	A
BRASS PLATING	-	-	_									-	1		120					-	1	10			1		
Regular Brass Bath 38°C	-	-	A	-	~	A	A	-	-	0	-	A	A	A	A	-	А	-	-	C	A	A	D	А	-	-	в
High Speed Brass Bath 42°C	-	-	A	-	\sim	A	A	-	-	٠	+	А	A	A	A	+	A	-	-	D	A	A	D	A	-	-	в
Brewery Slop	-	-	A	-	-	-	-	A	*	A	-	5	5	-	-	5	-	2	A	A	A	A	5	A	1	5	A
BRONZE PLATING	Þ	D	D	D	D	A	A	C	\sim	D	Ð	в	A	D	D	D	D	D	D	A	A	D	D	D	Þ	Ð	C
Conner Codmium Bronze Both B T	-	-		-	-			-	-	-	-				-	-		1	-						1	1	-
Copper-Cadmium Bronze Bath 82°C	10	-	A	E	E	A	A	2	-	-	-	A	A	A	A	-	A	-	-	0	A	A	0	A	-	-	B
Copper-Zinc Bronze Bath 38°C	12	12	A	-	-	A	A	-	-	-	-2-	A	A	A	A	-	A		-	C	A	A	-	A	-	1	B
Butadiene	A	A	A	-	A	-	-	c	A	c	C	A	A	-	A	-	-	в	A	A	A	A	-	B	A	-	A
Butanes	A	A	A	5	A	-	-	A	A	C	C	A	A	D	A	C	D	A	A	A	A	A	D	в	D	D	A
Butanol	-	A	A	-	A	-	A	A	2	\sim	-	-	A	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Butter	B	8	A	-	A	1	-	D	-	D	-	-	-	В	-	-	-	-	A	A	A	A	-	В	A	D	A
Buttermilk	C	A	A	A	A	-	-	D	17	D	-	1	A	A	A	-	-	-	A	A	A	A	-	A	1-	D	A
Butylene Butyl Acctate	-	17	A	15	A	10	1.	A	A	A	A	B	A	-	-	-	-	A	A	A	A	B	2	-	D	D	A
Butyl Alcohol	1	A	A	1	A	-	A	A	C	C	A	D N	A	D	-	C D	B	A	A	A	D A	B	D	2	A	D	A
Butyric Acid	B	B	A	A	B	A	A	C	-	D	-	B	A	À	D	-	A	-	A	D	D	D	-	D	Ê	-	A
CADMIUM PLATING	-			-						-					-			1		1E	6			ė			
Cyanide Bath 32°C	1	-	A	-	-	A	A	-	-	-	-	A	A	A	A	-	A	-	-	c	A	A	-	A	- 1	-	B
Fluoborate Bath 38°C	-	-	λ	-	(#	D	A	-	÷	-	-	A	A	A	D		A	-	-	D	Ά	B	-	C	-	-	8
Calcium Bisulfate	C	D	A	-	D	-	-	D	D	D	-	A	A	1	A	5		•	2	3	A	A	C	C	-	A	A
Calcium Bisulfide	-	-	B	-	C	A	A	C	-	-	-	A	A	A	A	B	A	-	A	A	A	A	-	A	D	-	A
Calcium Bisume	-	D	A	-	0	A	A	C	~	-	-	A	A	A	A	-	A	-	-	A	A	A	-	A	-	A	-
Calcium Chlorate	-	C	A	A		A	A	C	-	D	3	A	A	A	A	B	A	13	A	A	A	A	e	A	0	A	A
Calcium Chloride	C	A	1 D	C	C	A	A	B	-	C	-	A	Â	A	à	B	A	A	2	A	1	A	B	D	A	A	A
Calcium Hydroxide	B	A	A	-	c	A	A	B	-	-	2	A	A	A	A	B	A	-	A	A	A	A	C	A	A	A	A
Calcium Hypochlorite	D	A	C	C	C	A	B	D	-	D	-	D	A	A	D	B	A	-	A	A	A	B	C	D	A	C	A
Calcium Sulfate	B	A	A	A	в	A	в	в	-	-	-	A	A	A	A	B	A	A	A	A	A	A	-	D	-	C	A
Calgon Cana hulan	-	A	A	-	12	-	-	C	-	D	-	-	-	A	-	-	A	-	A	A	A	A	-	A	-	-	A
Carbolic Acid (Phenol)	-	A	A	-	B	-	-	B	C	A	-	A	-	12	A	-	D	-	A	A	-	A	-	A	-	A	A
Carbon Bisulfide	B	A	A	A	B	G	A	E	10	D	D	A	A	C	D	n n	B	A	A	D N	A	D D	1	Q E	D	D	B
Carbon Dioxide (Wet)	-	A	A	12	C	1	A	E	n	C	12	-	A	15	-	1	-	1-	A	A	-	-	÷	-	- 10		A
Carbon Disulfide	1ª	B	A	-	c	-	1	C	C	B	C	D	A	D	A	D	D	A	A	B	A	D	-	D	D	D	A
Carbon Monoxide	-	A	A	-	A	-	-	-	1	-	-	A	-	B	A	B	A	-	A	A	A	A	B	B	A	C	A
Carbon Tetrachloride	В	C	B	A	C	A	A	C	A	C	D	C	A	D	A	D	D	C	A	A	A	C	C	D	+	D	C
Carbonated Water	B	A	A	A	A	-	-	в	-	D	-	A	-	A	A	-	A	1-	A	A	A	A	-	A	A	-	A
Cafeun	B	A	B	A	A	-	A	B	-	D	-	A	A	A	A	B	A	1-	A	A	A	B	B	A	A	A	A
Chloracetic Acid	1 m	A	A	A	C	2	-	D	15	E	1-	4	1.	A	A	-	A	1-	A	A	A	A	15	C	-	-	A
Chloric Acid	-	D	D	-	-	-	-	-	-	-	-	D	A	-	-	-	-	-	-	1-	12	D	-	D	-	-	D
Chlorinated Glue	1-	A	A	-	D	-	1-	C	-	D	-	1-	-	C	c	-	1	1-	-	A	A	C	-	D	B	D	A
Chlorine,	1						1	1				1	-	1	1	1	11	11	1	1	1	1	1	1	17	19	1Ë
Anhydrous Liquid	-	D	D	D	D	D	A	D	-	C	-	D	A	A	D	D	D	C	A	D	A	D		D	B	D	B
Chlorine (Dry)	B	A	A	-	D	D	A	A	B	A	-	-	A	-	-	-	-	C	A	A	D	1 -	1.0	D	-	D	D
Chlorine Water	D	-	D	-	D	A	B	D	D	D	-	A	A	C	D	15	D	C	C	A	A	D	C	D	-	-	1:
Chloropullopia Acid	A	A	A	-	B	-	A	B	-	B	C	D	A	D	A	D	D	A	A	A	A	D		D	D	D	A
Chlorox (Bleach)	D	D	-	0	10	A	B	D	-	-	1B	C	A	D	D	D	D	D	14	1C	D	D	D	D	D	D	C
Chocolate Syrup	12	A	A	-	1C	E	A	A	1-	F	C	^	A	1	D	17	D	C	A	A	A	10	15	B	B	-	A
Phone in Ania Par	1	12	1.	1	1.5	17	1	1-	1-	10	12	1.5	1.7.	1 *		1.5	A	1.	17	A	1.4	1.0	12		1	12	A

Warning The information on this chart was collected from reputable sources and is to be used ONLY as a guide by experienced personnel. We make no representations on the suitability of any materials for your applications.			= 1	B D= D=	= M Mod Se ata	No e inor lera veri - Re	fied effe te e effer	t ect ffec fect to A	t 	Ε.			Des ct ct This	pite narti onc SE s is	bei s, va entr RIC for l	ng i ariat atio DU initi hec	ndicion in of S I al re-	DA cate s in f cho NJ efero	d as terri emi UR	GE a ge aper cals (Y I e on	IR ner atu ma MA	ally re, p iy ci iy ci iy ci and utho	suit auso RE mus	sur sur sur SU	e in e an ilure ILT e cre	the id t.	
Chemical	303 Stainless Steel	304 Stainless Steel	316 Stainless Steel	440 Stainless Steel	Aluminium	Titanium	Hastelloy C	Cast Bronze	Brass	Cast Iron	Carbon Steel	PVC	Teflon PTFE	Noryl	Nylon	Polyethylene PE	Polypropylene PP	Ryton	Carbon	Ceramic Ale 01	Viton (FPM)	Buna N - Nitrile - NBR	Silicon	Neoprene	EPOM	Natural Rubber	Epoxy
Max Temperature in Deg C for Elastomers / Plastics		1										60	200	99	60		2 - 60		1		180	80		10	120	8	
Chromic Acid 10% Chromic Acid 30% Chromic Acid 50%	0	BBB	- - B		C	AAA	AAA	- - D	D D D	- - D		A A B	AAA	A D D	D D D		AAB	- - B	- - D	A A A	A A A	DDD	1011	D D D	- - A	- - D	CDC
CHROMIUM PLATING Chromic-Sulfuric Bath 54°C	-	•	C	1-	-	A	A	1 -	-	-	•	A	A	D	D		A	-	-	A	с	D	-	D	-	-	D
Fluosilicate Bath 35°C Fluoride Bath 54°C Black Chrome Bath 46°C	1 1 1	Ē	DC	-		CA	AAA	-	-		-	AAA	AAA	DDD	DDD	1 1 1	AAA			BA	CCC	D D D	-	DDD	5	- -	DDD
Barrel Chrome Bath 35°C Cider Citric Acid	1 1	A	DA	-	B	C	A ()	A		- D C	-	AA	A -	DA	D	B	A ()		-	AA	CA	DA		DA	1 1	1 1	DA
Citric Oils Coffee Corport Chicaide	- A	AAA	AAA	- A	CA	-		B	-		-		- A	AAA	- A		AA		AA	AAA	AAA	AA	c -	DA	-	- A	AAA
Copper Cyanide Copper Cyanide Copper Floborate		D A D	AD	В А -	DDD	A A -	A A B	CD	-	D D D	1	AAA	AAA	A A -	D A -	BA	A A -	A A -	AA	A A -	A B A	A B B	Ξ	A A A	A A -	AAA	A C A
Copper Nitrate COPPER PLATING (Cyanide) Copper Strike Bath 4990	B	A	A	B	D	A	A	D	-	-	1 -	A A	A	A	D	B	A	-	A .	A	A	A	-	A	-	-	A
Rochelle Salt Bath 66°C High Speed Bath 82°C COPPER PLATING (Acid)	-	-	AA	-	-	AA	A	-	-	0.0	9	DD	AA	AA	AA	-	AA	-	-	D	AA	A	-	B	-	-	C
Copper Sulfate Bath R.T. Copper Fluoborate Bath 49°C	-	12	DDD	1	-	AD	A	-	-	1.1	-	A	A	AA	D	-	A	14	-	D	A	AB	-	AC	-	-	D
Copper Pyrophosphate 60°C Copper (Electroless) 60°C Copper Sulfate 5%	1	-	A - A	- - A	- - D	A - A	A - A	- D D	- - D	-	111	AAA	AAA	AAA	AAD	-	AAA	- - A	- - A	BDA	AAA	ADA	-	ADA	101	-	BA
Cream Cresols	-	A	AA	Ē	AB	-	-	CD	c	D -	-	- D	-	A -	A -	- D	AC	Ä	AA	AA	AA	AD	- D	D	- D	- D	A
Cresylic Acid Cyclohexane Cyanic Acid	B -	AAA	A - -	-	A A	A A -	= -	C A	-	-	A	- -	A - -	D	-	- -	D	A -	A A	A A -	A	AC	D	DDD	D +	D D	AAA
Detergents Diacetone Alcohol Dicklorethane	• •	A	AA	-	AA	- A	- A	A	- c	-	A	AD	-	AA	AA	B -	AD	A -	AA	AA	AD	AD	-	BDD	A	C D D	AA
Diesel Fuel Diesel Fuel Diethylamine	AA	A	A -	-	AA	-	-	AA	-	A -	A -	- D	- A	DB	-	-	D C	A -	A A	AA	AD	AB	-	DB	DB	DC	AA
Dietnylene Gydol Diphenyl Oxide Dyes	-	AAA	- A	-	- - B		1 1	A		-			-	A - A	- -	B -	-		A A -	A A -	AAA	A D -		A D C	D -	D -	A A A
Epsom Salts(Magnesium Sulfate) Ethane Ethanolamine	BA	AA	A -	A -	A	A -	- -	A		-	0	-		AD	1	-	A -	-	AA	AAA	AA	AAB		AB	D	C D C	AA
Ether Ethyl Acetate	A -	A	A	A -	AB	-	B	B	A -	-	DC	D	- A	D	CA	- c	- 0	AAA	A	A	CD	D	- 0	DD	CB	DD	AA
Ethyl Alcohol Ethyl Chloride Ethyl Sulfate	1 1 1	A	A	A A -	B B	A A	A B	B	C -	A C	A D	A D	A	A D	A	BD	A D	A	AAA	AAA	AAA	A D A	B D	A C	A	A A -	AAA
Ethylene Chloride Ethylene Dichloride Ethylene Glycol		A	AA	1=	D	BA	B	AC	-	C -	CCC	DD	AA	D	- A	- D	A	AA	AC	A	AA	D	DDC	D	CC	D	A
Ethylene Oxide Fatty Acids	-	- A	A	-	AB	- A	A	AC		- D		DA	A	AB	AAA	- B	- A	-	AAA	AA	DA	D	DC	D	C	DC	AAA
Ferric Nitrate Ferric Sulfate		A	A	D A A	DDD	AAA	A	DDDD	D - D	D - D		AAA	AA	AAA	DA	B B	AAA	AA	AAC	A A A	AAA	A	C D C	A	A A -	AAA	AAA
Ferrous Chloride Ferrous Sulfate Fluboric Acid	B	A	D C D		D	AA	B	c	1	DDD	D	A	A	A	DDC	BB	AA	A	AA	AA	A	B	C	A		AA	AA
Fluorine Fluosilicic Acid	D	D	DB	Ē	DD	D	A	D	1-	D	D	CA	C	A	DD	CB	- A	-	DA	- - D	-	- -	E	A	E	-	DC

4	6

Chemical	inless Steel	Steel	1	1	_				.S.I	E,			This	SE s is	RIC for i	DU: niti: hec	S I al re	NJ		Y I e on	MA ily a	Y	RE mus	SU st be			
	303 Sta	304 Stainless	316 Stainless Ste	440 Stainless Steel	Aluminium	Titanium	Hastelloy C	Cast Bronze	Brass	Cast Iron	Carbon Steel	PVC	Teflon PTFE	Noryl	Nylon	Polyethylene PE	Polypropylene PP	Ryton	Carbon	Ceramic Ak 05	Viton (FPM)	Buna N - Nitrile - NBR	Silicon	Neoprene	EPDM	Natural Rubber	Epoxy
Aax Temperature in Deg C	T	1	1									60	200	60	60		2-60		1		180	80		20	120	09	
Second a final		1	14				1		Ŀ.		1.5	3					3			1.0				1	10	3	14
ormaldehyde 40%	-	-	A	÷	-	A	A	-	-	-	-	B	A	A	D	-	A	A	-	A	D	B	8	A	-	-	A
iomic Acid	C	A	A	B	D	C	A	C	C	H	D	A	-	A	D	B	A	A	A	A	B	D	C	D	A	C	B
reon 11	A	12	A	÷	B	E	-	B	Ê	C	B	B	A	D	A	C	-	A	A	A	C	C	D	D	D	D	A
reon 12 (wet)	-	-	D	-	в	-	-	B	-	-	-	в	A	D	A	C	A	A	A	A	A	A	D	B	B	D	A
reon 22	1	i e	A	-	в	-	-	B	-	12	-	D	-	в	A	-	-	A	A	A	D	D	D	A	A	A	A
reon 113	-	-	A	-	в	-	-	B	-	10	-	C	-	-	A	-	-	A	A	A	C	A	D	A	-	D	A
reon T.F.	-	1-	A	-	B	-	-	B	-	1-	-	B	1-	D	A	-	D	A	A	A	B	A	D	A	D	D	A
ruit Juice	A	A	A	A	B	1	-	B	-	D	D	A	D	A	A	8	A	-	A	A	A	A	-	A	-	-	A
uran Basin	- A	A	A	10	A	A	A	B	-	C	B	A	A	A	A	D	в	A	A	A	A	A	6	B	D	10	A
furfural	-	A	A	12	A	13	-	A	ŧΞ	2	A	-	2	-	2	n	-	A	2	A	D	D	D	E.	B	D D	A
Sallic Acid	B	A	A	17	A	1	A	A	-	D	D	A	A	1	A	-	-	-	-	-	B	A	-	-	=	-	Ê
Sasoline	A	A	A	A	A	D	A	A	-	A	A	C	A	D	A	D	C	A	A	A	A	A	D	D	C	D	A
Selatin	A	A	A	A	A	-	A	A	C	D	D	A	A	A	A	-	A	-	A	A	A	A	-	A	A	A	A
slucose	A	-	A	-	A	13	-	λ	A	в	в	A	A	в	A	в	A	-	A	A	A	A	B	A	A	A	λ
ilue P.V.A.	B	В	A	10	B	A	-	A	1-	-	A	A	A	-	A	-	-	1	A	A	A	A	-	A	-	10	A
Siycerine	A	A	A	A	A	A	A	A	B	B	B	A	A	A	A	2	A	5	A	A	A	A	в	A	A	A	A
Sold Monocyanida	1	łe	-	12	-	÷	A	-	1	-	1	-	1-	A	-	в	A	A	A	-	A	A	10	A	12	-	A
SOLD PLATING	1	12	1 "	1	1	15	1-	-	1 -	1.11	L.	12	15	1	1	-	1	-	~	-	1.0	1.0	10		-	1	-
Cyanide 66°C	1	1.4	A	1-	- 1	A	A	1 C	1	1-	1 -	1 D	A	A	A	- 1	A	1-1	-	в	A	A	1-	A	1 -	1 -	D
leutral 24°C	-	-	C	-	-	A	A	12	-	-	-	A	A	A	A	-	A	-	-	A	A	A	-	A	-	-	A
Acid 24°C	-		C	-	-	A	A	-	1-	-	-	A	A	A	A	-	A	-	-	A	A	A	1.0	A	-	-	A
ndium Sulfamate Plating R.T.	-	-	C	-	-	A	A	-	-	-	-	A	A	A	D	-	A	-	-	A	A	A	-	A	-	1-	A
Grape Juice	-	A	A	÷	B	-	-	B	1.5	D	-	A	-	A	-	B	-	-	A	A	A	A	-	A	-	-	A
Frease	A	A	A	-	A	-	-	B	-	Α	A	-	A	12	A	-	-	-	A	A	A	A	-	D	-	-	A
leptane	A	17	A	-	A	1-	A	A	10	1-	8	A	A	D	A	D	D	A	A	A	A	A	1	B	D	-	A
lexane	A	1	A	15	A	1.	A	B	1.5	15	B	C	A	D	A	E	C	A	A	A	A	A	E B	5	D N	D	A
lonev	13	1	A	12	A	-	-	A	1-	-	1-	A	12	A	h	-	-	12	h	1 A	A	A	12	A	A	-	A
lydraulic Oils (Petrol)	A	A	A	-	A	1-	-	B	-	A	A	-	A	1-	A	-	D	-	A	A	A	A	1-	B	D	D	A
lydraulic Oils (Syn)	F	A	A	-	A	-	-	A	19	A	-	-	1-	9	A	-	D	-	A	A	A	C	D	-	12	-	A
lydrazine	-	A	A	1	14	-	-	5	1 -	C	-	-	12	-	-	-	-	-	A	-	A	в	D	B	A	C	A
lydrobromic Acid 20%	-	1-	D	-	1.5	A	A	-	-	-	-	A	A	A	D	-	A	\sim	-	B	A	D	-	C	-	1-	B
lydrobromic Acid	D	D	D	D	D	A	A	D	-	D	D	A	A	C	D	B	B	-	A	A	A	D	D	D	A	A	A
hydrochloric Acid (Dry Gas)	D	C	A	12	D	-	A	12	1-	-	D	A	A	1	15	5	12	12	A	15	17	-	1	15	A	12	A
Avdrochloric Acid (20%)		- D	D	D	D	C	B	10	÷	D	15	A	A	A	D	A	A	D	A	A .	A	C	-	1 C	-	D	A
Avdrochloric Acid 100%	10	D	D	-	1 D	D	1 C	D	tE	Th	18	1 à	A	-	1 n	A	1.	-	A	C	1°	D	1	C	-	A	A
tydrocyanic Acid	A	A	A	C	A	A	A	D	D	-	c	A	A	A	Ã	B	A	1	A	A	A	C	te	B	1	A	A
Gas 10%)	-	D	D	1 =	1-	1-	-	1-	-	-	1-	A	A	-	1-	-	-	-	-	1-	1-	1-	1-	C	A	C	A
łydrofluoric Acid (20%)1	-	D	D	D	D	D	B	D	-	D	-	D	A	A	D	C	A	C	B	C	A	D	-	C	A	C	B
lydrofluoric Acid (75%)	-	C	D	12	D	D	C	D	-	D	15	C	A	D	D	C	B	C	D	D	A	D	D	D	C	C	C
lydrofluoric Acid 100%	D	D	D	1.	D	D	B	D	-	D	D	1 C	A	12	-	D	1-	c	D	D	-	D	-	D	-	D	A
ivdrofiuosilicic Acid		D	1D	17	D	D	B	A	-	D	15	P	A	B	D	1-	A	-	A	D	A	B	E	B	A	A	C
Avringen Gas	A	A	A	12	A	12	1-	A	+=	P	B	A	A	15	1-	1=	12	1-	A	1=	A	tE	1-	12	1-	1-	A
tydrogen Peroxide 10%	1	0	C	1-	A	C	A	D	D	D	1-	A	A	12	B	A	1-	B	A	A	1-	A	1-	D	-	C	D
tydrogen Peroxide 30%	-	1-	B	-	1-	B	A	1-	D	1-	1=	A	A	12	B	-	A	C	-	-	A	D	-	c	-	1-	B
fydrogen Peroxide	-	A	8	A	A	B	A	D	D	D	D	A	A	B	B	B	A	C	-	A	A	D	C	D	C	C	A
lydrogen Sulfide, Aqueous Solution	-	A	A	C	C	A	A	D	¢	D	-	A	A	A	B	в	A	A	A	A	B	C	-	B	A	D	A
lydrogen Sulfide (Dry)	A	C	A	-	D	1-	A	D	C	B	B	A	A	-	B	-	-	A	-	A	A	1-	-	-	-	A	A
tydroxyacetic Acid (70%)	-	1.7	1-	1-	D	B	-	1-	1-	1-	1-	A	-	1-	17	1-	1-	-	A	A	A	A	1=	A	A	1 -	A
nk Indine	A	A	A	12	C	12	12	C	17	D	D	II	10	B	A	B	12	-	A	A	A	A	-	A	15	13	A
odine (in Alcohol)	-	D	1P	D	D	A	B	P	+-	D	1-	1 D	A	A	D	D	-	-		A	A	B	-	+D	B	D	A
odoform		-	B	T	-	0	A	10	13	10	0	P	A	10	D	E	B	15	Ē	A	A	+	1-	+0	+=	tE	+=
RON PLATING	1	-	1.4	1.5	-	1	1	10	1.7	-C	1.0	1.7	-	1	~	-	1-	1 -	1	1-	10	1	1	1-	1-	1	15
Ferrous Chloride Bath 190A° F	-	1-	D	-	1-	TA	D	1-	1-	1-	1-	7 p	A	A	D	1-	1c	1-	-	A	A	B	1-	D		1-	1 p

SE	
	(•)

Warning The information on this chart was collected from reputable sources and is to be used ONLY as a guide by experienced personnel. We make no representations on the suitability of any materials for your applications.		4	C = N	B= D= D=	= Mi Mod Seta	lo e nor erat vere Re	ffec effe te eff eff fer	t ffect ect to A	.S.E			1	Desp ch cc This	arts arts SEI	beir , va entra RIC for li	ng h riat atio DU: nitia hec	ndic lons n of S II al re ked	DA ate s in che NJ efere by	d an terri emi UR enci rele	GE s ge nper cals Cals EY E or evar	MA MA	ally re, p ay c Y and utho	suit ause RE mus	tabl sun e fai SU st be	e in e ar ilun ILT e cr	the d e.	•
Chemical	303 Stainless Steel	304 Stainless Steel	316 Stainless Steel	440 Stainless Steel	Aluminium	Titanium	Hastelloy C	Cast Bronze	Brass	Cast Iron	Carbon Steel	PVC	Teflon PTFE	Noryl	Nylon	Polyethylene PE	Polypropylene PP	Ryton	Carbon	Ceramic Ah 0a	Viton (FPM)	Buna N - Nitrile - NBR	Silicon	Neoprene	EPDM	Natural Rubber	Epoxy
Max Temperature in Deg C for Elastomers / Plastics												60	200	80	60		25 - 60				180	80		70	120	60	
Ferrous Am. Sulfate Bath 150A° F	-	-	c	-	-	A	A	-	-	-	-	D	A	A	D	-	A	-	-	A	A	A	-	B	-	-	D
Sulfate-Chloride Bath 150A ^e F	-	-	D	-	-	A	D	-	\sim	-	-	D	A	A	D	1	A	-	1	A	A	B	-	C	-	12	D
luoborate Bath 63°C	-	-	D	-	-	D	в	-	-	-	-	D	A	A	D	-	A	-	-	D	A	B	-	C	-	-	D
iulfamate 63°C	-	-	D	-	-	A	в	-	-	-	\sim	A	A	A	D	-	A	-	-	A	A	A	-	A	-	-	A
sobutyl Alcohol	-	A	A	-	В	A	A	A	C	-	A	$\left \overline{\gamma} \right $	-	A	A	\sim	-	-	A	A	A	C	в	A	A	A	A
sopropyi Alcohol	-	A	A	-	В	A	A	A	C	C	A	-	-	A	A	-	A	-	A	A	A	C	C	B	A	A	A
sopropyl Acetate	-	-	в	\sim	C	-	-	-	-	-	-	-	-	-	-	-	-	-	A	A	D	D	-	D	B	D	3
sopropyi Ether	A	-	A	-	A	-	-	A		-	A	-	A	D	-	-	D	-	A	A	D	B	-	D	D	D	1
let Fuel / ID3 ID4 (D5)	-	-	-	-	A	-	-	-	-	-	-	-	-	D	-	-	D	-	-	A	A	A	-	-	-	D	1
errue (JFJ,JF4,JF3)	A	A	A	-	A	-	-	A	-	A	A	A	A	D	A	-	D	A	A	A	A	A	D	D	D	D	12
cetones .	A	A	A	A	P	A	A	A	A	A	B	A	A	D	A	D D	D	A	A	A	A	A	0	D	A	C	1
acquers	A	A	A	-	2	-	~	A	r	~	A C	0		C	3	-	n	A	-	A	P	1 D	-	n	-	D	÷,
acover Thinners	-	-	A	-	-	A	A	-	c	-	-	C	A	n	A		n	-	-	A	1	1 D	12	n	A	-	t
actic Acid	A	A	B	C	C	A	A	D	-	D	D	A	A	A	c	B	A	A	A	A	B	B	1	A	B	A	2
ard	B	A	A	A	A	-	-	A	-	A	C	A	-		A	-	A	-	A	A	A	A	C	B	-	D	A
atex	-	A	A	-	A	-	-	A	-	-	-	-	-	A	A	B	-	-	-	A	A	A	-	C	A	1÷	A
ead Acetate	в	A	A	-	D	A	A	C	(\mathbf{H})	\geq	D	A	A	A	A	B	A	-	A	A	D	B	-	D	A	A	P
ead Fluoborate Plating	-	-	C	+	-	D	A	-	-		i.	A	A	A	D	+	A	-	-	D	A	B	-	C	-	1.	A
.ead Sulfamate	1	1	\sim	-	\leq	-	1	\sim	m		-	-	-	+	-	-	A	-	-	-	A	В	C	A	D	C	F
Igroin	-	1	A	-	÷.	$\overline{}$	e	A		-	-	~	-	D	-	-	D	÷	-	A	A	A	-	B	A	D	A
line	-	A	A	-	C	A	-	A	1	A	5	A	-	A	-	-	-	0	A	A	A	A	C	B	D	1.5	A
Lubricants	-	A	A	-	A	A	A	B	2	۰.	-	A	A	-	A	-	A	A	A	A	A	A	C	D	1-	D	A
Agnesium Chloride	-	A	A	A	-	-	B	-	-	-	-	ę.	-	A		8	A	5	-	A	E	A	-	A	A	1	13
Magnesium Hydroxide	A A	D	3	A	D	A	h	6	0	B	8	A	n	A	1	10	A	A	-	h	A	P	÷		n	C	ł.
Magnesium Nitrate	Ĉ	A	À	A	-	A	A	-	-	-	-	A	2	2	à	B	A	e	1	2	A	A	1	A	E	12	
Magnesium Oxide	-	A	A	-	-	1	-	-	-	-	4	-	-	-	-	2	-	1	-	A	1	A	1-	A	A	1.	1
Magnesium Sulfate	в	B	A	-	B	A	8	B	B	c	B	A	A	A	A	B	A	A	A	A	A	A	1-	A	D	C	17
Maleic Acid	C	A	A	A	B	A	A	C	-	-	в	A	A	A	A	+	C	-	A	A	A	D	-	A	D	D	1
Maleic Anhydride	14	-	-	-	-	-	A	-	-	-	-	1	-	-	-	-	-	-	A	A	A	D	-	D	1-	D	7
Malic Acid	в	A	A	-	C	-	A	D	-	-	D	A	A	-	A	-	-	-	-	A	C	-	-	A	-	A	
Mash	-	A	A	-	-	-	\geq	A	-	1	-	-	1	A	-	-	-	-	A	A	-	A	-	A	-	-	3
Mayonnaise	A	A	A	~	D	12	1	D	-	D	D	-	A	A	A	-	A	=	A	A	A	A	-	-	-	-	1
Velamine	-	D	D	1	-	1	=	D	-	-	-	-	-	-	-	-	÷	-	A	A	1 +	C	-	-	-	-	2
Mercuric Chloride (Ullute Solution)	D	D	D	D	D	A	В	D	D	D	D	A	A	A	A	B	A	-	A	A	A	A	-	A	A	A	1
Marcury	A	A	A	-	D	A	-	P	-	-	D	A	A	A		B	A	-	A	A	1-	A	1-	-	12	15	14
Methanol (See Alcohol Methyl)	A	A	A	A	C	C	A	P	D	A	A	A	A	A	A	B	A	1-	A	A	A	A	15	A	A	A	+
Methyl Acetate	1	-	2	1	2	1	P	2	-	1	P	E	2		-	-	12	1	A	-	D	TR	D	10	1-	-	÷
Methyl Acetone	A	-	A	-	A	1	-	A	-	A	A	E	A	D	-	-	1	12	1	2	E	D	1-	D	1-	1-	÷
Methyl Alcohol 10%	A	-	A	-	C	-	A	C	-	12	B	A	A	-	A	-	-	-	12	12	1-	B	12	1.	12	A	\pm
Methyl Alcohol	-	A	A	A	B	A	A	A	C	A	A	в	A	A	A	B	A	-	A	A	C	B	-	A	A	A	ti
Methyl Bromide	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	D	-	-	A	A	A	B	-	D	D	D	1
lethyl Butyl Ketone	-	-	A	-	A	-	1	-	-	-	-	-	-	D	-	-	-	-	A	A	D	D	C	D	A	D	1
Nethyl Cellosolve	-	-	-	-	A	-	-	A	10	-	-	-	-	C	-	-	A	-	A	A	D	D	-	D	B	D	1
Nethyl Chloride	18	C	A	+	D	A	A	A	-	-	-	D	A	D	A	D	D	-	A	A	A	D	D	D	C	D	1
Aethyl Dichloride	-	-	-	-	-	-	1	-	-	-	-	-	-	D	1	-	-	-	A	A	A	D	-	D	D	D	1
Aathul Isobutul Kalone	-	A	A	-	A	A	A	A	-	-	-	D	A	D	A	D	A	A	A	A	D	1D	C	+D	A	D	1
Aethyl Isopronyl Kelone	-	-	A	-	-	A	A	-	-	-	-	D	A	D	A	-	C	A	A	A	1D	D	C	D	C	D	+
Aethyl Methacrylate	-	1	A	-	12	1	12	12	13	12	1-	Ē	1-	10	A	10	1-	1÷	A	A	P	F	B	D	B		+
Methylamine	A	E	A	-	A	1	15	n	E	B	B	1÷	-	P	E.	E	E	15	1	1 A	10	P	1-	1	14	1	H.
Methylene Chloride	A	A	a	-	2	A	A	A	C	-	P	n	Th	D	D	n	D	1-	12	12	P	the	1-	In	D	F	+
Vilk	A	A	A	A	A	12	-	C	C	D	D	A	-	A	A	R	A	1-	A	A	A	A	B	A	D	D	ť
Molasses	A	A	A	A	A	-	-	A	B	A	A	A	-	B	A	B	A	-	A	A	A	A		A	-	11	t
	1	1	1	a	B	-	1	B	-	C	B	A	-	B	A	-	A	1-	A	A	A	İB	C	c	-	1-	ti
lustard	A	1.8	1.5	1 65						-		-		_			-									-	-4-2
Nustard Naptha	A	A	A	A	A	A	A	B	-	в	в	A	A	D	A	D	A	A	A	A	A	B	D	D	D	D	112

SE.	
4	

applications.	n		C = N	B = M D = o da	Mod Sev ata	eral vere Re	effe eff fer	ffect ect to A		Ε.			ch co This	SE s is	s, va entr RIC for I	ariat atio DU: Initia	ion n of S I al re	s in f che NJI	JR	Y I on	MA MA	re, p ay c Y and	RE	sur a fai SU	e in lure ILT e cre	the d b.	
Chemical	303 Stainless Steel	304 Stainless Steel	316 Stainless Steel	440 Stainless Steel	Aluminium	Titanium	Hastelloy C	Cast Bronze	Brass	Cast Iron	Carbon Steel	PVC	Teflon PTFE	Noryl	Nylon	Polyethylene PE	Polypropylene PP	Ryton	Carbon	Ceramic Ab 03	Viton (FPM)	Buna N - Nitrile - NBR	Silicon	Neoprene	EPDM	Natural Rubber	Epoxy
fax Temperature in Deg C or Elastomers / Plastics												60	200	60	60		25 - 60				180	80		20	120	60	
ICKEL PLATING	1		1														20										
Vatts Type 71°C	-	-	C	-	1	A	A	-	-	-		D	A	A	A	-	A	-	-	A	A	A	-	A	-	-	D
ligh Chloride 71°C	-	-	C	-	-	A	A	-	-	-	-	D	A	A	D	-	A	-	+	A	A	A	-	в	-	-	D
Iuoborate //*C	-	-	C	-	1	D	A	D	ч	-	-	D	A	A	D	-	A	1	-	D	A	B	2	c	-	-	D
Tectroless 93%	-	-	C	2	-	A	A	-	-	-	-	A	A	A	A	-	A	-	-	A	A	A	-	A	-	-	A
lickel Sulfate	-	-	-	-	P	-	-	-	-	-	-	D	A	D	D	-	D	-	-	A	A	D	1	D	-	10	H
litric Acid (10% Sol)	B	A	D N	2	D	A	B	D	C	D	D	A	A	A	A D	D D	A	D	2	P.	A	P	13	P	A	D	A
litric Acid (20% Sol)	1°	A	A	A	D	A	A	D	-	D	-	A	A	A	D	B	A	C	P	C	A	D	-	D	D	D	P
litric Acid (50% Sol)	1-	A	A	A	D	A	A	D	1	D	-	A	A	A	D	c	D	C	D	A	A	D	-	D	D	D	D
Itric Acid (Concentrated Solution)	-	D	B	A	B	A	B	D	D	D	-	D	A	D	D	D	D	C	D	A	B	D	-	D	D	D	D
litrobenzene	B	A	B	-	C	A	B	D	-	B	B	D	A	D	C	D	C	B	A	A	D	D	D	D	Ď	D	B
NLS.	-	100				-						1											100	1			100
Inline	-	A	A	-	Ċ	A	D	A	E.	A	-	D	A	D	C	-	A	-	А	A	A	D	-	D	в	D	A
inise	-	A	A	-	-	-	1.4	-		-	-	-	-	1	-	-	-	1-1	A	A	-	-	-	D	1	-	A
lay	-	A	A	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	A	A	A	-	-	D	-	-	A
lone	-	A	A	+	-	-	-	A	1	-	-	-	-	-	-	-	-	-	А	A	A	A	-	D	-	-	A
astor	-	A	A	-	A	-	-	A	5	A	-	A	-	12	1=	-	0	-	A	A	A	A	-	A	B	A	A
linnamon	-	A	A	-	-	~	-	-	-	-	-	-	A	-	-	-	A	-	A	A	D	-	-	D	-	-	A
atric	-	A	A	~	-	-	-	D	-	D	12	1	-	-	A	1	A	-	A	A	A	A	-	D	-	1	A
love		A	A	-	-	-	-	-	-	1	-	-	-	-	A	1-	B	-	A	A	-	A	-	12	1	-	A
Cod Liver	12	A	A	2	B	Ē	E	A	E	A	13	Ē	1		A	E.	-	10	A	A	2	2	12	2	1	D D	A
lom	-12	1 A	A	-	D	1	13	-	10	-	e	E	12	12	-	÷	ĥ	1	A	A	1 A	A	18	1º	1C	D	- A
Cotton Seed	R	A	A	A	B	-	-	B	-	A	C	A	A	-	A	-	Â	A	A	A	Â	A	-	D	C	D	12
Iresole	17	A	A	-	A	12	1-	1	-	1	Ē	12	1-	-	-	1-	D	-	A	A	A	A	-	B	D	D	A
Nesel Fuel (2D,3D,4D,5D)		A	A	-	A	-	-	A	-	17	12	-	-	D	A	-	A	A	A	A	A	A	-	D	D	D	A
uel (1,2,3,5A,5B,6)	1.	A	A	-	A	A	A	A	-	-	-	A	A	D	1	1	B	-	A	A	A	B	-	D	D	D	A
Singer	-	A	A	-	-	-	-	-	-	-	-	-	-	-	1-	-	-	-	A	A	A	A	-	A	-	1-	A
lydraulic Oils (Petrol)	A	A	A	-	A	-	-	в	-	A	A	-	A	-	A	-	D	-	A	A	A	A	-	в	D	D	A
lydraulic Oils (Syn)	-	A	A	~	A	5	1	A	-	A	14	-	1 -	-	A	10	D	-	A	A	A	C	D	1-	1-	-	A
emon	-	A	A	-	-	-	-	-	1-	-	-	-	1 -	-	-	-	D	-	A	A	A	-	-	D	-	-	A
Inseed	12	A	A	A	A	1	-	A	=	A	-	A	15	-	A	12	A	15	A	A	A	A	-	D	D	D	A
Ainerai	A	A	A	A	A	-	1-	A	-	A	B	A	-	B	A	-	B	A	A	A	A	A	12	8	D	D	A
June Drange	A	A	A	-	A	-		B	1-	A	B	A	A	-	A	-	A	1	A	A	A	A	C	8	-	D	A
Aalm .	15	A	A	-	-	1-	-	-	1-	-	15	-	A	-	A	1	A	1	A	A	A	A	17	D	-	12	A
Jeanut	12	A	A	-	1	1	12	A	15	2	12	1	18	1E	-	1	n	12	A	A	A	A	17	D	10	10	- A
Peppermint	15	A	A	-	-	-	-	A	12	-	1	12	1-	12	1-	-	D	-	A	A	A	D	1-	D	1-	-	A
Ine	A	A	A	-	A	-	-	D	t-	C	B	A	A	10	12	-	15	-	A	A	A	A	10	D	1-	D	A
Rape Seed		A	A	1	-	-	-	A	12	12	-	A	-	-	-	-	-	-	A	A	A	B	1-	D	-	D	A
tosin	-	A	A	-	A	-	17	14	12-	-	18	-	1-	14	A	-	A	-	A	A	A	A	-	-	1-	-	A
Sesame Seed	-	A	A	-	A	-	14	A	-	A	-	A	-	-	1-	-	1-	+	A	A	A	A	-	D	-	-	A
illicone	-	A	A	-	-	-	-	A	-	A	-	-	-	A	A	-	A	=	A	A	A	A	1=	A	-	A	A
Joybean	-	A	A	-	A	-	-	B	-	A	-	A	-	-	A	-	A	-	A	A	A	A	-	D	-	D	A
iperm	-	A	A	-	-	-	-	A	-	1-	-	A	1-	-	-	1-	12	1-	A	A	A	A	-	D	1-	1	A
anning Subtra	-	A	A	-	-	-	1.5	-	12	-	-	1:	-	-	12	-	1.5	-	A	A	A	A	-	D	-	-	A
urome Dotyl Alcohol	-	A	A		A	1.	-	A	17	A	17	A	1	12	15	-	15	1	A	A	A	A	-	D	17	D	A
Neic Acid	-	A	A	P	A	A	A	A	C	0	A	1.	1	A	A	10	-	17	A	A	A	H	D	D	A	C D	A
Dieum 25%	-	12	1	-	-	÷	h	1	13	15	1-	1º	A	D	-	1-	-	1-	2	A	A	D	D	D	D	10	- n
Dieum	B	14	A	12	B	12	12	c	C	1-	B	D	A	1-	-	1-	D	-	-	A	A	10	D	D	D	D	A
Dxalic Acid (cold)	C	A	B	A	c	C	B	B	C	D	D	TA	A	C	D	A	A	-	A	A	A	B	C	B	A	C	A
Paraffin	A	A	A	A	A	1-	-	A	1-	B	B	A	A	B	A	1-	A	-	A	A	A	A	1-	1-	1-	T	A
Pentane	A	C	C	-	A	1-	B	A	1-	B	B	1-	A	D	A	-	-	-	A	A	A	A	-	B	D	D	A
Perchloroethylenen	B	A	A	-	A	-	-	C	1 -	B	B	-	A	D	-	1-	D	A	A	A	A	C	D	D	D	D	A
Petrolatum	A	-	A	-	B	-	-	B	-	C	C	-	A	D	A	-	-	-	A	A	A	A	-	B	A	D	A
henol 10%	B	A	A	-	A	-	B	C	1-	B	D	A	A	-	D	-	-	A	-	-	B	D	-	C	D	C	C
henol (Carbolic Acid)	B	A	A	A	B	C	A	В	D	D	D	A	A	C	D	D	B	A	A	D	A	D	-	D	D	D	B
hosphoric Acid 40%		B	A	A	D	A	A	D	D	D	-	A	A	A	D	B	A	A	Э	C	A	D	-	D	B	C	A

SE	СТ	10	N
	7		2
	Ľ	•	

Warning The information on this chart was collected from reputable sources and is to be used ONLY as a guide by experienced personnel. We make no representations on the suitability of any materials for your applications.			(= N	B D= D=	= Mi Moc Se ata	No e inor lera vere - Re	ffec effe te e effe fer	at ect ffect iect to A	t 				Desj ch cc This	pite arts onc SE a is	bein s, va entra RIC for I	ng in atio DU: nitia hec	ndic ioni n of S I al re ked	DA cate s in f che NJI efere by	d as tem emi UR enci	GE s ge per cals (Y I e on evan	IR ner atu ma MA MA ly a t at	ally re, p ny c Y ind utho	sult auso RE mus	tabl sun e fai SU st be	e in é an ilure ILT e cri	the d oss	
Chemical	303 Stainless Steel	304 Stainless Steel	316 Stainless Steel	440 Stainless Steel	Aluminium	Titanium	Hastelloy C	Cast Bronze	Brass	Cast Iron	Carbon Steel	PVC	Teflon PTFE	Noryl	Nylon	Polyethylene PE	Polypropylene PP	Ryton	Carbon	Ceramic At 0a	Viton (FPM)	Buna N - Nitrile - NBR	Silicon	Neoprene	EPDM	Natural Rubber	Epoxy
Max Temperature in Deg C for Elastomers / Plastics				Γ								80	200	60	99		25 - 60				180	80		20	120	60	1
Phosphoric Acid Crude	-	D	c	c	D	C	A	D	D	D	D	-	A	-	D	C	-	A	c	D	A	D	-	D	B	-	A
Phosphoric Anhydride (Dry or Moist)	-	A	A	-	-	1	-	-	D	-	-	D	A	-	-	-	-		A	-	D	D	-	D	-	A	1
Phosphoric Anhydride (Molten)	-	A	A	-	D	-	-	D	D	-	-	D	A	-	A	D	-	-	-	-	D	C	-	D	-	D	A
Photographic (Developer)	-	C	A	C	C	A	A	-	-	D	-	A	-	A	-	в	A	+	A	A	A	A	-	A	-	+	A
Phthalic Anhydride	в	A	B	10	B	-	A	B	-	C	C	-	A	-	A	-	-	-	-	~	A	C	-	-	-	-	
Picric Acid	в	A	A	-	C	-	A	D	D	D	D	A	A	-	A	A	-	+	-	÷	A	A	D	A	3	A	A
Potash	-	A	-	A	C	15	A	C	-	B	-	A	-	A	A	B	A	-	A	A	A	A	+	B	-	B	A
Potassium Bicarbonate	-	A	-	B	C	A	B	B	-	D	-	A	A	A	A	B	A	A	A	A	A	A	1	A	-	B	A
Polassium Gronide Polassium Carbonale	A	A	1-	B	C	A	B	C	-	D	D	A	A	A	C	B	A	C	A	A	A	A	-	A	A	8	A
Polassium Carbonate	18	A	1.	A	C	A	A	C	E	B	B	A	A	A	A	B	A	A	A	A	A	B	12	A	-	B	A
Potassium Chloride	1 C	A	A	A	P	A	A	10	2	8	-	A	A	A	8	8	A	A	A	A	A	A	HĐ.	A	1	2	A
Potassium Chromate	-	12	B	B	A	1ª	B	A	-	A	Ē	A	-	A	-	8	-	A	A	D	A	A	12	A	-	B	C
Potassium Cyanide Solutions	B	A	B	A	D	A	A	D	-	B	8	A	A	A	A	B	A	A	C	A	B	A	12	A	A	A	A
Potassium Dichromate	B	A	A	A	A	A	в	C	-	B	C	A	A	A	D	8	A	A	A	A	B	A	-	A	A	A	A
Potassium Ferrocyanide	в	A	-	A	C	-	B	A	-	-	C	A	A	-	A	A	-	-	12	-	19	D	-	16	-	A	A
Potassium Hydroxide (50%)	A	B	в	B	D	C	A	D	D	С	A	A	A	A	A	B	A	A	-	D	в	B	C	λ	A	C	A
Potassium Nitrate	в	A	в	A	B	A	B	в	-	1.5	B	A	A	A	C	в	A	C	A	A	B	A	1.5	A	A	A	A
Potassium Permanganate	в	A	в	B	В	В	B	B	-	в	B	A	A	A	D	B	в	A	A	A	B	A	-	A	-	B	B
Potassium Sulfate	B	A	B	B	A	A	A	B	B	B	B	A	A	A	C	B	A	A	A	A	A	A	C	A	A	c	A
Potassium Sullide	A	A	-	A	B	-	B	B	-	B	B	A	A	-	-	-	-	-	-	17	-	A	5	-	17	-	17
Propane (Liquined) Propul Alcohol	A	A	-	A	A	1.	-	A	A	10	B	P	A	D	A	-	D	-	A	A	A	A	D	B	D	D	A
Propylene Glycol	-	A	A	2	8	A	A	A	-	-	-	A	A	B	A	-	A	1	A	M	A	A	-	C	-	-	1 m
Pyridine	12	C	E	n	-	12	Đ	10	ŧē	B	A	E	-	D	-	C	B	4	A	A	D	1 D	E	D	B	D	A
Pyrogallic Acid	B	A	A	Ã	B	12	A	B	1	B	B	A	A	E.	A	÷	-	-	A	A	A	A	1-	1-	-	12	A
Rhodium Plating 49°C	1=	1-	D	1-	12	D	D	12	1-	12	1-	A	A	A	D	-	A	12	- 1	A	A	A	-	B	12	-	A
Rosins	A	A	A	A	A	-	B	A	C	-	C	-	A	-	A		A	-	A	A	-	A	14	-	-	-	A
Rum	-	A	-	A	-	15	+	-	-	1-	-	A	-	A	A	-	A	-	A	A	A	A	- 1	A	-	-	A
Rust Inhibitors	-	A	-	A	-	-	-	A	-	A	-	-	-	-	-		A	-	A	A	A	A	-	C	-	-	A
Salad Dressing	-	A	-	A	B	1	-	B	-	D	15	A	-	A	A	-	A	-	A	A	A	A	1.4	-	-	-	A
Sea Water	A	A	A	A	C	A	-	C	-	-	D	A	A	A	A	B	A	-	A	A	A	A	B	B	A	A	A
Shellac (Bleached)	A	A	-	A	A	-	-	A	B	B	A	-	A	1-	A	-	A	-	-	A	-	A	-	1-	-	-	A
Sileona	A	A	-	A	A	-	-	A	C	C	A	-	A	1	A	-	A	-	-	A	15	A	-		-	17	A
Silver Bramide	-	B	-	A	B	-	-	A	-	1-	+-	-	-	A	A	-	A	-	A	A	A	A	B	A	A	A	A
Silver Nitrate	1.	C A	1 D		D	2	D	P	÷E	D	E	Ta	A	A	D	E	P	-	A	1 a	3	10	12	h	C	12	A
Silver Plating 49°C	1-	-	A	12	-	A	A	1-	1-	1-	1-	12	A	A	A	-	A	12	-	B	12	A	1-	a	12	1-	2
Scap Solutions	A	A	A	A	C	A	B	B	Â	B	A	B	A	A	A	B	A	A	A	A	A	A	B	B	-	C	A
(Sodium Carbonate)	B	A	B	B	C	A	A	B	B	B	B	A	A	A	A	B	A	A	B	A	A	A	-	A	A	A	A
Sodium Acetate	8	A	A	B	B	A	A	B	-	C	C	A	A	A	A	B	A	-	A	A	D	D	-	jc	-	A	A
Sodium Aluminate	B	1.	-	A	C	B	B	B	-	-	C	-	A	A	A	-	-	A	A	A	A	A	-	A	A	В	A
Sodium Bicarbonate	B	A	A	A	A	A	-	B	A	C	C	A	A	A	A	B	A	A	A	A	A	A	C	A	A	A	A
Sodium Bisulfate	A	A	-	A	D	B	B	C	C	D	D	A	A	A	C	B	A	A	A	A	B	A	C	A	-	A	A
Sodium Bisulinte	1-	A	1-	A	A	A	B	C	-	D	1-	A	A	A	D	B	A	A	A	A	A	A	C	A	-	A	A
Sodium Carbonate	H	A	12	A	0	-	A	A	-	-	10	10	A	-	A	A	1.	-		-	A	1.	B	A	1	2	1
Sodium Chlorate	-	2	12	23	P	1	P	B	12	-	C	2	- 2	1	A	B	A	A	B	b	12	10	1-	12	12	A	1
Sodium Chloride	B	A	C	B	C	A	A	B	C	B	C	A	A	A	A	B	A	A	A	A	A	TA	C	A	A	B	A
Sodium Chromate	A	A	A	-	D	-	B	в	-	B	B	-	A	A	A	1-	A	A	A	B	B	A	1-	A	-	1-	C
Sodium Cyanide	B	A	-	A	D	A	1-	D	D	B	B	A	A	A	C	в	A	A	A	A	A	A	D	A	A	A	A
Sodium Fluoride	В	C	-	C	C	A	A	C	-	D	D	D	A	-	A	C	-	-	-	-	C	D	-	D	-	D	A
Sodium Hydrosulfite	-	1-	-	-	A	-	A	C	-	+	-	E	A	-	A	-	-	1	-	A	A	-	1.5	A	-	A	-
Sodium Hydroxide (20%)	-	A	A	A	D	A	A	C	D	A	-	A	A	A	C	B	A	A	C	D	A	A	D	E	A	A	A
Sodium Hydroxide (50%)	-	A	B	1.5	D	A	A	C	D	B	1.4	A	A	A	C	C	A	B	C	D	A	D	D	9	1-	A	A
Sodium Hydroxide (80%)	-	A	D	17	D	A	B	C	D	C	17	A	A	A	C	C	A	B	C	D	B	D	D	0	-	B	A
Socium Hypochionte (20%)	1-	C	C	C	C	A	A	D	D	D	-	A	A	A	A	B	D	C	D	A	A	C	D	D	B	10	E
Sodium Hypochionte	D	17	A	-	D	A	A	D	1-	D	D	A	A	A	A	1-	A	C	÷	D	10	B	1C	1	-		A
Sodium Metanhosphate	-	A	A	-	D.	+-	+-	D	-	1.00	-	1	A		-	-	-	-	1.	1.	1.	1.	1-	12	45	1.	19
ooginali merahinahilare	A		A	3.	A	-	1-	6	C	В	B	12	A	1.5	B	1-	- 10	4.7	- A	A	A	10.8	1	1.0	A	A	1.4

4	

Warning The information on this chart was collected from reputable sources and is to be used ONLY as a guide by experienced personnel. We make no representations on the suitability of any materials for your applications.			(= N	B = I D = I D = I I o d	= Mi Mod Se ata	lera vere - Re	effecte effecte	ect ffect fect to A	t 	ũ.			Desj ch cc This	pite arts once SEI s is l	bein s, va antr RIC for i	ng li ariat atio DUS initia thec	ndic ioni S I al re ked	s in che NJI efere by	d as terr emi UR enci	s ge iper cals Y I e on evan	MA MA	ally re, p y c Y nd	sult oresi ause RE: mus ority.	sur fai SU	e in e an ilure ILT e cn	the d e,	
Chemical	303 Stainless Steel	304 Stainless Steel	316 Stainless Steel	440 Stainless Steel	Aluminium	Titanium	Hastelloy C	Cast Bronze	Brass	Cast Iron	Carbon Steel	PVC	Teflon PTFE	Noryl	Nylon	Polyethylene PE	Polypropylene PP	Ryton	Carbon	Ceramic Ak 03	Viton (FPM)	Buna N - Nitrile - NBR	Silicon	Neoprene	EPDM	Natural Rubber	Parata.
Max Temperature in Deg C or Elastomers / Plastics												60	200	60	60		26 - 60				180	80		70	120	09	Ī
Sodium Nitrate	B	A	A	A	A	A	B	B	C	A	в	A	A	A	A	B	A	-	A	A	B	C	D	B	A	c	t
Sodium Perborate	B	-	C	-	B	-	-	C	C	B	B	-	A	A	A	21	A	-	A	A	A	B	D	B	A	C	ť
odium Peroxide	B	A	A	+	C	-	B	C	C	D	C	A	A	-	D	-	-	-	A	A	A	C	D	B	A	c	t
odium Polyphosphate(Mono,Di,Tri)	-	A	A	*	D	A	A	C	-		-	-	A	A	-	-	-	-	A	A	A	A	-	D	A	A	t
odium Silicate	B	A	в	A	C	A	B	C	C	-	в	A	A	A	A	-	A	-	A	A	A	A	-	A	A	A	T
odium Sulfate	B	A	A	C	B	A	B	B	B	A	в	A	A	A	A	B	A	A	A	A	A	A	-	A	A	C	1
odium Sulfide	B	A	B	-	D	A	B	D	D	A	в	A	A	A	A	B	A	A	A	A	A	C	-	А	A	C	T
odium Sulfite	-	c	C	-	C	A	A	C	-	Α	-	A	A	-	D	A	-	-	A	A	A	A	-	A	-	A	1
odium Tetraborate	-	-	A	-	-	-	-	-	-	-	+	A	-	A	-	-	-	-	A	A	A	A	-	-	+	-	T
odium Thiosulphate ("Hypo")	A	A	A	18	B	A	-	D	D	C	в	A	A	A	A	-	A	A	A	A	A	в	-	A	A	C	1
orgnum	2	A	A	-	-	2	=	-	-	A	5	-	-	Č.	A	-	-	=	A	A	A	A	=	A	-	-	F
by Sauce	-	A	A	-	A	-	-	A	-	D	-	-	-	A	A	-	-	-	A	A	A	A	-	A	1.7	D	4
tannic Eluciorate	D	a	D		D	A	B	D	-	D	D	A	A	A	A	B	A	-	-	A	A	A	D	A	A	A	ŧ
tannous Chloride	-	-	A	-	-	5	-	-	-	D	-	-	-	A	-	A	-	-	-	A	A	A	-	A	1	-	+
larch	B	A	A	-	A	-	A	P	1	C	0	A	A	2	D D	P	-	2	P	2	A	A	10	A	1	A	ł
tearic Acid	B	A	A	2	B	A	A	C	F	C	C	A	A	A	A	P	D	-	A	A	A	-	P	B	B	0	÷
toddard Solvent	A	A	A	A	A	A	A	A	A	B	B	A	A	D	A	D	D	A	A	A	A	B	D	D	D	D	Ŧ
tyrene	A	A	A	-	A	12	1	À	12	-	A	1	A	A	2	1	đ	2	A	A	B	D	D	D	D	D	s.
ugar (Liquids)	A	A	A	A	A	-	A	A	-	B	B	4	A	A	A	-	A	+	A	A	A	A	1	B	-	A	t
ulfate Liquors	-	C	C		B	-	A	C	-	-	-	-	-	123	-	-	A	-	A	A	-	-	121	C	-	-	T
ulfur Chloride	-	D	D	D	D	-	-	C	D	-	-	A	A	A	A	A	D	-	A	C	A	D	-	D	D	D	T
ulfur Dioxide	-	A	A	C	A	A	В	B	-	-	-	D	A	D	D	C	D	A	A	A	D	D	C	B	A	D	1
ultur Dioxide (Dry)	A	A	A	-	A	-	A	A	C	A	B	D	A	-	A	D	-	-	A	A	A	-	-	D	-	D	1
ulture Indxide (Ury)	A	A	C	-	A	-	12	B	1-	B	B	A	A	D	D	-	2	-	B	A	A	D	-	D	B	C	4
ulturic Acid (1010%)	-	D	C	C	C	A	A	D	D	D	-	A	A	A	D	B	A	A	A	A	A	C	1	D	D	C	4
ulturic Acid (10%-/0%)	-	D	D	D	D	C	B	D	D	D	-	A	A	B	D	C	A	B	A	D	A	D	-	D	D	D	4
alfurous Acid	-	-	D	-	-	D	B	12	D	-	-	B	A	A	D	-	B	C	-	A	A	D	-	D	-		4
ulfund Chloride	C	C	B	C	c	A	B	D	17	D	D	A.	A	A	D	B	A	17	B	A	A	C	D	B	B	C	1
Voin	1	-	1	-	-	1-	-	E	12	-	-	A	A	-	2	-	-	-	-	A	-	-	15	-	15	17	+
allow	fē	A	A	-	A	E	12	-	15	1		1	1	A D	A	r	~		A	A	A	A	1	-	1	A	ł
annic Acid	B	A	A	A	C	A	B	B	1-	C	C	A	A	A	n	B	A	-	A	A	A	D	C	A	A	A	t
anning Liquors	E	A	A	-	c	A	A	A	12	12	1	A	A	2	12	5	A	-	A	A	A	C	-	12	12	12	
artaric Acid	B	A	B	в	C	A	B	A	C	D	D	A	A	A	A	B	A	-	A	A	A	D	C	A	-	A	t
etrachlorethane	-	-	A	1.4	-	A	A	-	-	-	-	D	A	D	A	-	A	4	A	A	A	D	-	-	D	D	đ
etrahydrofuran	-	A	A	-	D	1-	-	D	-	D	A	D	A	D	A	D	C	A	A	A	B	D	-	D	в	D	t
in-Fluoborate Plating 38°C	-	-	C	10	-	D	A	1-	-	-	-	A	A	A	D	-	A	-	-	D	A	B	-	C	1	1.0	1
in-Lead Plating 38°C	12	-	C	-	-	D	A	1=	1-	-	1-	A	A	A	D	-	A	-	-	D	A	B	-	C	15	1.7	1
owene, Toluoi	A	A	A	-	A	A	A	A	A	A	A	D	A	D	A	D	D	A	A	A	C	D	D	D	D	D	T
ciablocethane	A	A	A	-	A	-	1-	C	1-	C	C	-	A	A	A	-	A	A	A	A	A	A	15	A	12	1.5	4
richlorethylene	-	0	A	-	D	A	A	C	17	C	-	-	A	D	-	-	-	-	A	A	A	D	D	D	D	D	+
richloropropane	1ª	A	A	-	10	A	A	h	A	G	-	10	A	D	0	0	5	0	A	A	A	1D	10	D	10	0	+
ricresylphosphate	12	13	A	1	12	B	A	A	15	15	E	D	A	A	1	18	-	12	A	A	B	D	12	D	A	15	1
riethylamine	-	1-	12	-	1=	Ē	12	A	12	-	10	A	12	B	5	-	-	-	A	A	A	A	D	B	-	1-	1
urpentine	B	A	A	-	C	1-	A	B	C	B	B	A	A	D	A	D	B	A	A	A	A	D	-	D	D	D	đ
rine	-	A	A	-	B	-	1-	C	1-	B	-	A	1-	A	A	B	A	-	A	A	A	A	-	D	A	12	1
arnish (Use Viton @ for Aromatic)	A	A	A	A	A	1-	-	A	B	-	C	-	A	D	A	•	A	-	A	A	A	B	C	D	-	D	
egetable Juice	-	A	A	1	A	1-	-	C	1	D	-	-	-	A	A	15	-	-	A	A	A	A	B	D	1 -	D	1
inegar	A	A	A	A	D	A	A	B	B	C	D	A	A	A	A	в	A	A	A	A	A	C	-	B	A	C	1
vater, rresh	A	A	A	-	A	12	-	A	C	B	D	A	A	A	A	D	A	A	A	A	A	A	-	B	A	A	
Valer, Sall	-	A	A	-	B	1.7	-	B	C	D	-	A	-	A	A	-	A	A	A	A	A	A	-	B	A	A	4
Vater, Acid, Mine Vater, Distillard, Lab Grade 7	-	A	A	-	0	17	-	C	D	D	-	A	-	A	A	-	A	B	A	A	A	A	-	B		B	1
Veed Killers	-	A	A		B	42	1-	A	10	D	-	A	A	A	A	-	A	A	A	A	A	A	-	B	A	A	4
Whey	-	A	A		C	15		C	15	=	=	1	-	15	A	-	1	-	A	A	A	B	+-	c	1-	+7	4
/hiskey and Wines	1	A	A	-	B	íŤ	+-	-	10	-	1-	F	+-	1×	-	-	-	1-	A	A	A	A	-	17	1-	17	4
Vhite Liquor (Pulo Mill)	A	A	A	A	D	÷	1	B	B	D C	D	A	A	A	A	B	A	-	A	A	A	A	B	-A	A	A	9
and and a set of the many	1.7	A	A	-	17	10	~	- 11	12	16	-	A		1.4	A	-	A	1.	A	A	A	A	-	A	1.7	1.7	11

<u>Warning</u> The information on this chart was collected from reputable sources and is to be used ONLY as a guide by experienced personnel. We make no representations on the suitability of any materials for your applications.			=)	B D = No d	A = I Mod Se lata	No e Inor Jera Vere - Re	effe effe te e effer	ect ffec fect to A	t 	E.			Desj ch cc This	pite narts onc SE s is	bei s, vi entr RIC for	ng i ariat atio DU: Initia	ndie ion n o S I al n	DA cate s in f ch NJ	d a ten emi UF enc	GE s ge nper icals RY e or	ER mer ratu s ma MA nly a	ally re, p iy c Y ind	suit auso RE mus	sur e fa SL	e in e an ilun JL7 e cr	the nd e, r	
Chemical	303 Stainless Steel	304 Stainless Steel	316 Stainless Steel	440 Stainless Steel	Aluminium	Titanium	Hastelloy C	Cast Bronze	Brass	Cast Iron	Carbon Steel	PVC	Tefton PTFE	Noryl	Nylon	Polyethylene PE	Polypropylene PP	Ryton	Carbon	Ceramic Ak 01	Viton (FPM)	Buna N - Nitrile - NBR	Silicon	Neoprene	EPDM	Natural Rubber	Epoxy
Max Temperature in Deg C for Elastomers / Plastics												80	200	09	60		25 - 60		1		180	80		20	120	60	
Xylene	A	A	A	7	A	-	A	A	A	A	в	D	A	D	A	D	D	A	A	A	A	D	D	D	D	D	A
Zinc Chloride	D	A	B	B	D	A	В	D	D	D	D	A	A	A	A	B	Α	A	A	A	A	A	-	A	A	A	A
Zinc Hydrosulfate Zinc Hydrosulobite	B	A	A	A	D	A	B	B	C	C	D	C	A	A	A	B	A	A	A	A	A	A	-	A	A	c	A
ZINC PLATING	1	1.	A	-	10	1-	-	10	-	10	1	1-	2	I M	-	-	-	A		A	1-	A	-	A	A	1.5	1 4
Acid Chindde 60°C	1	-	In	1	1	N	In	10	1	1	1.2	1.			n	-		1.	1		1 8		1		1	1	1.8
Acid Sulfate Bath 66° C	12	1	C	授	1-	A	A	÷	1	1	18	D D	â	A	D	1	A	6	-	h	A	A	1	B	1-	-	D
Acid Fluoborate Bath R.T.	-	1-	-	c	1-	D	12	12	15	-	12	A	A	A	D	1	A	1	-	D	A	B	-	C	1.	-	A
Alkaline Cyanide Bath R.T.	-		1	A	-	A	A	1-	1-	1-	13	A	A	A	A		A	1	-	D	A	A	12	A	-	-	A
Zinc Sulfate	B	A	A	A	D	A	B	B	c	C	D	C	A	A	A	B	A	A	A	A	A	A	-	A	A	C	A
			-			-	1			5.0							-		-	-	-	-	-	-	-	-	-
	co	M	NO	NI	MA	TE	RI	AL	sι	JS	ED	IN	VA	L	/E	5											
400 SERIES STAINLESS STEELS	An str	alle uct idis	oy o ure atio	f irc and n ar	iro nd h	arb n co las i	on i inte	a ch nt 4 rove	iron 100 id p	niu seri	n. T es s ical	his stair and	serie niess 1 me	es i s sta cha	s us eel i inic	s m	y m ore	res res	ista ista	c du ntto ver	e to hig cart	its h te	man emp ster	rten era el. 1	sitie ture Mos	40	D
17-4 PH STAINLESS STEEL	an	d w	edg	nsit	n st	eel g	gate	e val	ves	ige l	sof	or s	pind ng s	lles	in t	s ste	erfly eel e	ves	ives	hig	h st	tren	gth	and	i ha	rdne	ess
	co	ndi	ion	s ap	on i	ach	ing	that	t of	the	300	sei	ies.	Prin	nar	ily u	sed	for	val	ve a	stee	dle	s an	d s	tem	s.,	
CARBON STEEL	1.									5.4					32								Lo				
	Ca fat ap	rbo igu plic	n st atlo	goo eel reng ns (has gth. can	bot Mai be u	h h nly used	igh use d in	and d in terr	i lov ga	ter te, g atu	npe	ratu e, ba up te	re s all a o 40	nd ind	eg C	, is k v	ver alve r ex	y to bo	ded	s an per	d b	ng a Is e) onn s.	ets.	lient . in t	hes	es.
CAST (GREY) IRON	An 'as Go pu ca	all ca od rch n al	oy c st' c qua asir so l	of in one lity og in oe p	on, i litio cas on	carb n. G t iro valv us o	irey in m es f or bi	and iron take from	sili n ha n ce n ce	icon as e xce rtai	, ft l xcel llem n pa	s ei llen t va irts	asy t dar lve b of th	npe bodi ne w	ast nin ies i iorli	and g pr and i as	has ope bor the	s go ertie met ma	od s ar s. C teri	pres nd is lare al q	s ea sho uali	e tig sily ould ty is	mai be lov	chin tak v ar	en v	her	n ngs
DUCTILE (SG) IRON	Ha wit Du as	th h ctil eas	con ighi e iro	npo er m on h as g	sitio nech nas t grey	on s hank the s iror	imil cal stre	ar to prop ngti ses	o Gi pert	rey ies, ste	lron sor el w es i	. Sp ne g ith nclt	grade the a	es a adva	eatr are l anta ies,	nent neat ige o bon	tre of b	odifi atec eing s et	es l to g at c.	imp limp	met prov	alur e du ca	gica uctil st ai	ity. nd i	mac	hine	ed
BRASS	Ge ap Pr	plic ima	ally atic ry u	goi ns ises	od c son	orre De D	R (c	n re lezio are f	nc r	tan esi sma	stan II va	Can t) al ilve	be s loys bod	suse and lies,	e no	able w w	e to ide is &	de- ly u ste	zind sed	ific in t	atio the v	n in wate	spo er in	du	ic stry.		-
BRONZE	Br rat ap us	onz ted plic	e is valv atio	wic ves i ins valv	in si due e be	use izes to i odie	d a up ts h s ar	nd a to 5 ligh nd b	onres	epte m. l ista ista	d as Jsec nce and	to p	e ind tens bittir spec	lust sive ng c cial	ly in orm	tand ste osio ys f	am am n. E	d for sys Bron sten	ten zei s a	essi n va is ea ind i	lves asy valv	an to n e di	d in naci	ma ine etc	rine and	d is	
ALUMINIUM	A	umi	-fer niur s. In	n ei val	s m xhib ives	etal, its i it is	ver exce s us	ry lig eller ed f	ght nt at	weig tmo	sph we	eric	g ap cor bot	ros	ion (us	natel resi uall	y o star	ne t nce on-v	hird	the car led)	e we n be or f	ver or h	t of y re	ste act wh	el. ive t eels		the

Useful Engineering Tables

Table C	G-29. Sc	hedule 40 Pip	e, Standard	l Dimensi	ons									
	D	iameters	Nominal	Circum	ference	Tr	ansverse Are	as	Length of P	ipe Per sq ft	Length of Pipe	Nominal V Fo	Veight Per oot	Number of
Size (in)	External	Approximate	Thickness (in)	External	Internal	External (sq. in)	Internal (sq. in)	Metal	External Surface	Internal Surface	Cubic Foot	Plain Ends	Threaded and	Threads Per Inch of Screw
	(11)	internar (iii)		(111)	()	(34 11)	(34 11)	(aq iii)	Feet	Feet	Feet		Coupled	
1/8	0.405	0.269	0.068	1.272	0.845	0.129	0.057	0.072	9.431	14.199	2533.775	0.244	0.245	27
1/4	0.540	0.364	0.088	1.696	1.114	0.229	0.104	0.125	7.073	10.493	1383.789	0.424	0.425	18
3/8	0.675	0.493	0.091	2.121	1.549	0.358	0.191	0.167	5.658	7.747	754.360	0.567	0.568	18
1/2	0.840	0.622	0.109	2.639	1.954	0.554	0.304	0.250	4.547	6.141	473.906	0.850	0.852	14
3/4	1.050	0.824	0.113	3.299	2.589	0.866	0.533	0.333	3.637	4.635	270.034	1.130	1.134	14
1	1.315	1.049	0.133	4.131	3.296	1.358	0.864	0.494	2.904	3.641	166.618	1.678	1.684	11-1/2
1-1/4	1.660	1.380	0.140	5.215	4.335	2.164	1.495	0.669	2.301	2.767	96.275	2.272	2.281	11-1/2
1-1/2	1.900	1.610	0.145	5.969	5.058	2.835	2.036	0.799	2.010	2.3/2	70.733	2./1/	2.731	11-1/2
2	2.3/5	2.067	0.154	7.461	6.494	4.430	3.355	1.0/5	1.608	1.84/	42.913	3.652	3.6/8	11-1/2
2-1/2	2.875	2.469	0.203	9.032	1./5/	6.492	4.788	1.704	1.328	1.54/	30.077	5.793	5.819	8
3	3.500	3.068	0.216	10.996	9.038	9.621	7.393	2.228	1.091	1.245	19.479	7.575	7.010	8
3-1/2	4.000	3.548	0.226	12.500	11.140	12.500	9.880	2.680	0.954	1.0/6	14.505	9.109	9.202	8
4	4.500	4.026	0.237	14.137	12.648	15.904	12.730	3.174	0.848	0.948	11.312	10.790	10.889	8
5	5.563	5.047	0.258	17.477	15.850	24.300	20.006	4.300	0.666	0.750	7.198	14.01/	14.810	8
0	0.020	7 091	0.200	20.013	19.034	59 406	20.091 50.007	0.001	0.370	0.029	4.904	10.9/4	19.100	0
10	10.025	10.020	0.322	27.090	23.073	00.762	70 055	0.399	0.442	0.470	2.070	20.004	20.009	0
10	10.750	10.020	0.305	33.112	31.479	90.703	70.000	11.900	0.355	0.301	1.020	40.403	41.132	0
12	12.750	11.938	0.406	40.055	37.699	127.640	111.900	15.740	0.299	0.318	1.288	53.600	_	
14	14.000	13.125	0.437	43.982	41.217	153.940	135.300	18.640	0.272	0.280	1.069	63.000	_	
16	16.000	15.000	0.500	50.265	47.123	201.050	176.700	24.350	0.238	0.254	0.817	78.000	_	_
18	18.000	16.874	0.563	56.548	52.998	254.850	224.000	30.850	0.212	0.226	0.643	105.000	_	_
20	20.000	18.814	0.593	62.831	59.093	314.150	278.000	36.150	0.191	0.203	0.519	123.000	_	_
24	24.000	22.626	0.687	75.398	71.063	452.400	402.100	50.300	0.159	0.169	0.358	171.000	—	l —

-20°F Up

Copper Pipe

0.000

0.442 0.655

0.888 **1.100** 1.338

1.570 1.794 2.008 2.255 2.500

2.960 3.422 **3.900** 4.380 4.870 6.110 7.388

ded	for Fittin	or Fittings–Schedule 40 Pipe					Elongation in Inches Per 100 ft From			
ipe		Length in Fe	et to Be A	dded Run		Temp (°F)	Cast Iron Pine	Steel Pipe	Wrought Iron Pine	
Size (in)	Standard Elbow	Side Outlet Tee	Gate Valve*	Globe Valve*	Angle Valve*	-20 0	0.000	0.000	0.000	
1/2	1.3	3	0.3	14	7	20	0.255	0.293	0.306	
3/4	1.8	4	0.4	18	10	40	0.390	0.430	0.465	
1	2.2	5	0.5	23	12	60	0.518	0.593	0.620	
-1/4	3.0	6	0.6	29	15	80	0.649	0.725	0.780	
1/2	3.5	7	0.8	34	18	100	0.787	0.898	0.939	
2	4.3	8	10	46	22	120	0.926	1.055	1.110	
-1/2	5.0	11	11	54	27	140	1.051	1.209	1.265	
2	6.5	12	1.1	66	2/	160	1.200	1.368	1.427	
1/2	0.0	15	1.4	00	40	200	1.340	1.020	1.597	
- 1/2	0.0	10	1.0	00	40	240	1.495	2 020	2 110	
4	9.0	10	1.9	92	40	280	2 085	2,350	2 465	
5	11.0	22	2.2	112	50	320	2 395	2 690	2 800	
6	13.0	27	2.8	136	6/	360	2,700	3.029	3.175	
8	17.0	35	3.7	180	92	400	3.008	3.375	3.521	
10	21.0	45	4.6	230	112	500	3.847	4.296	4.477	
12	27.0	53	5.5	270	132	600	4.725	5.247	5.455	

From Piping Handbook, by Walker and Crocker, by special permission. Table CG-31 gives the expansion from -20°F to temperature in question. To obtain the amount of expansion between any two temperatures, take the difference between the figures in the table for those temperatures. For example, if cast iron pipe is installed at a temperature of 80°F and is operated at 240°F, the expansion would be 1.780 - 0.649 = 1.131 in.

Table CG-32	2. Diameters	and Areas of	Circles and D	rill Sizes							
Drill Size	Diameter	Area	Drill Size	Diameter	Area	Drill Size	Diameter	Area	Drill Size	Diameter	Area
3/64	.0469	.00173	27	.1440	.01629	C	.2420	.04600	27/64	.4219	.13920
55	.0520	.00212	26	.1470	.01697	D	.2460	.04753	7/16	.4375	.15033
54	.0550	.00238	25	.1495	.01705	1/4	.2500	.04909	29/64	.4531	.16117
53	.0595	.00278	24	.1520	.01815	E	.2500	.04909	15/32	.4688	.17257
1/16	.0625	.00307	23	.1540	.01863	F	.2570	.05187	31/64	.4844	.18398
52	.0635	.00317	5/32	.1562	.01917	G	.2610	.05350	1/2	.5000	.19635
51	.0670	.00353	22	.1570	.01936	17/64	.2656	.05515	33/64	.5156	.20831
50	.0700	.00385	21	.1590	.01986	Н	.2660	.05557	17/32	.5312	.22166
49	.0730	.00419	20	.1610	.02036		.2720	.05811	9/16	.5625	.24850
48	.0760	.00454	19	.1660	.02164	J	.2770	.06026	19/32	.5937	.27688
5/64	.0781	.00479	18	.1695	.02256	K	.2810	.06202	5/8	.6250	.30680
47	.0785	.00484	11/64	.1719	.02320	9/32	.2812	.06213	21/32	.6562	.33824
46	.0810	.00515	17	.1730	.02351	L	.2900	.06605	11/16	.6875	.37122
45	.0820	.00528	16	.1770	.02461	M	.2950	.06835	23/32	.7187	.40574
44	.0860	.00581	15	.1800	.02545	19/64	.2969	.06881	3/4	.7500	.44179
43	.0890	.00622	14	.1820	.02602	N	.3020	.07163	25/32	.7812	.47937
42	.0935	.00687	13	.1850	.02688	5/16	.3125	.07670	13/16	.8125	.51849
3/32	.0938	.00690	3/16	.1875	.02761	0	.3160	.07843	27/32	.8437	.55914
41	.0960	.00724	12	.1890	.02806	P	.3230	.08194	7/8	.8750	.60132
40	.0980	.00754	11	.1910	.02865	21/64	.3281	.08449	29/32	.9062	.64504
39	.0995	.00778	10	.1935	.02941	Q	.3320	.08657	15/16	.9375	.69029
38	.1015	.00809	9	.1960	.03017	R	.3390	.09026	31/32	.9687	.73708
37	.1040	.00850	8	.1990	.03110	11/32	.3438	.09281	1	1.0000	.78540
36	.1065	.00891	7	.2010	.03173	S	.3480	.09511	1-1/16	1.0625	.88664
7/64	.1094	.00940	13/64	.2031	.03241	T	.3580	.10066	1-1/8	1.1250	.99402
35	.1100	.00950	6	.2040	.03268	23/64	.3594	.10122	1-3/16	1.1875	1.1075
34	.1110	.00968	5	.2055	.03317	U	.3680	.10636	1-1/4	1.2500	1.2272
33	.1130	.01003	4	.2090	.03431	3/8	.3750	.11045	1-5/16	1.3125	1.3530
32	.1160	.01039	3	.2130	.03563	V	.3770	.11163	1-3/8	1.3750	1.4849
31	.1200	.01131	7/32	.2188	.03758	W	.3860	.11702	1-7/16	1.4375	1.6230
1/8	.1250	.01227	2	.2210	.03836	25/64	.3906	.11946	1-1/2	1.5000	1.7671
30	.1285	.01242	1	.2280	.04083	X	.3970	.12379	1-5/8	1.6250	2.0739
29	.1360	.01453	A	.2340	.04301	Y	.4040	.12819	1-3/4	1.7500	2.4053
28	.1405	.01550	15/64	.2344	.04314	13/32	.4062	.12962	1-7/8	1.8750	2.7612
9/64	.1406	.01553	В	.2380	.04449	I Z	.4130	.13396	2	2.0000	3.1416

Conversion Factors

	Power	
Multiply	By	To Get
Boiler hp	33,472	Btu/hr
Boiler hp	34.5	lbs H₂O evap. at 212°F
Horsepower	2,540	Btu/hr
Horsepower	550	ft-lbs/sec
Horsepower	33,000	ft-lbs/min
Horsepower	42.42	Btu/min
Horsepower	0.7457	Kilowatts
Kilowatts	3,415	Btu/hr
Kilowatts	56.92	Btu/min
Watts	44.26	ft-lbs/min
Watts	0.7378	ft-lbs/sec
Watts	0.05692	Btu/min
Tons refrig.	12,000	Btu/hr
Tons refrig.	200	Btu/min
Btu/hr	0.00002986	Boiler hp
lbs H₂O evap. at 212°F	0.0290	Boiler hp
Btu/hr	0.000393	Horsepower
ft-lbs/sec	0.00182	Horsepower
ft-lbs/min	0.0000303	Horsepower
Btu/min	0.0236	Horsepower
Kilowatts	1.341	Horsepower
Btu/hr	0.000293	Kilowatts
Btu/min	0.01757	Kilowatts
ft-lbs/min	0.02259	Watts
ft-lbs/sec	1.355	Watts
Btu/min	1.757	Watts
Btu/hr	0.0000833	Tons Refrig.
Btu/min	0.005	Tons Refrig.

	Energy	
Multiply	Ву	To Get
Btu	778	ft-lbs
Btu	0.000393	hp-hrs
Btu	0.000293	kw-hrs
		{lbs H ₂ O evap.)
Btu	0.0010307	at 212°F
Btu	0.293	Watt-hrs
ft-lbs	0.3765	Watt-hrs
latent heat} of ice	143.33	Btu/Ib H ₂ O
lbs H₂O evap.} at 212°F	0.284	kw-hrs
lbs H₂O evap.} at 212°F	0.381	hp-hrs
ft-lbs	0.001287	Btu
hp-hrs	2,540	Btu
kw-hrs	3,415	Btu
lbs H₂O evap.} at 212°F	970.4	Btu
Watt-hrs	3.415	Btu
Watt-hrs	2,656	ft-lbs
Btu/Ib H₂O	0.006977	{Latent heat of ice
kw-hrs	3.52	{lbs H ₂ O evap. at 212°F
hp-hrs	2.63	{lbs H ₂ O evap. at 212°F

	11033010	
Multiply	By	To Get
		{in Mercury
atmospheres	29.92	(at 62°F)
		{in H₂O
atmospheres	406.8	(at 62°F)
		{ft. H₂O
atmospheres	33.90	(at 62°F)
atmospheres	14.70	lbs/in ²
atmospheres	1.058	ton/ft ²
in. H₂O}		{in. Mercury
(at 62°F)	0.0737	(at 62°F)
ft H₂O}		{in. Mercury
(at 62°F)	0.881	(at 62°F)
ft H₂O}		
(at 62°F)	0.4335	lbs/in ²
ft H₂O}		
(at 62°F)	62.37	lbs/ft ²
in. Mercury}		
(at 62°F)	70.73	lbs/ft ²
in. Mercury}		
(at 62°F)	0.4912	lbs/in ²
in. Mercury}		
(at 62°F)	0.03342	atmospheres
in. H₂O}		
(at 62°F)	0.002458	atmospheres
ft. H₂0}		
(at 62°F)	0.0295	atmospheres
lbs/in ²	0.0680	atmospheres
ton/ft ²	0.945	atmospheres
in. Mercury}		{in. H₂0
(at 62°F)	13.57	(at 62°F)
in. Mercury}		{ft H₂O
(at 62°F)	1.131	(at 62°F)
{ft H₂0		
lbs/in ²	2.309	(at 62°F)
{ft H₂0)		
lbs/ft ²	0.01603	(at 62°F)
{in. Mercury		
lbs/ft ²	0.014138	(at 62°F)
{in Mercury		
lbs/in ²	2.042	(at 62°F)
lbs/in ²	0.0689	Bar
lbs/in ²	0.0703	kg/cm ²

Velocity of Flow							
Multiply	Ву	To Get					
ft/min	0.01139	miles/hr					
ft/min	0.01667	ft/sec					
cu ft/min	0.1247	gal/sec					
cu ft/sec	448.8	gal/min					
miles/hr	88	ft/min					
ft/sec	60	ft/min					
gal/sec	8.02	cu ft/min					
gal/min	0.002228	cu ft/sec					
	Temnerature	Temperature					

ft/min	0.01667	ft/sec			
cu ft/min	0.1247	gal/sec			
cu ft/sec	448.8	gal/min			
miles/hr	88	ft/min			
ft/sec	60	ft/min			
gal/sec	8.02	cu ft/min			
gal/min	0.002228	cu ft/sec			
Temperature					
°F = (°C x 1.8) + 32					
°C = (°F - 32) ÷ 1.8					

	Weight	
Multiply	Ву	To Get
lbs	7,000	grains
lbs H₂O		
(60°F)	0.01602	cu ft H₂O
lbs H ₂ O		
(60°F)	0.1198	gal H₂O
tons (long)	2,240	lbs
tons (short)	2,000	lbs
grains	0.000143	lbs
lbs H₂O		
cu ft H₂O	62.37	(60°F)
lbs H ₂ O		
gal H ₂ O	8.3453	(60°F)
lbs	0.000446	tons (long)
lbs	0.000500	tons (short)

Circular Measure					
Multiply	By	To Get			
Degrees	0.01745	Radians			
Minutes	0.00029	Radians			
Diameter	3.142	Circumference			
Radians	57.3	Degrees			
Radians	3,438	Minutes			
Circumference	0.3183	Diameter			

Volume						
Multiply	By	To Get				
Barrels (oil)	42	gal (oil)				
cu ft	1,728	cu in				
cu ft	7.48	gal				
cu in	0.00433	gal				
gal (oil)	0.0238	barrels (oil)				
cu in	0.000579	cu ft				
gal	0.1337	cu ft				
gal	231	cu in				

Heat Transmission				
Multiply	By	To Get		
Btu/in}		{Btu/ft		
/sq ft	0.0833	/sq ft		
/hr/°F		/hr/°F		
Btu/ft}		{Btu/in		
/sq ft	12	/sq ft		
/hr/°F		/hr/°F		

Fractions and Decimals					
Multiply	By	To Get			
Sixty-fourths	0.015625	Decimal			
Thirty-seconds	0.03125	Decimal			
Sixteenths	0.0625	Decimal			
Eighths	0.125	Decimal			
Fourths	0.250	Decimal			
Halves	0.500	Decimal			
Decimal	64	Sixty-fourths			
Decimal	32	Thirty-seconds			
Decimal	16	Sixteenths			
Decimal	8	Eighths			
Decimal	4	Fourths			
Decimal	2	Halves			

Gallons shown are U.S. standard.

Specific Heat—Specific Gravity

Table CG-33. Physical Properties of	Liquids and	Solids	
	Liquid (L) or Solid (S)	sp gr @ 60-70°F	sp ht @ 60°F Btu/lb-°F
Acetic acid 100%	1	1.05	0.48
Acetic acid 10%		1.00	0.40
Acetone 100%		0.78	0.50
Alcohol ethyl 95%	-	0.81	0.60
Alcohol methyl 90%		0.01	0.65
Aluminum	Š	2 64	0.00
Ammonia 100%	l	0.61	1 10
Ammonia 26%	- I	0.90	1.00
Aroclor	Ĺ	1.44	0.28
Asbestos board	S	0.88	0.19
Asphalt	L	1.00	0.42
Asphalt, solid	S	1.1-1.5	0.22-0.4
Benzene	L	0.84	0.41
Brickwork & Masonry	S	1.6-2.0	0.22
Brine - calcium chloride, 25%	L	1.23	0.689
Brine - sodium chloride, 25%	L	1.19	0.786
Clay, dry	S	1.9-2.4	0.224
Coal	S	1.2-1.8	0.26-0.37
Coal tars	S	1.20	0.35@40
Coke, solid	S	1.0-1.4	0.265
Copper	S	8.82	0.10
Cork	S	0.25	0.48
Cotton, cloth	S	1.50	0.32
Cottonseed oil	L	0.95	0.47
Dowtherm A	L	0.99	0.63
Dowtherm C	L	1.10	0.35-0.65
Ethylene glycol	L	1.11	0.58
Fatty acid - palmitic	L	0.85	0.653
Fatty acid - stearic	L	0.84	0.550
Fish, fresh, average	S		0.75-0.82
Fruit, fresh, average	S	0 70	0.80-0.88
Gasoline	L	0.73	0.53
Glass, Pyrex	3 C	2.23 0.070	0.20
Glass, Wool	3	0.072	0.157
1 part dry glug	L	1.09	0.89
Givenrol 100% (givenrin)	1	1 26	0.58
Honey	ь 1	1.20	0.30
Hydrochloric acid 31.5% (muriatic)		1 15	0.60
Hydrochloric acid, 01.5% (muriatic)	L I	1.05	0.00
	S	0.90	0.50
Ice Cream	S	0.00	0.00
Lard	Š	0.92	0.64
Lead	S	11.34	0.031
Leather	S	0.86-1.02	0.36
Linseed oil	Ĺ	0.93	0.44
Magnesia, 85%	L	0.208	0.27
Maple syrup	L		0.48
Meat, fresh, average	S		0.780
Milk	L	1.03	0.90-0.93
Nickel	S	8.90	0.11
Nitric acid, 95%	L	1.50	0.50
Nitric acid, 60%	L	1.37	0.64
Nitric acid, 10%	L	1.05	0.90
No. 1 Fuel Oil (kerosene)	L	0.81	0.47
No. 2 Fuel Oil	L	0.86	0.44
No. 3 Fuel Oil	L	0.88	0.43
No. 4 Fuel Oil	L	0.90	0.42
No. 5 Fuel Oil	L	0.93	0.41
No. 6 Fuel Oil	L	0.95	0.40

Table CG-33. (cont.)	Physical Prope	rties of Liqu	ids and Solic	s		
		Liquid (L) or Solid (S)	sp gr @ 60-70°F	sp ht @ 60°F Btu/lb-°F		
API Mid-continent cr	ude	L	.085	0.44		
API gas oil		L	0.88	0.42		
Paper		S	1.7-1.15	0.45		
Paraffin		S	0.86-0.91	0.62		
Paraffin, melted		L	0.90	0.69		
Phenol (carbolic aci	d)	L	1.07	0.56		
Phosphoric acid. 20%	6	Ĺ	1.11	0.85		
Phosphoric acid, 10%	6	L	1.05	0.93		
Phthalic anhydride		Ĺ	1.53	0.232		
Rubber, vulcanized		s	1.10	0.415		
SAE - SW (#8 machi	ne lube oil)	Ĺ	0.88			
SAE - 20 (#20 machi	ine lube oil)	Ē	0.89			
SAF - 30 (#30 machi	ne lube oil)		0.89			
Sand		s	1 4-1 76	0 19		
Sea water		Ĭ	1 03	n 94		
Silk		5	1 25-1 35	0.34		
Sodium hydroxide 50	% (caustic acid)		1 53	0.00		
Sodium hydroxide			1 33	0.70		
Souhean oil	0 /0		0.02	0.04		
Stool mild @ 70			7.00	0.24-0.33		
Steel, milli @ 70) corioc	8 8	7.90 9.04	0.11		
Sucross 600/ augor	301103	3	1.00	0.12		
Sucrose, 60% sugar	syrup		1.29	0.74		
Sucrose, 40% Sugar	syrup		1.10	0.00		
Suyar, calle & beel		3	1.00	0.30		
Sullui Culturia asid 1100/ /	(f)		2.00	0.203		
Sulfuric acid, 110% ((iuming)		1.04	0.27		
Sulfuric acid, 98%		L	1.84	0.35		
Sulfuric acid, 60%			1.50	0.52		
Sulfuric acid, 20%	- 1)		1.14	0.84		
Titanium (commerci	ai)	3	4.50	0.13		
Toluene			0.86	0.42		
Irichloroethylene			1.62	0.215		
letrachloride carboi	1	L	1.58	0.21		
lurpentine, spirits of		L	0.86	0.42		
Vegetables, fresh, av	erage	S		0.73-0.94		
Water		L	1.00	1.00		
Wines, table, dessert	, average	L	1.03	0.90		
Woods, vary from		S	0.35-0.9	0.90		
Wool		S	1.32	0.325		
Zinc		S	7.05	0.095		
Table CC 24 Dhuaia	ol Droportion of	Casas				
Table CG-54. Physic	n nr @ All	-70°F	snht@6N°F	- Btu/lh-°F		
Δir	1 00		0.0			
Ammonia	1.00		0.2	.т 54		
Ronzono	0.00		0.54			
Butano	2 00		0.325			
Carbon diavida	2.00		0.400			
	1.00		0.21			
	0.97		0.255			
UNUTINE	1 2.50	I	U. I.	10		

1.10

0.97

0.069

1.20

0.55

0.97

1.10

1.50

2.30

0.50

0.45

0.16

3.42

0.25

0.60

0.253

0.225

0.46

0.162

0.453

Ethane

Ethylene

Freon - 12

Hydrogen

Methane

Nitrogen **Oxygen**

Propane

Sulfur dioxide

Water vapor (steam)

Hydrogen sulfide

How to Size Condensate Return Lines

The sizing of condensate return lines presents several problems that differ from those of sizing steam or water lines. The most significant of these is the handling of flash steam. Although a return line must handle both water and flash steam, the volume of flash steam is many times greater than the volume of condensate. For the values in Chart CG-26 the volume of flash steam is 96% to 99% of the total volume. Consequently, only flash steam is considered in Chart CG-26.

Condensate return lines should be sized to have a reasonable velocity at an acceptable pressure drop. Chart CG-26 is based on having a constant velocity of 7,000 feet per minute or below, using Schedule 40 pipe. Additional factors that should also be considered—depending on water conditions—are dirt, fouling, corrosion and erosion.

For a given supply pressure to the trap and a return line pressure, along with an assumed pressure drop per 100 feet of pipe (Δ P/L) and knowing the condensate flow rate, the proper pipe diameter can be selected from Chart CG-26.

How to Use Chart CG-26

Example 1: A condensate system has the steam supply at 30 psig. The return line is non-vented and at 0 psig. The return line is to have the capacity for returning 2,000 lbs/hr of condensate. What must be the size of the return line?

Solution: Since the system will be throttling the condensate from 30 psig to 0 psig, there will be flash steam (assuming no subcooling), and the system will be a dry-closed (not completely full of liquid and not vented to atmosphere) return. The data in Chart CG-26 can be used. A pressure of 1/4 psig per 100 feet is selected. In Chart CG-26 for a 30 psig supply and a 0 psig return for $\Delta P/L = 1/4$, a pipe size for the return line of 2" is selected.

Example 2: A condensate return system has the steam supply at 100 psig and the return line is non-vented and at 0 psig. The return line is horizontal and must have a capacity of 2,500 lbs/hr. What size pipe is required?

Solution: Since the system will be throttling non-subcooled condensate from 100 psig to 0 psig, there will be flash steam, and the system will be a dry-closed return. Selecting a pressure drop of 1 psi per 100 feet yields from Chart CG-26 a non-recommended situation (a). Select a pressure drop of 1/4 psi per 100 feet and then a 2-1/2" pipe can be used for this system.

Chart C	G-26. Flow Ra	te (Ibs/hr) fo	or Dry-Clos	ed Returns	;								
	$\Delta P/L$	Supply I	Pressure =	5 psig	Supply	Pressure =	15 psig	Supply	Pressure = 3	30 psig	Supply P	resssure =	50 psig
	psi/100'	Return I	ressure =	0 psig	Return	Pressure =	0 psig	Return	Pressure =	0 psig	Return	Pressure =	o psig
D, in	\sim	1/16	1/4	1	1/16	1/4	1	1/16	1/4	1	1/16	1/4	1
	1/2	240	520	1,100	95	210	450	60	130	274	42	92	200
	3/4	510	1,120	2,400	210	450	950	130	280	590	91	200	420
	1	1,000	2,150	4,540	400	860	1,820	250	530	1,120	180	380	800
	1-1/4	2,100	4,500	9,500	840	1,800	3,800	520	1,110	2,340	370	800	1,680
	1-1/2	3,170	6,780	14,200	1,270	2,720	5,700	780	1,670	3,510	560	1,200	2,520
	2	6,240	13,300	а	2,500	5,320	а	1,540	3,270	a	1,110	2,350	a
	2-1/2	10,000	21,300	а	4,030	8,520	а	2,480	5,250	а	1,780	3,780	а
	3	18,000	38,000	а	7,200	15,200	а	4,440	9,360	а	3,190	6,730	а
	4	37,200	78,000	а	14,900	31,300	а	9,180	19,200	а	6,660	13,800	а
	6	110,500	а	a	44,300	a	а	27,300	а	а	19,600	a	а
	8	228,600	а	а	91,700	a	а	56,400	a	а	40,500	a	a

Chart C	hart CG-26. Flow Rate (lbs/hr) for Dry-Closed Returns													
\sim	$\Delta P/L$	Supply Pi	ressure = 1	00 psig	Supply P	ressure = 1	150 psig	Supply F	Pressure = 1	00 psig	Supply P	resssure =	150 psig	
`	psi/100'	Return F	ressure =	0 psig	Return	Pressure =	0 psig	Return	Pressure = [·]	15 psig	Return I	ressure =	15 psig	
D, in		1/16	1/4	1	1/16	1/4	1	1/16	1/4	1	1/16	1/4	1	
	1/2	28	62	133	23	51	109	56	120	260	43	93	200	
	3/4	62	134	290	50	110	230	120	260	560	93	200	420	
	1	120	260	544	100	210	450	240	500	1,060	180	390	800	
	1-1/4	250	540	1,130	200	440	930	500	1,060	2,200	380	800	1,680	
	1-1/2	380	810	1,700	310	660	1,400	750	1,600	3,320	570	1,210	2,500	
	2	750	1,590	а	610	1,300	а	1,470	3,100	6,450	1,120	2,350	4,900	
	2-1/2	1,200	2,550	а	980	2,100	а	2,370	5,000	10,300	1,800	3,780	7,800	
	3	2,160	4,550	а	1,760	3,710	а	4,230	8,860	а	3,200	6,710	а	
	4	4,460	9,340	а	3,640	7,630	а	8,730	18,200	а	6,620	13,800	а	
	6	13,200	а	а	10,800	а	а	25,900	53,600	а	19,600	40,600	а	
	8	27 400	a	а	22 400	a	a	53 400	110 300	a	40 500	83 600	а	

^a For these sizes and pressure losses the velocity is above 7,000 fpm. Select another combination of size and pressure loss. Reprinted by permission from ASHRAE Handbook - 1985 Fundamentals.

Pipe Sizing Steam Supply and Condensate Return Lines

ARMSTRONG PRODUCT PAGES

Pipe Sizing Steam Supply and Condensate Return Lines

Sizing Charts

Chart CG-25, page CG-51, is the basic chart for determining the flow rate and velocity of steam in Schedule 40 pipe for various values of pressure drop per 100 ft, based on 0 psig saturated steam. Using the multiplier chart (Chart CG-24), Chart CG-25 can be used at all saturation pressures between 0 and 200 psig (see Example).

These Charts are based on the Moody Friction Factor, which considers the Reynolds number and the roughness of the internal pipe surfaces.

Notes: Based on Moody Friction Factor where flow of condensate does not inhibit the flow of steam. See Chart CG-24 for obtaining flow rates and velocities of all saturation pressures between 0 to 200 psig: see Example.

Pipe Sizing

Two principal factors determine pipe sizing in a steam system:

1. The initial pressure at the boiler and the allowable pressure drop of the total system. The total pressure drop in the system should not exceed 20% of the total maximum pressure at the boiler. This includes all drops—line loss, elbows, valves, etc. Remember, pressure drops are a loss of energy.

Chart CG-24. Velocity Multiplier Chart for CG-25.

2. Steam velocity. Erosion and noise increase with velocity. Reasonable velocities for process steam are 6,000 to 12,000 fpm, but lower pressure heating systems normally have lower velocities. Another consideration is future expansion. Size your lines for the foreseeable future. If ever in doubt, you will have less trouble with oversized lines than with ones that are marginal.

Use of Basic and Velocity Multiplier Charts Example.

Given a flow rate of 6,700 lb/hr, an initial steam pressure of 100 psig, and a pressure drop of 11 psi/100 ft, find the size of Schedule 40 pipe required and the velocity of steam in the pipe.

Solution: The following steps are illustrated by the broken line on Chart CG-25 and Chart CG-24.

- 1. Enter Chart CG-25 at a flow rate of 6,700 lb/hr, and move vertically to the horizontal line at 100 psig.
- Follow inclined multiplier line (upward and to the left) to horizontal 0 psig line. The equivalent mass flow at 0 psig is about 2,500 lb/hr.
- 3. Follow the 2,500 lb/hr line vertically until it intersects the horizontal line at 11 psi per 100 ft pressure drop. Nominal pipe size is 2-1/2 in. The equivalent steam velocity at 0 psig is about 32,700 fpm.
- 4. To find the steam velocity at 100 psig, locate the value of 32,700 fpm on the ordinate of the velocity multiplier chart (Chart CG-24) at 0 psig.
- 5. Move along the inclined multiplier line (downward and to the right) until it intersects the vertical 100 psig pressure line. The velocity as read from the right (or left) scale is about 13,000 fpm.

NOTE: Steps 1 through 5 would be rearranged or reversed if different data were given.

Reproduced with permission of the American Society of Heating, Refrigerating and Air-Conditioning Engineers from the 1997 ASHRAE Handbook.

Condensate Pipe Sizing

The following is a very simple guide for condensate pipe sizing and is based on steel pipe. If Copper pipe is used you should go up a size.

There are many helpful charts on the internet for extremely accurate pipe sizing but the chart below will suffice for 99.99% of applications.

Pipe Size mm	15	20	25	32	40	50	65	80	100
Flow kg/hr	160	370	690	1500	2290	4390	8900	13,800	28,200

	Diameter	Bolt	Number	Diameter		Diameter	Diameter	Height		Thickness	of flange	
BS EN 1092	of flange	circle diameter	of bolts	of bolts	Diameter of holes	of raised face(3) iron	of raised face(3) steel	of raised face(3)	Grey cast iron	Copper alloy	Cast and forged steel	Ductile cast iron
PN 6	80	55	4	MIO	П	38	40	2	12 (I)	-	12	-
PN 10	95	65	4	M12	14	46	45	2	14 (I)	-	16	14
PN 16	95	65	4	M12	14	46	45	2	14 (I)	6 (2)	16	14
PN 25	95	65	4	M12	14	46	45	2	16 (I)	8 (2)	16	14
PN 40	95	65	4	M12	14	46	45	2	-	9 (2)	16	16
PN 64	105	75	4	M12	14	-	45	2	-	-	20	-
ANSI												
Class 125/150	31/2 (89)	2 ³ / ₈ (60)	4	1/2 (13)	5/ ₈ (16)	-	13/ ₈ (35)	1/ ₁₆ (2)	-	5/ ₁₆ (8)	7/ ₁₆ (11)	-
Class 300	33/4 (95)	2 ⁵ / ₈ (67)	4	1/2 (13)	5/ ₈ (16)	-	13/ ₈ (35)	1/ ₁₆ (2)	-	1/2 (13)	1/2 (13)	-
Class 600	33/4 (95)	2 ⁵ / ₈ (67)	4	1/2 (13)	5/8 (16)	-	13/ ₈ (35)	1/4 (6)	-	-	9/ ₁₆ (14)	-
Class 900	43/ ₄ (121)	31/4 (83)	4	3/ ₄ (19)	7/8 (22)	-	13/ ₈ (35)	1/4 (6)	-	-	7/8 (22)	-
Class 1500	43/ ₄ (121)	31/4 (83)	4	3/ ₄ (19)	7/8 (22)	-	13/ ₈ (35)	1/4 (6)	-	-	7/8 (22)	-
BS 10												
Table A	33/4 (95)	2 ⁵ / ₈ (67)	4	1/2 (13)	9/ ₁₆ (14)	-	-	-	1/2 (13)	1/ ₄ (6)	-	-
Table D	33/4 (95)	2 ⁵ /8 (67)	4	1/2 (13)	⁹ /16 (14)	-	-	-	1/2 (13)	1/4 (6)	³ /8 (10)	-
Table E	33/4 (95)	2 ⁵ /8 (67)	4	1/2 (13)	^{9/} 16 (14)	-	-	-	1/2 (13)	1/4 (6)	³ /8 (10)	-
Table F	33/4 (95)	2 ⁵ /8 (67)	4	1/2 (13)	^{9/} 16 (14)	-	-	-	1/2 (13)	⁵ / ₁₆ (8)	³ /8 (10)	-
Table H	41/2 (114)	31/4 (83)	4	⁵ /8 (16)	11/ ₁₆ (17)	-	21/4 (57)	1/ ₁₆ (2)	⁵ /8 (16)	³ /8 (10)	1/2 (13)	-

Nominal Size 15mm (1/2 in)

(1) These flange thicknesses are also valid for ductile iron flanges type 21-2

SECTION

	Diameter	Bolt	Number	Diameter		Diameter	Diameter	Height		Thickness (of flange	
BS EN 1092	of flange	circle diameter	of bolts	of bolts	Diameter of holes	of raised face(3) iron	of raised face(3) steel	of raised face(3)	Grey cast iron	Copper alloy	Cast and forged steel	Ductile cast iron
PN 6	90	65	4	M10	П	48	50	2	14 (I)	-	14	-
PN IO	105	75	4	M12	14	56	58	2	16 (I)	-	18	16
PN 16	105	75	4	M12	14	56	58	2	16 (I)	6 (2)	18	16
PN 25	105	75	4	M12	14	56	58	2	18 (I)	8 (2)	18	16
PN 40	105	75	4	M12	14	56	58	2	-	9 (2)	18	18
PN 64	130	90	4	M16	18	-	58	2	-	-	22	-
PN 100	130	90	4	M16	18	-	58	2	-	-	22	-
ANSI												
Class 125/150	3 ⁷ /8 (98)	23/4 (70)	4	1/2 (13)	⁵ /8 (16)	-	/ ₁₆ (43)	1/ ₁₆ (2)	-	11/32 (9)	^{9/} 16 (14)	-
Class 300	4 ⁵ /8 (117)	31/4 (83)	4	⁵ /8 (16)	³ /4 (19)	-	/ ₁₆ (43)	1/ ₁₆ (2)	-	17/32 (13)	⁵ /8 (16)	-
Class 600	4 ⁵ /8 (117)	31/4 (83)	4	⁵ /8 (16)	3/4 (19)	-	/ ₁₆ (43)	1/4 (6)	-	-	⁵ /8 (16)	-
Class 900	51/ ₈ (130)	31/2 (89)	4	3/ ₄ (19)	⁷ / ₈ (22)	-	/ ₁₆ (43)	1/ ₄ (6)	-	-	I (25)	-
Class 1500	51/ ₈ (130)	31/2 (89)	4	3/4 (19)	⁷ / ₈ (22)	-	/ ₁₆ (43)	1/4 (6)	-	-	I (25)	-
BS 10												
Table A	4 (102)	27/ ₈ (73)	4	1/2 (13)	9/ ₁₆ (14)	-	-	-	1/2 (13)	1/4 (6)	-	-
Table D	4 (102)	27/ ₈ (73)	4	1/2 (13)	9/ ₁₆ (14)	-	-	-	1/2 (13)	1/4 (6)	3/ ₈ (10)	-
Table E	4 (102)	27/ ₈ (73)	4	1/2 (13)	9/ ₁₆ (14)	-	-	-	1/2 (13)	1/4 (6)	3/ ₈ (10)	-
Table F	4 (102)	27/8 (73)	4	1/2 (13)	9/ ₁₆ (14)	-	-	-	1/2 (13)	5/ ₁₆ (8)	³ / ₈ (10)	-
Table H	41/2 (114)	31/4 (83)	4	5/8 (16)	11/ ₁₆ (17)	-	21/ ₄ (57)	1/ ₁₆ (2)	5/8 (16)	3/ ₈ (10)	1/2 (13)	

Nominal Size 20mm (3/4in)

(1) These flange thicknesses are also valid for ductile iron flanges type 21-2

(2) Flange thicknesses for copper alloy are from BS4504

SECTION

	Diameter	Bolt	Number	Diameter		Diameter	Diameter	Height	Height		Thickness	of flange	
BS EN 1092	of flange	circle diameter	of bolts	of bolts	Diameter of holes	of raised face(3) iron	of raised face(3) steel	of raised face(3) iron	of raised face(3) steel	Grey cast iron	Copper alloy	Cast and forged steel	Ductile cast iron
PN 6	100	75	4	MIO	П	58	60	3	2	14 (I)	-	14	-
PN 10	115	85	4	MI2	14	65	68	3	2	16 (I)	-	18	16
PN 16	115	85	4	M12	14	65	68	3	2	16 (I)	8 (2)	18	16
PN 25	115	85	4	M12	14	65	68	3	2	18 (I)	9 (2)	18	16
PN 40	115	85	4	M12	14	65	68	3	2	-	II (2)	18	18
PN 64	140	100	4	M16	18	-	68	-	2	-	-	24	-
PN 100	140	100	4	M16	18	-	68	-	2	-	-	24	-
ANSI													
Class 125/150	41/4 (114)	31/ ₈ (79)	4	1/ ₂ (13)	⁵ /8 (16)	-	2 (51)	-	1/ ₁₆ (2)	7/ ₁₆ (11)	³ /8 (10)	7/ ₁₆ (11)	9/ _{10 (14)}
Class 300	47/ ₈ (124)	31/ ₂ (89)	4	5/8 (16)	3/ ₄ (19)	-	2 (51)	-	1/ ₁₆ (2)	-	19/ ₃₂ (15)	11/ ₁₆ (17)	-
Class 600	47/ ₈ (124)	31/2 (89)	4	⁵ /8 (16)	3/ ₄ (19)	-	2 (51)	-	1/4 (6)	-	-	11/ ₁₆ (17)	
Class 900	57/ ₈ (149)	4 (102)	4	7/ ₈ (22)	I (25)	-	2 (51)	-	1/4 (6)	-	-	11/8 (29)	-
Class 1500	57/ ₈ (149)	4 (102)	4	7/ ₈ (22)	I (25)	-	2 (51)	-	1/4 (6)	-	-	11/8 (29)	-
BS 10													
Table A	41/2 (114)	31/4 (83)	4	1/2 (13)	⁹ / ₁₆ (14)	-	-	-	-	1/2 (13)	⁵ /16 (8)	-	-
Table D	41/2 (114)	31/4 (83)	4	1/2 (13)	⁹ / ₁₆ (14)	-	-	-	-	1/2 (13)	⁵ / ₁₆ (8)	³ /8 (10)	-
Table E	41/2 (114)	31/4 (83)	4	1/2 (13)	⁹ / ₁₆ (14)	-	-	-	-	1/2 (13)	⁵ / ₁₆ (8)	³ /8 (10)	-
Table F	4 ³ / ₄ (121)	3 ^{7/} 16 (87)	4	⁵ /8 (16)	11/ ₁₆ (17)	-	-	-	-	1/2 (13)	³ / ₈ (10)	³ / ₈ (10)	-
Table H	43/4 (121)	3 ^{7/} 16 (87)	4	5/ ₈ (16)	11/16 (17)		21/2 (64)	-	1/ ₁₆ (2)	3/ ₄ (19)	7/ ₁₆ (11)	9/ ₁₆ (14)	-

Nominal Size 25mm (lin)

(1) These flange thicknesses are also valid for ductile iron flanges type 21-2

(2) Flange thicknesses for copper alloy are from BS4504

Nominal Size 32mm (11/4in)

	Diameter	Bolt	Number	Diameter	Diameter	Diameter	Diameter	Diameter	Height	Height	Th	ickness of fla	inge	
BS EN 1092	of flange	circle diameter	of bolts	of bolts	of holes iron	of holes steel	of raised face(3) iron	of raised face(3) steel	of raised face(3) iron	of raised face(3) steel	Grey cast iron	Copper alloy	Cast and forged steel	Ductile cast iron
PN 6	120	90	4	M12	14	14	69	70	3	2	16 (I)	-	14	
PN 10	140	100	4	M16	19	18	76	78	3	2	18 (I)	-	18	18
PN 16	140	100	4	M16	19	18	76	78	3	2	18 (I)	8 (2)	18	18
PN 25	140	100	4	M16	19	18	76	78	3	2	20 (I)	9 (2)	18	18
PN 40	140	100	4	M16	19	18	76	78	3	2	-	11 (2)	18	20
PN 64	155	110	4	M20	-	22	-	78	-	2	-	-	26	-
PN 100	155	110	4	M20	-	22	-	78	-	2	-	-	26	-
ANSI														
Class 125/150	4 ⁵ /8 (117)	31/2 (89)	4	1/2 (13)	⁵ /8 (16)	⁵ /8 (16)	-	21/2 (64)	-	1/ ₁₆ (2)	1/2 (13)	¹³ / ₃₂ (10)	1/2 (13)	⁵ /8 (16)
Class 300	51/4 (133)	37/ ₈ (98)	4	⁵ /8 (16)	-	³ /4 (19)	-	21/2 (64)	-	1/ ₁₆ (2)	-	⁵ /8 (16)	³ /4 (19)	-
Class 600	51/4 (133)	37/ ₈ (98)	4	⁵ /8 (16)	-	³ / ₄ (19)	-	21/2 (64)	-	1/ ₄ (6)	-	-	^{13/} 16 (21)	-
Class 900	61/ ₄ (159)	43/ ₈ (111)	4	7/ ₈ (22)	-	I (25)	-	21/2 (64)	-	1/4 (6)	-	-	11/ ₈ (29)	-
Class 1500	61/4 (159)	43/ ₈ (111)	4	7/ ₈ (22)	-	I (25)	-	21/2 (64)	-	1/4 (6)	-	-	11/ ₈ (29)	-
BS 10														
Table A	43/4 (121)	37/ ₁₆ (87)	4	1/2 (13)	9/ ₁₆ (14)	9/ ₁₆ (14)	-	-	-	-	5/ ₈ (16)	^{5/} 16 (8)	-	-
Table D	43/4 (121)	37/ ₁₆ (87)	4	1/2 (13)	9/ ₁₆ (14)	9/ ₁₆ (14)	-	-	-	-	5/ ₈ (16)	^{5/} 16 (8)	1/2 (13)	-
Table E	43/4 (121)	37/ ₁₆ (87)	4	1/2 (13)	9/ ₁₆ (14)	9/ ₁₆ (14)	-	-	-	-	5/ ₈ (16)	^{5/} 16 (8)	1/2 (13)	-
Table F	51/4 (133)	37/ ₈ (98)	4	5/ ₈ (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	-	-	-	5/ ₈ (16)	³ / ₈ (10)	1/2 (13)	-
Table H	51/4 (133)	3 ⁷ /8 (98)	4	⁵ /8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	3 (76)	-	1/ ₁₆ (2)	7/8 (22)	7/ ₁₆ (11)	11/ ₁₆ (17)	-

(1) These flange thicknesses are also valid for ductile iron flanges type 21-2

(2) Flange thicknesses for copper alloy are from BS4504

Nominal Size 40mm (11/2in)

	Diameter	Bolt	Number	Diameter	Diameter	Diameter	Diameter	Diameter	Height	Height		Thickness	of flange	
BS EN 1092	of flange	circle diameter	of bolts	of bolts	of holes iron	of holes steel	of raised face(3) iron	of raised face(3) steel	of raised face(3) iron	of raised face(3) steel	Grey cast iron	Copper alloy	Cast and forged steel	Ductile cast iroN
PN 6	130	100	4	MI2	14	14	78	80	3	2	16 (I)	-	14	-
PN IO	150	110	4	M16	19	18	84	88	3	2	18 (I)	-	18	19
PN 16	150	110	4	M16	19	18	84	88	3	2	18 (I)	9 (2)	18	19
PN 25	150	110	4	M16	19	18	84	88	3	2	20 (I)	11 (2)	18	19
PN 40	150	110	4	M16	19	18	84	88	3	2	-	13 (2)	18	19
PN 64	170	125	4	M20	-	22	-	88	-	2	-	-	28	-
PN 100	170	125	4	M20	-	22	-	88	-	2	-	-	28	-
ANSI														
Class 125/150	5 (127)	37/ ₈ (98)	4	1/2 (13)	⁵ /8 (16)	⁵ /8 (16)	-	27/8 (73)	-	1/ ₁₆ (2)	9/ ₁₆ (14)	7/ ₁₆ (11)	9/ ₁₆ (14)	11/ ₁₆ (17)
Class 300	61/ ₈ (156)	41/2 (114)	4	3/ ₄ (19)	-	^{7/} 8 (22)	-	27/8 (73)	-	1/ ₁₆ (2)	-	11/ ₁₆ (17)	^{13/} 16 (21)	-
Class 600	61/ ₈ (156)	41/2 (114)	4	3/ ₄ (19)	-	^{7/} 8 (22)	-	27/8 (73)	-	1/4 (6)	-	-	^{7/} 8 (22)	-
Class 900	7 (178)	47/ ₈ (124)	4	I (25)	-	11/ ₈ (29)	-	27/8 (73)	-	1/4 (6)	-	-	11/4 (32)	-
Class 1500	7 (178)	47/ ₈ (124)	4	I (25)	-	1 ¹ / ₈ (29)	-	27/8 (73)	-	1/4 (6)	-	-	11/4 (32)	-
BS 10														
Table A	51/4 (133)	3 ⁷ /8 (98)	4	1/2 (13)	9/ ₁₆ (14)	9/ ₁₆ (14)	-	-	-	-	⁵ /8 (16)	³ /8 (10)	-	-
Table D	51/4 (133)	3 ⁷ /8 (98)	4	1/2 (13)	9/ ₁₆ (14)	9/ ₁₆ (14)	-	-	-	-	⁵ /8 (16)	³ /8 (10)1	′ ₂ (13)	-
Table E	51/ ₄ (133)	37/ ₈ (98)	4	1/ ₂ (13)	9/ ₁₆ (14)	9/ ₁₆ (14)	-	-	-	-	5/ ₈ (16)	³ /8 (10)	1/2 (13)	-
Table F	51/2 (140)	41/ ₈ (105)	4	⁵ /8 (16)	11/ ₁₆ (17)	11/16 (17)	-	-	-	-	5/ ₈ (16)	7/ ₁₆ (11)	1/2 (13)	-
Table H	51/2 (140)	41/ ₈ (105)	4	⁵ /8 (16)	11/ ₁₆ (17)	11/16 (17)	-	31/4 (83)	-	1/16 (2)	7/8 (22)	1/2 (13)	11/ ₁₆ (17)	-

(1) These flange thicknesses are also valid for ductile iron flanges type 21-2

(2) Flange thicknesses for copper alloy are from BS4504

Nominal Size 50mm (2in)

	Diameter	Bolt	Number	Diameter	Diameter	Diameter	Diameter	Diameter	Height	Height	Thic	kness of fla	nge	
BS EN 1092	of flange	circle diameter	of bolts	of bolts	of holes iron	of holes steel	of raised face(3) iron	of raised face(3) steel	of raised face(3) iron	l of raised face(3) steel	Grey cast iron	Copper alloy	Cast and forged steel	Ductile cast iro n
PN 6	140	110	4	MI2	14	14	88	90	3	2	16 (I)	-	14	-
PN IO	165	125	4	M16	19	18	99	102	3	2	20 (I)	-	18	19
PN 16	165	125	4	M16	19	18	99	102	3	2	20 (I)	II (2)	18	19
PN 25	165	125	4	M16	19	18	99	102	3	2	22 (I)	II (2)	20	19
PN 40	165	125	4	M16	19	18	99	102	3	2	-	13 (2)	20	19
PN 64	180	135	4	M20	-	22	-	102	-	2	-	-	26	-
PN 100	195	145	4	M24	-	26	-	102	-	2	-	-	30	-
ANSI														
Class 125/150	6 (152)	4 ³ /4 (121)	4	⁵ /8 (16)	³ /4 (19)	³ /4 (19)	-	35/8 (92)	-	1/ ₁₆ (2)	⁵ /8 (16)	1/2 (13)	⁵ /8 (16)	-
Class 300	61/2 (165)	5 (127)	8	⁵ /8 (16)	-	³ /4 (19)	-	35/8 (92)	-	1/ ₁₆ (2)	-	³ /4 (19)	⁷ / ₈ (22)	-
Class 600	6 ¹ /2 (165)	5 (127)	8	⁵ /8 (16)	-	³ /4 (19)	-	3 ⁵ / ₈ (92)	-	1/ ₄ (6)	-	- 1	(25)	-
Class 900	81/2 (216)	61/2 (165)	8	⁷ / ₈ (22)	-	I (25)	-	3 ⁵ / ₈ (92)	-	1/4 (6)	-	- 1	1/2 (38)	-
Class 1500	81/2 (216)	61/2 (165)	8	⁷ / ₈ (22)	-	I (25)	-	3 ⁵ / ₈ (92)	-	1/4 (6)	-	- 1	1/2 (38)	-
BS 10														
Table A	6 (152)	41/2 (114)	4	⁵ /8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	-	-	-	5/8 (16)	³ / ₈ (10)	-	-
Table D	6 (152)	41/2 (114)	4	5/8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	-	-	-	11/ ₁₆ (17)	³ /8 (10)	9/ ₁₆ (14)	-
Table E	6 (152)	41/2 (114)	4	⁵ /8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	-	-	-	3/ ₄ (19)	³ /8 (10)	9/ ₁₆ (14)	-
Table F	61/2 (165)	5 (127)	4	⁵ /8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	-	-	-	3/ ₄ (19)	7/ ₁₆ (11)	5/ ₈ (16)	-
Table H	61/2 (165)	5 (127)	4	⁵ /8 (16)	11/16 (17)	11/ ₁₆ (17)	-	4 (102)	-	1/ ₁₆ (2)	I (25)	1/2 (13)	³ / ₄ (19)	-

(1) These flange thicknesses are also valid for ductile iron flanges type 21-2

(2) Flange thicknesses for copper alloy are from $\mathsf{BS4504}$

Nominal Size 65mm (21/2in)

	Diameter	Bolt	Number	Diameter	Diameter	Diameter	Diameter	Diameter	Height	Height		Thickness	of flange	
BS EN 1092	of flange	circle diameter	of bolts	of bolts	of holes iron	of holes steel	of raised face(4) iron	of raised face(4) steel	of raised face(4) iron	of raised face(4) steel	Grey cast iron	Copper alloy(3)	Cast and forged steel	Ductile cast iron
PN 6	160	130	4	M12	14	14	108	110	2	3	16 (I)	-	14	-
PN 10	185	145	4 (2)	M16	19	18	118	122	2	3	20 (I)	-	18	19
PN 16	185	145	4 (2)	M16	19	18	118	122	2	3	20 (I)	13	18	19
PN 25	185	145	8	M16	19	18	118	122	2	3	24 (I)	13	22	19
PN 40	185	145	8	M16	19	18	118	122	2	3	-	14	22	19
PN 64	205	160	8	M20	-	22	-	122	2	-	-	-	26	-
PN 100	220	170	8	M24	-	26	-	122	2	-	-	-	34	-
ANSI														
Class 125/150	7 (178)	51/ ₂ (140)	4	⁵ /8 (16)	3/ ₄ (19)	3/4 (19)	-	41/ ₈ (105)	-	1/ ₁₆ (2)	11/ ₁₆ (17)	9/ ₁₆ (14)	11/ ₁₆ (17)	-
Class 300	71/2 (191)	57/ ₈ (149)	8	3/ ₄ (19)	-	^{7/} 8 (22)	-	41/ ₈ (105)	-	1/ ₁₆ (2)	-	13/ ₁₆ (21)	I (25)	-
Class 600	71/2 (191)	57/ ₈ (149)	8	3/ ₄ (19)	-	^{7/} 8 (22)	-	41/ ₈ (105)	-	1/4 (6)	-	-	11/ ₈ (29)	-
Class 900	95/ ₈ (244)	71/ ₂ (191)	8	I (25)	-	11/ ₈ (29)	-	41/ ₈ (105)	-	1/4 (6)	-	-	15/ ₈ (41)	-
Class 1500	9 ⁵ /8 (244)	71/2 (191)	8	I (25)	-	1 ¹ / ₈ (29)	-	41/ ₈ (105)	-	1/4 (6)	-	-	1 ⁵ /8 (41)	-
BS 10														
Table A	6 ¹ /2 (165)	5 (127)	4	⁵ /8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	-	-	-	11/ ₁₆ (17)	7/ ₁₆ (11)	-	-
Table D	6 ¹ /2 (165)	5 (127)	4	⁵ /8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	-	-	-	11/ ₁₆ (17)	7/ ₁₆ (11)	9/ ₁₆ (14)	-
Table E	61/ ₂ (165)	5 (127)	4	⁵ /8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	-	-	-	3/ ₄ (19)	7/ ₁₆ (11)	9/ ₁₆ (14)	-
Table F	71/4 (184)	53/4 (146)	8	⁵ /8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	-	-	-	3/4 (19)	1/2 (13)	5/ ₈ (16)	-
Table H	71/4 (184)	53/4 (146)	8	5/ ₈ (16)	11/16 (17)	11/ ₁₆ (17)	-	41/2 (114)	-	1/ ₁₆ (2)	I (25)	9/ ₁₆ (14)	3/4 (19)	-

(1) These flange thicknesses are also valid for ductile iron flanges type 21-2

(2) Steel flanges in this DN and PN may be supplied with 8 holes. For compliance with these, equivalent

cast iron flanges may be supplied with 8 holes as special order and after agreement

between manufacturer and customer

(2) Flange thicknesses for copper alloy are from BS4504

Nominal Size 80mm (3in)

	Diameter	Bolt	Number	Diameter	Diameter	Diameter	Diameter	Diameter	Height	Height	Thic	kness of fla	ange	
BS EN 1092	of flange	circle diameter	of bolts	of bolts	of holes iron	of holes steel	of raised face(3) iron	of raised face(3) steel	of raised face(3) iron	of raised face(3) steel	Grey cast iron	Copper alloy	Cast and forged steel	Ductile cast iron
PN 6	190	150	4	M16	19	18	124	128	3	2	18 (I)	-	16	-
PN IO	200	160	8	M16	19	18	132	138	3	2	22 (I)	-	20	19
PN 16	200	160	8	M16	19	18	132	138	3	2	22 (I)	13 (2)	20	19
PN 25	200	160	8	M16	19	18	132	138	3	2	26 (I)	14 (2)	24	19
PN 40	200	160	8	M16	19	18	132	138	3	2	-	16 (2)	24	19
PN 64	215	170	8	M20	-	22	-	138	-	2	-	-	28	-
PNIOO	230	180	8	M24	-	26	-	138	-	2	-	-	36	-
ANSI														
Class 125/150	71/2 (191)	6 (152)	4	⁵ /8 (16)	³ /4 (19)	³ /4 (19)	-	5 (127)	-	1/ ₁₆ (2)	³ / ₄ (19)	⁵ /8 (16)	³ / ₄ (19)	-
Class 300	81/4 (210)	6 ⁵ / ₈ (168)	8	3/ ₄ (19)	-	^{7/} 8 (22)	-	5 (127)	-	1/ ₁₆ (2)	-	^{29/} 32 (23)	11/ ₈ (29)	-
Class 600	81/4 (210)	6 ⁵ /8 (168)	8	3/ ₄ (19)	-	^{7/} 8 (22)	-	5 (127)	-	1/4 (6)	-	-	11/4 (32)	-
Class 900	91/ ₂ (241)	71/ ₂ (192)	8	⁷ / ₈ (22)	-	I (25)	-	5 (127)	-	1/4 (6)	-	-	11/2 (38)	-
Class 1500	101/2 (267)) 8 (203)	8	11/ ₈ (29)	-	11/ ₄ (32)	-	5 (127)	-	1/4 (6)	-	-	17/ ₈ (48)	-
BS 10														
Table A	71/4 (184)	53/4 (146)	4	⁵ /8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	-	-	-	11/ ₁₆ (17)	1/ ₂ (13)	-	-
Table D	71/4 (184)	53/ ₄ (146)	4	⁵ /8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	-	-	-	3/ ₄ (19)	1/ ₂ (13)	9/16 (14)	-
Table E	71/4 (184)	53/4 (146)	4	⁵ /8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	-	-	-	3/4 (19)	1/2 (13)	9/16 (14)	-
Table F	8 (203)	61/2 (165)	8	⁵ /8 (16)	11/16 (17)	11/16 (17)	-	-	-	-	3/4 (19)	⁹ / ₁₆ (14)	⁵ /8 (16)	-
Table H	8 (203)	61/2 (165)	8	⁵ /8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	5 (127)	-	1/ ₁₆ (2)	11/8 (29)	⁵ /8 (16)	⁷ / ₈ (22)	-

(1) These flange thicknesses are also valid for ductile iron flanges type $21\mathchar`-2$

(2) Flange thicknesses for copper alloy are from $\ensuremath{\mathsf{BS4504}}$

 $(3) \ \ Copper \ alloy \ \ flanges \ \ are \ \ always \ \ flat-faced$

Nominal Size 100mm (4in)

	Diameter	Bolt	Number	Diameter	Diameter	Diameter	Diameter	Diameter	Height	Height	Thic	kness of fla	ange	
BS EN 1092	of flange	circle diameter	of bolts	of bolts	of holes iron	of holes steel	of raised face(3) iron	of raised face(3) steel	of raised face(3) iron	of raised face(3) steel	Grey cast iron	Copper alloy	Cast and forged steel	Ductile cast iro n
PN 6	210	170	4	M16	19	18	144	148	3	2	18 (I)	-	16	-
PN IO	220	180	8	M16	19	18	156	158	3	2	24 (I)	-	20	19
PNI6	220	180	8	M16	19	18	156	158	3	2	24 (I)	16 (2)	20	19
PN 25	235	190	8	M20	23	22	156	162	3	2	28 (I)	17 (2)	24	19
PN 40	235	190	8	M20	23	22	156	162	3	2	-	19 (2)	24	19
PN 64	250	200	8	M24	-	26	-	162	-	2	-	-	30	-
PN 100	265	210	8	M27	-	30	-	162	-	2	-	-	40	-
ANSI														
Class 125/150	9 (229)	71/ ₂ (191)	8	5/ ₈ (16)	3/ ₄ (19)	3/ ₄ (19)	-	63/ ₁₆ (157)	-	1/ ₁₆ (2)	15/16 (24)	11/ ₁₆ (17)	15/16 (24)	-
Class 300	10 (254)	77/ ₈ (200)	8	3/ ₄ (19)	-	⁷ / ₈ (22)	-	63/ ₁₆ (157)	-	1/ ₁₆ (2)	-	11/ ₁₆ (27)	11/4 (32)	-
Class 600	10 ³ / ₄ (273)	81/2 (216)	8	⁷ / ₈ (22)	-	I (25)	-	63/ ₁₆ (157)	-	1/4 (6)	-	-	11/2 (38)	-
Class 900	111/2 (292)	9 ¹ / ₄ (235)	8	/ ₈ (29)	-	1 ¹ / ₄ (32)	-	6 ³ /16 (157)	-	1/4 (6)	-	-	13/4 (44)	-
Class 1500	121/4 (311)	91/ ₂ (241)	8	11/4 (32)	-	1 ³ /8 (35)	-	6 ³ /16 (157)	-	1/4 (6)	-	-	2 ¹ / ₈ (54)	-
BS 10														
Table A	81/2 (216)	7 (178)	4	⁵ /8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	-	-	-	³ /4 (19)	⁵ /8 (16)	-	-
Table D	81/2 (216)	7 (178)	4	5/8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	-	-	-	3/4 (19)	5/ ₈ (16)	11/ ₁₆ (17)	-
Table E	81/2 (216)	7 (178)	8	5/8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	-	-	-	^{7/} 8 (22)	5/ ₈ (16)	11/ ₁₆ (17)	-
Table F	9 (229)	71/ ₂ (191)	8	⁵ /8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	-	-	-	⁷ / ₈ (22)	11/ ₁₆ (17)	3/4 (19)	-
Table H	9 (229)	71/2 (191)	8	5/ ₈ (16)	11/16 (17)	11/16 (17)	-	6 (152)	-	1/16 (2)	11/4 (32)	3/4 (19)	I (25)	-

(1) These flange thicknesses are also valid for ductile iron flanges type 21-2

(2) Flange thicknesses for copper alloy are from BS4504

Nominal Size 125mm (5in)

	Diameter	Bolt	Number	Diameter	Diameter	Diameter	Diameter	Diameter	Height	Height		Thickness	of flange	
BS EN 1092	of flange	circle diameter	of bolts	of bolts	of holes iron	of holes steel	of raised face(2) iron	of raised face(2) steel	of raised face(2) iron	of raised face(2) steel	Grey cast iron	Copper alloy	Cast and forged steel	Ductile cast iron
PN 6	240	200	8	M16	19	18	174	178	3	2	20 (I)	-	18	-
PN IO	250	210	8	M16	19	18	184	188	3	2	26 (I)	-	22	19
PN 16	250	210	8	M16	19	18	184	188	3	2	26 (I)	-	22	19
PN 25	270	220	8	M24	28	26	184	188	3	2	30 (I)	-	26	19
PN 40	270	220	8	M24	28	26	184	188	3	2	-	-	26	23.5
PN 64	295	240	8	M27	-	30	-	188	-	2	-	-	34	-
PN 100	315	250	8	M30	-	33	-	188	-	2	-	-	40	-
ANSI														
Class 125/150	10 (254)	81/2 (216)	8	³ / ₄ (19)	⁷ / ₈ (22)	⁷ / ₈ (22)	-	7 ⁵ / ₁₆ (186)	-	1/ ₁₆ (2)	^{15/} 16 (24)	³ / ₄ (19)	^{15/} 16 (24)	-
Class 300	II (279)	91/4 (235)	8	3/ ₄ (19)	-	⁷ / ₈ (22)	-	75/ ₁₆ (186)	-	1/ ₁₆ (2)	-	11/ ₈ (29)	1 ³ /8 (35)	-
Class 600	13 (330)	101/2 (267)	8	I (25)	-	11/ ₈ (29)	-	75/ ₁₆ (186)	-	1/4 (6)	-	-	13/4 (44)	-
Class 900	133/4 (349)) (279)	8	11/4 (32)	-	13/ ₈ (35)	-	75/ ₁₆ (186)	-	1/4 (6)	-	-	2 (51)	-
Class 1500	143/ ₄ (375)	111/ ₂ (292)	8	11/2 (38)	-	15/ ₈ (41)	-	75/ ₁₆ (186)	-	1/4 (6)	-	-	27/ ₈ (73)	-
BS 10														
Table A	10 (254)	81/4 (210)	4	⁵ /8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	-	-	-	3/ ₄ (19)	11/ ₁₆ (17)	-	-
Table D	10 (254)	81/4 (210)	8	⁵ /8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	-	-	-	13/ ₁₆ (21)	11/ ₁₆ (17)	11/ ₁₆ (17)	-
Table E	10 (254)	81/4 (210)	8	⁵ /8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	-	-	-	7/8 (22)	11/ ₁₆ (17)	11/ ₁₆ (17)	-
Table F	II (279)	91/4 (235)	8	³ /4 (19)	⁷ / ₈ (22)	⁷ / ₈ (22)	-	-	-	-	I (25)	3/4 (19)	⁷ / ₈ (22)	-
Table H	11 (279)	91/4 (235)	8	3/4 (19)	⁷ / ₈ (22)	⁷ / ₈ (22)	-	7 (178)	-	1/ ₁₆ (2)	1 ³ /8 (35)	7/8 (22)	11/8 (29)	-

(1) These flange thicknesses are also valid for ductile iron flanges type 21-2

	Diameter	Bolt	Number	Diameter	Diameter	Diameter	Diameter	Diameter	Height	Height		Thickness	of flange	
BS EN 1092	of flange	circle diameter	of bolts	of bolts	of holes iron	of holes steel	of raised face(2) iron	of raised face(2) steel	of raised face(2) iron	of raised face(2) face	Grey cast iron	Copper alloy	Cast and forged steel	Ductile cast iron
PN 6	265	225	8	M16	19	18	199	202	3	2	20 (I)	-	18	
PN IO	285	240	8	M20	23	22	211	212	3	2	26 (I)	-	22	19
PN 16	285	240	8	M20	23	22	211	212	3	2	26 (I)	-	22	19
PN 25	300	250	8	M24	28	26	211	218	3	2	34 (I)	-	28	20
PN 40	300	250	8	M24	28	26	211	218	3	2	-	-	28	26
PN 64	345	280	8	M30	-	33	-	218	-	2	-	-	36	-
PN 100	355	290	12	M30	-	33	-	218	-	2	-	-	44	-
ANSI														
Class 125/150	11 (279)	91/ ₂ (241)	8	3/ ₄ (19)	⁷ / ₈ (22)	^{7/} 8 (22)	-	81/2 (216)	-	1/ ₁₆ (2)	I (25)	13/ ₁₆ (21)	I (25)	
Class 300	121/ ₂ (318)	105/8 (270)	12	3/ ₄ (19)	-	7/ ₈ (22)	-	81/2 (216)	-	1/ ₁₆ (2)	-	13/ ₁₆ (30)	17/ ₁₆ (37)	-
Class 600	14 (356)	111/2 (292)	12	I (25)	-	11/8 (29)	-	81/2 (216)	-	1/4 (6)	-	-	17/ ₈ (48)	-
Class 900	15 (381)	121/2 (318)	12	11/ ₈ (29)	-	1 ¹ / ₄ (32)	-	81/2 (216)	-	1/4 (6)	-	-	2 ³ / ₁₆ (56)	-
Class 1500	151/ ₂ (394)	121/2 (318)	12	1 ³ /8 (35)	-	11/2 (38)	-	81/2 (216)	-	1/4 (6)	-	-	31/4 (83)	-
BS 10														
Table A	11 (279)	91/ ₄ (235)	4	⁵ /8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	-	-	-	^{13/} 16 (21)	11/ ₁₆ (17)	-	-
Table D	11 (279)	91/ ₄ (235)	8	⁵ /8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	-	-	-	13/16 (21)	11/ ₁₆ (17)	11/ ₁₆ (17)	-
Table E	II (279)	91/ ₄ (235)	8	3/ ₄ (19)	⁷ / ₈ (22)	^{7/} 8 (22)	-	-	-	-	⁷ / ₈ (22)	11/ ₁₆ (17)	11/ ₁₆ (17)	-
Table F	12 (305)	101/4 (260)	12	3/ ₄ (19)	⁷ / ₈ (22)	^{7/} 8 (22)	-	-	-	-	I (25)	⁷ / ₈ (22)	⁷ / ₈ (22)	-
Table H	12 (305)	101/4 (260)	12	3/4 (19)	7/ ₈ (22)	⁷ / ₈ (22)	-	81/4 (210)	-	1/16 (2)	1 ³ /8 (35)	I (25)	11/8 (29)	-

Nominal Size 150mm (6in)

(1) These flange thicknesses are also valid for ductile iron flanges type 21-2

Nominal Size 200 mm (8 in)

	Diameter	Bolt	Number	Diameter	Diameter	Diameter	Diameter	Diameter	Height	Height	Thie	kness of fl	ange	
BS EN 1092	of flange	circle diameter	of bolts	of bolts	of holes iron	of holes steel	of raised face(2) iron	of raised face(2) steel	of raised face(2) iron	of raised face(2) steel	Grey cast iron	Copper alloy	Cast and forged steel	Ductile cast iron
PN 6	320	280	8	M16	19	18	254	258	3	2	22 (I)	-	20	-
PN 10	340	295	8	M20	23	22	266	268	3	2	26 (I)	-	24	20
PN 16	340	295	12	M20	23	22	266	268	3	2	30 (I)	-	24	20
PN 25	360	310	12	M24	28	26	274	278	3	2	34 (I)	-	30	22
PN 40	375	320	12	M27	31	30	284	285	3	2	-	-	34	30
PN 64	415	345	12	M33	-	36	-	285	-	2	-	-	42	-
PN 100	430	360	12	M33	-	36	-	285	-	2	-	-	52	-
ANSI														
Class 125/150	131/2 (343)	1 1 ³ / ₄ (298)	8	³ /4 (19)	⁷ / ₈ (22)	⁷ / ₈ (22)	-	105/8 (270)	-	1/ ₁₆ (2)	11/8 (29)	^{15/} 16 (24)	1 ¹ /8(29)	-
Class 300	15 (381)	13 (330)	12	⁷ / ₈ (22)	-	I (25)	-	105/8 (270)	-	1/ ₁₆ (2)	-	13/8 (35)	1 ⁵ /8 (41)	-
Class 600	161/ ₂ (419)	1 3 ³ /4 (349)	12	11/ ₈ (29)	-	11/4 (32)	-	105/8 (270)	-	1/4 (6)	-	-	2 ³ /16 (56)	-
Class 900	181/ ₂ (470)	151/ ₂ (394)	12	1 ³ / ₈ (35)	-	I 1/2 (38)	-	105/8 (270)	-	1/4 (6)	-	-	21/2 (64)	-
Class 1500	19 (438)	151/ ₂ (394)	12	15/ ₈ (41)	-	13/4 (44)	-	105/8 (270)	-	1/4 (6)	-	-	35/ ₈ (92)	-
BS 10														
Table A	131/4 (337)	111/ ₂ (292)	8	⁵ /8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	-	-	-	⁷ / ₈ (22)	3/ ₄ (19)	1/2 (13)	-
Table D	131/ ₄ (337)	111/2 (292)	8	⁵ /8 (16)	11/ ₁₆ (17)	11/ ₁₆ (17)	-	-	-	-	⁷ / ₈ (22)	3/ ₄ (19)	3/ ₄ (19)	-
Table E	131/4 (337)	111/2 (292)	8	3/4 (19)	7/8 (22)	7/8 (22)	-	-	-	-	I (25)	3/4 (19)	3/ ₄ (19)	-
Table F	141/2 (368)	1 2 ³ / ₄ (324)	12	3/4 (1 9)	7/ ₈ (22)	⁷ / ₈ (22)	-	-	-	-	11/8 (29)	I (25)	I (25)	-
Table H	141/2 (368)	123/4 (324)	12	3/4 (19)	⁷ / ₈ (22)	⁷ / ₈ (22)	-	101/4 (260)	-	1/ ₁₆ (2)	11/2 (38)	11/4 (32)	11/4 (32)	-

(1) These flange thicknesses are also valid for ductile iron flanges type 21-2 (2) Copper alloy flanges are always flat-faced

	Diameter	Bolt	Number	Diameter	Diameter	Diameter	Diameter	Diameter	Height	Height	Thic	kness of fl	ange	
BS EN 1092	of flange	circle diameter	of bolts	of bolts	of holes iron	of holes steel	of raised face(3) iron	of raised face(3) steel	of raised face(3) iron	of raised face(3) steel	Grey cast iron	Copper alloy	Cast and forged steel	Ductile cast iron
PN 6	375	335	12	M16	19	18	309	312	3	2	24 (I)	-	22	-
PN IO	395 (2)	350	12	M20	23	22	319	320	3	2	28 (I)	-	26	22
PN 16	405 (2)	355	12	M24	28	26	319	320	3	2	32 (I)	-	26	22
PN 25	425	370	12	M27	31	30	330	335	3	2	-	-	32	24.5
PN 40	450	385	12	M30	34	33	345	345	3	2	-	-	38	34.5
PN 64	470	400	12	M33	-	36	-	345	-	2	-	-	46	-
PN 100	505	430	12	M36	-	39	-	345	-	2	-	-	60	-
ANSI														
Class 125/150	16 (406)	141/4 (362)	12	7/ ₈ (22)	I (25)	I (25)	-	123/4 (324)) -	1/ ₁₆ (2)	1 ^{3/} 16 (30)	I (25)	1 ^{3/} 16 (30)	-
Class 300	171/2 (445)	151/4 (387)	16	I (25)	-	11/8 (29)	-	123/4 (324)) -	1/ ₁₆ (2)	-	-	17/8 (41)	-
Class 600	20 (508)	17 (432)	16	11/4 (32)	-	13/8 (35)	-	123/4 (324)) -	1/4 (6)	-	-	21/2 (64)	-
Class 900	211/2 (546)181/2 (470)	16	13/ ₈ (35)	-	11/2 (38)	-	123/4 (324)) -	1/4 (6)	-	-	23/4 (70)	-
Class 1500	23 (584)	19 (483)	12	17/8 (41)	-	2 (51)	-	123/4 (324)) -	1/4 (6)	-	-	41/4 (108)	-
BS 10														
Table A	16 (406)	14 (356)	8	3/4 (19)	⁷ / ₈ (22)	⁷ / ₈ (22)	-	-	-	-	^{15/} 16 (24)	³ /4 (19)	-	-
Table D	16 (406)	14 (356)	8	³ /4 (19)	⁷ / ₈ (22)	⁷ / ₈ (22)	-	-	-	-	I (25)	³ /4 (19)	³ /4 (19)	-
Table E	16 (406)	14 (356)	12	³ /4 (19)	⁷ / ₈ (22)	⁷ / ₈ (22)	-	-	-	-	I (25)	⁷ / ₈ (22)	⁷ / ₈ (22)	-
Table F	17 (432)	15 (381)	12	⁷ / ₈ (22)	I (25)	I (25)	-	-	-	-	I 1/8 (29)	I (25)	I (25)	-
Table H	17 (432)	15 (381)	12	7/8 (22)	I (25)	I (25)	-	121/4 (311)) -	1/ ₁₆ (2)	5/ ₈ (41)	3/ ₈ (35)	3/8 (35)	-

Nominal Size 250 mm (10 in)

(1) These flange thicknesses are also valid for ductile iron flanges type 21-2

(2) For ductile iron pipes and fittings the outside diameters shall be:

- for PN 10, D = 400 mm

- for PN 16, D = 400mm

Nominal Size 300 mm (12 in)

	Diameter	Bolt	Number	Diameter	Diameter	Diameter	Diameter	Diameter	Height	Height		Thickness	of flange	
BS EN 1092	of flange	circle diameter	of bolts	of bolts	of holes iron	of holes steel	of raised face(3) iron	of raised face(3) steel	of raised face(3) iron	of raised face(3) steel	Grey cast iron	Copper alloy	Cast and forged steel	Ductile cast iron
PN 6	440	395	12	M20	23	22	363	365	4	2	24 (I)	-	22	-
PN IO	445 (2)	400	12	M20	23	22	370	370	4	2	28 (I)	-	26	24.5
PN 16	460 (2)	410	12	M24	28	26	370	378	4	2	32 (I)	-	28	24.5
PN 25	485	430	16	M27	31	30	389	395	4	2	40 (I)	-	34	27.5
PN 40	515	450	16	M30	34	33	409	410	4	2	-	-	42	39.5
PN 64	530	460	16	M33	-	36	-	410	-	2	-	-	52	-
PN 100	585	500	16	M39	-	42	-	410	-	2	-	-	68	-
ANSI														
Class 125/150	19 (483)	17 (432)	12	⁷ / ₈ (22)	I (25)	I (25)	-	15 (381)	-	1/ ₁₆ (2)	11/4 (32)	11/ ₁₆ (27)	11/4 (32)	-
Class 300	201/ ₂ (521)	173/4 (451)	16	11/ ₈ (29)	-	11/4 (32)	-	15 (381)	-	1/ ₁₆ (2)	-	-	2 (51)	-
Class 600	22 (559)	191/4 (489)	20	11/4 (32)	-	13/ ₈ (35)	-	15 (381)	-	1/4 (6)	-	-	2 5/8 (67)	-
Class 900	24 (610)	21 (533)	20	13/ ₈ (35)	-	11/2 (38)	-	15 (381)	-	1/4 (6)	-	-	3 1/8 (80)	-
Class 1500	261/2 (673)	221/2 (571)	16	2 (51)	-	21/8 (54)	-	15 (381)	-	1/4 (6)	-	-	47/8 (124)	-
BS 10														
Table A	18 (457)	16 (406)	8	³ /4 (19)	⁷ / ₈ (22)	⁷ / ₈ (22)	-	-	-	-	^{15/} 16 (24)	⁷ / ₈ (22)	-	-
Table D	18 (457)	16 (406)	12	³ /4 (19)	⁷ / ₈ (22)	⁷ / ₈ (22)	-	-	-	-	I (25)	⁷ / ₈ (22)	⁷ / ₈ (22)	-
Table E	18 (457)	16 (406)	12	⁷ / ₈ (22)	I (25)	I (25)	-	-	-	-	11/8 (29)	I (25)	I (25)	-
Table F	191/4 (489)171/4 (438)	16	^{7/} 8 (22)	I (25)	I (25)	-	-	-	-	11/4 (32)	11/8 (29)	11/8 (29)	-
Table H	191/4 (489)171/4 (438)	16	7/8 (22)	I (25)	I (25)	-	141/4 (362)	-	1/ ₁₆ (2)	13/4 (44)	11/2 (38)	11/2 (38)	-

(1) These flange thicknesses are also valid for ductile iron flanges type 21-2

(2) For ductile iron pipes and fittings the outside diameter shall be:

- for PN 10, D = 455 mm

- for PN 16, D = 455 mm

	Diameter	Bolt	Number	Diameter	Diameter	Diameter	Diameter	Diameter	Height	Height	Thic	<u>kness of</u> fl	ange	
BS EN 1092	of flange	circle diameter	of bolts	of bolts	of holes iron	of holes steel	of raised face(2) iron	of raised face(2) steel	of raised face(2) iron	of raised face(2) steel	Grey cast iron	Copper alloy	Cast and forged steel	Ductile cast iron
PN 6	490	445	12	M20	23	22	413	415	4	2	26 (I)	-	22	-
PN IO	505	460	16	M20	23	22	429	430	4	2	30 (I)	-	26	24.5
PN 16	520	470	16	M24	28	26	429	438	4	2	36 (I)	-	30	26.5
PN 25	555	490	16	M30	34	33	448	450	4	2	44 (I)	-	38	30
PN 40	580	510	16	M33	37	36	465	465	4	2	-	-	46	44
PN 64	600	525	16	M36	-	39	-	465	-	2	-	-	56	-
PN 100	655	560	16	M45	-	48	-	465	-	2	-	-	74	-
ANSI														
Class 125/150	21 (533)	183/4 (476)	12	I (25)	11/8 (29)	11/8 (29)	-	16 1/4 (413)) -	1/ ₁₆ (2)	13/ ₈ (35)	-	13/8 (35)	-
Class 300	23 (584)	201/4 (514)	20	11/8 (29)	-	11/4 (32)	-	16 1/4 (413)) -	1/ ₁₆ (2)	-	-	21/8 (54)	-
Class 600	233/4 (603))203/4 (527)	20	13/ ₈ (35)	-	11/2 (38)	-	16 1/4 (413)) -	1/4 (6)	-	-	23/4 (70)	-
Class 900	251/4 (641)) 22 (559)	20	11/2 (38)	-	15/8 (41)	-	16 1/4 (413)) -	1/4 (6)	-	-	33/ ₈ (86)	-
Class 1500	291/2 (749)) 25 (635)	16	21/4 (57)	-	23/8 (60)	-	16 1/4 (413)) -	1/4 (6)	-	-	51/4 (133)	-
BS 10														
Table A	203/4 (527))181/2 (470)	8	⁷ / ₈ (22)	I (25)	I (25)	-	-	-	-	I (25)	I (25)	-	-
Table D	203/4 (527))181/2 (470)	12	⁷ / ₈ (22)	I (25)	I (25)	-	-	-	-	11/8 (29)	I (25)	I (25)	-
Table E	203/4 (527))181/2 (470)	12	⁷ / ₈ (22)	I (25)	I (25)	-	-	-	-	11/4 (32)	I (25)	I (25)	-
Table F	213/4 (552)) 9 /2 (495)	16	I (25)	11/8 (29)	11/8 (29)	-	-	-	-	13/8 (35)	11/4 (32)	11/4 (32)	-
Table H	213/4 (552)) 9 / ₂ (495)	16	I (25)	11/8 (29)	11/8 (29)	-	161/2 (419)	-	1/ ₁₆ (2)	17/ ₈ (48)	15/ ₈ (41)	15/ ₈ (41)	-

Nominal Size 350 mm (14 in)

(1) These flange thicknesses are also valid for ductile iron flanges type 21-2

Nominal Size 400 mm (16in)

	Diameter	Bolt	Number	Diameter	Diameter	Diameter	Diameter	Diameter	Height	Height	Thic	kness of fl	ange	
BS EN 1092	of flange	circle diameter	of bolts	of bolts	of holes iron	of holes steel	of raised face(2) iron	of raised face(2) steel	of raised face(2) iron	of raised face(2) steel	Grey cast iron	Copper alloy	Cast and forged steel	Ductile cast iron
PN 6	540	495	16	M20	23	22	463	465	4	2	28 (I)	-	22	-
PN IO	565	515	16	M24	28	26	480	482	4	2	32 (I)	-	26	24.5
PN 16	580	525	16	M27	31	30	480	490	4	2	38 (I)	-	32	28
PN25	620	550	16	M33	37	36	503	505	4	2	48 (I)	-	40	32
PN 40	660	585	16	M36	41	39	535	535	4	2	-	-	50	48
PN 64	670	585	16	M39	-	42	-	535	-	2	-	-	60	-
PN 100	715	620	16	M45	-	48	-	535	-	2	-	-	78	-
ANSI														
Class 125/150	231/ ₂ (597)	21 ¹ / ₄ (540)	16	I (25)	11/ ₈ (29)	11/ ₈ (29)	-	181/2 (470)	-	1/ ₁₆ (2)	17/ ₁₆ (37)	-	17/ ₁₆ (37)	-
Class 300	251/ ₂ (648)) 221/ ₂ (572)	20	11/4 (32)	-	13/8 (35)	-	181/2 (470)	-	1/ ₁₆ (2)	-	-	21/4 (57)	-
Class 600	27 (686)	233/4 (603)	20	11/2 (38)	-	15/8 (41)	-	181/2 (470)	-	1/4 (6)	-	-	3 (76)	-
Class 900	273/ ₄ (705)) 241/ ₄ (616)	20	15/ ₈ (41)	-	13/4 (44)	-	181/2 (470)	-	1/4 (6)	-	-	31/2 (89)	-
Class 1500	32 ¹ / ₂ (826)) 273/4 (705)	16	21/2 (64)	-	25/8 (67)	-	181/2 (470)	-	1/4 (6)	-	-	53/4 (146)	-
BS 10														
Table A	22 ³ /4 (578)) 20 ¹ / ₂ (521)	12	⁷ / ₈ (22)	I (25)	I (25)	-	-	-	-	11/ ₁₆ (27)	I (25)	-	-
Table D	22 ³ / ₄ (578)) 20 ¹ / ₂ (521)	12	⁷ / ₈ (22)	I (25)	I (25)	-	-	-	-	1 ¹ / ₈ (29)	I (25)	I (25)	-
Table E	223/4 (578)) 201/ ₂ (521)	12	⁷ / ₈ (22)	I (25)	I (25)	-	-	-	-	11/4 (32)	I (25)	I (25)	-
Table F	24 (610)	213/4 (552)	20	I (25)	11/8 (29)	11/ ₈ (29)	-	-	-	-	13/8 (35)	11/ ₄ (32)	11/ ₄ (32)	-
Table H	24 (610)	213/4 (552)	20	I (25)	11/ ₈ (29)	11/ ₈ (29)	-	19 (483)	-	1/ ₁₆ (2)	2 (51)	1 ³ / ₄ (44)	13/4 (44)	-

(1) These flange thicknesses are also valid for ductile iron flanges type 21-2

Nominal Size 450 mm (18 in)

	Diameter	Bolt	Number	Diameter	Diameter	Diameter	Diameter	Diameter	Height	Height	Thic	kness of fl	ange	
BS EN 1092	of flange	circle diameter	of bolts	of bolts	of holes iron	of holes steel	of raised face(2) iron	of raised face(2) steel	of raised face(2) iron	of raised face(2) steel	Grey cast iron	Copper alloy	Cast and forged steel	Ductile cast iron
PN 6	595	550	16	M20	23	22	518	520	4	2	28 (I)	-	22	-
PN IO	615	565	20	M24	28	26	530	532	4	2	32 (I)	-	28	25.5
PN 16	640	585	20	M27	31	30	548	550	4	2	40 (I)	-	40	30
PN 25	670	600	20	M33	37	36	548	555	4	2	50 (I)	-	46	34.5
PN 40	685	610	20	M36	41	39	560	560	4	2	-	-	57	49
PN 64	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PN 100	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ANSI														
Class 125/150	25 (635)	223/ ₄ (578)	16	11/8 (29)	11/4 (32)	1 1/ ₄ (32)	-	21 (533)	-	1/ ₁₆ (2)	19/ ₁₆ (40)	-	19/ ₁₆ (40)	-
Class 300	28 (711)	243/ ₄ (629)	24	11/4 (32)	-	13/8 (35)	-	21 (533)	-	1/ ₁₆ (2)	-	-	2 ³ / ₈ (60)	-
Class 60	291/ ₄ (743)	253/ ₄ (654)	20	15/ ₈ (41)	-	13/4 (44)	-	21 (533)	-	1/4 (6)	-	-	31/4 (83)	-
Class 900	31 (787)	27 (686)	20	17/ ₈ (48)	-	2 (51)	-	21 (533)	-	1/4 (6)	-	-	4 (102)	-
Class 1500	36 (914)	301/ ₂ (775)	16	23/4 (70)	-	27/8 (73)	-	21 (533)	-	1/4 (6)	-	-	6 ³ / ₈ (162)	-
BS 10														
Table A	25 ¹ /4 (641)) 23 (584)	12	⁷ / ₈ (22)	-	I (25)	-	-	-	-	1 ¹ / ₁₆ (27)	1 ^{1/} 16 (27)	-	-
Table D	25 ¹ /4 (641)) 23 (584)	12	⁷ / ₈ (22)	-	I (25)	-	-	-	-	1 ¹ / ₄ (32)	1 ¹ /8 (29)	1 ¹ /8 (29)	-
Table E	25 ¹ / ₄ (641)) 23 (584)	16	⁷ / ₈ (22)	-	I (25)	-	-	-	-	1 ³ /8 (35)	1 ¹ / ₈ (29)	11/ ₈ (29)	-
Table F	261/2 (673)) 24 (610)	20	11/8 (29)	-	11/4 (32)	-	-	-	-	11/2 (38)	1 ³ /8 (35)	13/8 (35)	-
Table H	261/2 (673)) 24 (610)	20	11/8 (29)	-	11/4 (32)	-	21 (533)	-	1/16 (2)	21/8 (54)	17/8 (48)	17/8 (48)	-

(1) These flange thicknesses are also valid for ductile iron flanges type 21-2

Nominal Size 500 mm (20 in)

	Diameter	Bolt	Number	Diameter	Diameter	Diameter	Diameter	Diameter	Height	Height	Thic	kness of fl	ange	
BS EN 1092	of flange	circle diameter	of bolts	of bolts	of holes iron	of holes steel	of raised face(3) iron	of raised face(3) steel	of raised face(3) iron	of raised face(3) steel	Grey cast iron	Copper alloy	Cast and forged steel	Ductile cast iron
PN 6	645	600	20	M20	23	22	568	570	4	2	30 (I)	-	24 (2)	-
PN IO	670	620	20	M24	28	26	582	585	4	2	34 (I)	-	28 (2)	26.5
PN 16	715	650	20	M30	34	33	609	610	4	2	42 (I)	-	44 (2)	31.5
PN 25	730	660	20	M33	37	36	609	615	4	2	52 (I)	-	48 (2)	36.5
PN 40	755	670	20	M39	44	42	615	615	4	2	-	-	57 (2)	52
PN 64	800	705	20	M45	-	48	-	615	-	2	-	-	68 (2)	-
PN 100	870	760	20	M52	-	56	-	615	-	2	-	-	94 (2)	-
ANSI														
Class 125/150	271/2 (699) 25 (635)	20	11/8 (29)	11/4 (32)	11/4 (32)	-	23 (584)	-	1/ ₁₆ (2)	I 11/ ₁₆ (43)	-	/ ₁₆ (43)	-
Class 300	301/2 (775) 27 (686)	24	11/4 (32)	-	13/8 (35)	-	23 (584)	-	1/ ₁₆ (2)	-	-	21/2 (64)	-
Class 600	32 (813)	28 ¹ / ₂ (724)	24	1 ⁵ /8 (41)	-	13/4 (44)	-	23 (584)	-	1/4 (6)	-	-	31/2 (89)	-
Class 900	33 ³ /4 (857)	291/ ₂ (749)	20	2 (51)	-	21/8 (54)	-	23 (584)	-	1/4 (6)	-	-	41/4 (108)	-
Class 1500	38 ³ /4 (984)	323/4 (832)	16	3 (76)	-	31/8 (79)	-	23 (584)	-	1/4 (6)	-	-	7 (178)	-
BS 10														
Table A	27 ³ / ₄ (705))251/ ₄ (641)	12	⁷ / ₈ (22)	I (25)	I (25)	-	-	-	-	11/ ₈ (29)	11/8 (29)	-	-
Table D	273/ ₄ (705))251/ ₄ (641)	16	⁷ / ₈ (22)	I (25)	I (25)	-	-	-	-	11/4 (32)	11/4 (32)	-	-
Table E	273/4 (705))251/4 (641)	16	⁷ / ₈ (22)	I (25)	I (25)	-	-	-	-	11/2 (38)	11/4 (32)	11/4 (32)	-
Table F	29 (737)	261/2 (673)	24	11/8 (29)	11/4 (32)	11/4 (32)	-	-	-	-	15/8 (41)	11/2 (38)	11/2 (38)	-
Table H	29 (737)	261/2 (673)	24	11/8 (29)	11/4 (32)	11/4 (32)	-	231/ ₂ (597)) -	1/ ₁₆ (2)	21/4 (57)	2 (51)	2 (51)	-

(1) These flange thicknesses are also valid for ductile iron flanges type 21-2

(2) These flange thicknesses are changed substantially as a result of the flange calculation

method used in BS EN 1092-1

Nominal Size 600 mm (24 in)

	Diameter	Bolt	Number	Diameter	Diameter	Diameter	Diameter	Diameter	Height	Height		Thickness	of flange	
BS EN 1092	of flange	circle diameter	of bolts	of bolts	of holes iron	of holes steel	of raised face(3) iron	of raised face(3) steel	of raised face(3) iron	of raised face(3) steel	Grey cast iron	Copper alloy	Cast and forged steel	Ductile cast iron
PN 6	755	705	20	M24	28	26	667	670	5	2	30 (I)	-	30	
PN 10	780	725	20	M27	31	30	682	685	5	2	36 (I)	-	34	30
PN 16	840	770	20	M33	37	36	720	725	5	2	48 (I)	-	54	36
PN 25	845	770	20	M36	41	39	720	720	5	2	-	-	58	42
PN 40	890	795	20	M45	50	48	735	735	5	2	-	-	72	58
PN 64	930	820	20	M52	-	56	-	735	-	2	-	-	76	-
ANSI														
Class 125/150	32 (813)	291/2 (749)	20	11/4 (32)	13/8 (35)	13/8 (35)	-	271/4 (692)	-	1/ ₁₆ (2)	1 7/ ₈ (48)	-	17/ ₈ (48)	-
Class 300	36 (914)	32 (813)	24	11/2 (38)	-	15/8 (41)	-	271/4 (692)	-	1/ ₁₆ (2)	-	-	23/4 (70)	-
Class 600	37 (940)	33 (838)	24	17/8 (48)	-	2 (51)	-	271/4 (692)	-	1/4 (6)	-	-	4 (102)	-
Class 900	41 (1041)	351/2 (902)	20	21/2 (64)	-	25/8 (67)	-	271/4 (692)	-	1/4 (6)	-	-	51/2 (140)	-
Class 1500	46 (1168)	39 (991)	16	31/2 (89)	-	35/8 (92)	-	271/4 (692)	-	1/4 (6)	-	-	8 (203)	-
BS 10														
Table A	321/2 (826)29 ³ /4 (756)	12	I (25)	11/8 (29)	1 ¹ / ₈ (29)	-	-	-	-	1 ^{3/} 16 (30)	1 ³ / ₁₆ (30)	-	-
Table D	321/2 (826)29 ³ /4 (756)	16	I (25)	11/8 (29)	/ ₈ (29)	-	-	-	-	1 ³ /8 (35)	1 ³ /8 (35)	1 ³ /8 (35)	-
Table E	321/2 (826)29 ³ /4 (756)	16	11/8 (29)	1 ¹ / ₄ (32)	I 1/4 (32)	-	-	-	-	1 ⁵ /8 (41)	11/2 (38)	11/2 (38)	-
Table F	331/2 (851)30 ³ /4 (781)	24	1 ¹ / ₄ (32)	1 ¹ / ₄ (32)	1 ³ / ₈ (35)	-	-	-	-	1 ³ / ₄ (44)	15/8 (41)	1 ⁵ /8 (41)	-
Table H	331/ ₂ (851)303/ ₄ (781)	24	11/4 (32)	13/8 (35)	13/8 (35)	-	271/2 (699)	-	1/ ₁₆ (2)	21/2 (64)	21/4 (57)	21/4 (57)	

(1) These flange thicknesses are also valid for ductile iron flanges type 21-2

(2) These flange thicknesses are changed substantially as a result of the flange

calculation method used in BS EN 1092-1

D	N	D	n
IN.	MM	U	٢
3/8	10	17.5	10
1/2	15	21.8	10
3/4	20	27.0	13
1	25	33.8	13
1-1/4	32	42.5	13
1 1/2	40	48.6	13
2	50	81.1	16

METRIC UNITS

The following pressure-temperature charts are derived from ASME B16.34 - 2004 version. It will cover the most commonly used body and bonnet materials in the industry. All Pacific valves are designed to operate through pressure and temperature ranges shown in these P-T charts for a particular ASME Class Rating and ASTM Material. Hydrostatic Shell Testing at a minimum 1.5 times and Hydrostatic Seat Testing at a minimum of 1.1 times the Maximum Cold Working Pressure of an ASME Class Rating.

ASTM A216 GR. WCB

\circ			STAND	ARD CLASS	B16.34 - 2	004			SPE	CIAL CLASS	B16.34 - 2	2004		
		MAX	IMUM NON-	SHOCK WC	RKING PRI	ESSURE, Ba	ar	MA	XIMUM NO	N-SHOCK W	/ORKING P	RESSURE,	Bar	
	150	300	600	900	1500	2500	4500	150	300	600	900	1500	2500	4500
-29 to 38	19.6	51.1	102.1	153.2	255.3	425.5	765.9	19.8	51.7	103.4	155.1	258.6	430.9	775.7
50	19.2	50.1	100.2	150.4	250.6	417.7	751.9	19.8	51.7	103.4	155.1	258.6	430.9	775.7
100	17.7	46.6	93.2	139.8	233.0	388.3	699.0	19.8	51.6	103.3	154.9	258.2	430.3	774.5
150	15.8	45.1	90.2	135.2	225.4	375.6	676.1	19.6	51.0	102.1	153.1	255.2	425.3	765.5
200	13.8	43.8	87.6	131.4	219.0	365.0	657.0	19.4	50.6	101.1	151.7	252.9	421.4	758.6
250	12.1	41.9	83.9	125.8	209.7	349.5	629.1	19.4	50.5	101.1	151.6	252.6	421.1	757.9
300	10.2	39.8	79.6	119.5	199.1	331.8	597.3	19.4	50.5	101.1	151.6	252.6	421.1	757.9
325	9.3	38.7	77.4	116.1	193.6	322.6	580.7	19.2	50.1	100.2	150.3	250.6	417.6	751.7
350	8.4	37.6	75.1	112.7	187.8	313.0	563.5	18.7	48.9	97.8	146.7	244.6	407.6	733.7
375	7.4	36.4	72.7	109.1	181.8	303.1	545.5	18.1	47.1	94.2	141.3	235.5	392.5	706.5
400	6.5	34.7	69.4	104.2	173.6	289.3	520.8	16.6	43.4	86.8	130.2	217.0	361.7	651.0
425	5.5	28.8	57.5	86.3	143.8	239.7	431.5	13.8	36.0	71.9	107.9	179.8	299.6	539.3
450	4.6	23.0	46.0	69.0	115.0	191.7	345.1	11.0	28.8	57.5	86.3	143.8	239.6	431.4
475	3.7	17.4	34.9	52.3	87.2	145.3	261.5	8.4	21.8	43.6	65.4	109.0	181.6	326.9
500	2.8	11.8	23.5	35.3	58.8	97.9	176.3	5.6	14.7	29.4	44.1	73.5	122.4	220.4
538	1.4	5.9	11.8	17.7	29.5	49.2	88.6	2.8	7.4	14.8	22.2	36.9	61.6	110.8

Note: Upon prolonged exposure to temperatures above 425°C, the carbide phase of steel may be converted to graphite. Permissible, but not recommended for prolonged usage above 425°C.

ASTM A216 GR. WCC

0			STAN	DARD CLAS	S B16.34 -	2004			SP	ECIAL CLAS	S B16.34 -	2004		
		МА	хімим но	N-SHOCK W	/ORKING P	RESSURE,	Bar	M	AXIMUM N	ол-зноск	WORKING	PRESSURE	, Bar	
	150	300	600	900	1500	2500	150	300	600	900	1500	2500		
-29 to 38	19.8	51.7	103.4	155.0	258.6	430.9	775.7	20.0	51.7	103.4	155.1	258.6	430.9	775.7
50	19.5	51.7	103.4	155.1	258.6	430.9	775.7	20.0	51.7	103.4	155.1	258.6	430.9	775.7
100	17.7	51.5	103.0	154.6	257.6	429.4	773.0	20.0	51.7	103.4	155.1	258.6	430.9	775.7
150	15.8	50.2	100.3	150.5	250.8	418.1	752.6	20.0	51.7	103.4	155.1	258.6	430.9	775.7
200	13.8	48.6	97.2	145.8	243.2	405.4	729.7	20.0	51.7	103.4	155.1	258.6	430.9	775.7
250	12.1	46.3	92.7	139.0	231.8	386.2	694.8	20.0	51.7	103.4	155.1	258.6	430.9	775.7
300	10.2	42.9	85.7	128.6	214.4	357.1	642.6	20.0	51.7	103.4	155.1	258.6	430.9	775.7
325	9.3	41.4	82.6	124.0	206.6	344.3	619.6	20.0	51.7	103.4	155.1	258.6	430.9	775.7
350	8.4	40.0	80.0	120.1	200.1	333.5	600.3	19.8	51.1	102.2	153.3	255.5	425.8	766.4
375	7.4	37.8	75.7	113.5	189.2	315.3	567.5	19.3	48.4	96.7	145.1	241.9	403.1	725.6
400	6.5	34.7	69.4	104.2	173.6	289.3	520.8	19.3	43.4	86.8	130.2	217.0	361.7	651.0
425	5.5	28.8	57.5	86.3	143.8	239.7	431.5	18.0	36.0	71.9	107.9	179.8	299.6	539.3
450	4.6	23.0	46.0	69.0	115.0	191.7	345.1	14.4	28.8	57.5	86.3	143.8	239.6	431.4
475	3.7	17.1	34.2	51.3	85.4	142.4	256.3	10.7	21.4	42.7	64.1	106.8	178.0	320.4
500	2.8	11.6	23.2	34.7	57.9	96.5	173.7	7.2	14.5	29.0	43.4	72.4	120.7	217.2
538	1.4	5.9	11.8	17.7	29.5	49.2	88.6	3.7	7.4	14.8	22.2	36.9	61.6	110.8

Note: Upon prolonged exposure to temperatures above 455°C, the carbide phase of steel may be converted to graphite. Permissible, but not recommended for prolonged usage above 425°C.

ASTM A352, GR. LCB

0			STAN	DARD CLAS	S B16.34 -	2004			SP	ECIAL CLAS	SS B16.34 -	2004		
		MAX	хімим No	N-SHOCK W	/ORKING P	RESSURE, I	Bar	M	AXIMUM N	DN-SHOCK	WORKING	PRESSURE	, Bar	
	150	300	600	900	1500	2500	4500	150	300	600	900	1500	2500	4500
-29 to 38	18.4	48.0	96.0	144.1	240.1	400.1	720.3	20.0	48.0	96.0	144.1	240.1	400.1	720.3
50	18.2	47.5	94.9	142.4	237.3	395.6	712.0	20.0	48.0	96.0	144.1	240.1	400.1	720.3
100	17.4	45.3	90.7	136.0	226.7	377.8	680.1	20.0	48.0	96.0	144.1	240.1	400.1	720.3
150	15.8	43.9	87.9	131.8	219.7	366.1	659.1	20.0	48.0	96.0	144.1	240.1	400.1	720.3
200	13.8	42.5	85.1	127.6	212.7	354.4	638.0	20.0	48.0	96.0	144.1	240.1	400.1	720.3
250	12.1	40.8	81.6	122.3	203.9	339.8	611.7	20.0	48.0	96.0	144.1	240.1	400.1	720.3
300	10.2	38.7	77.4	116.1	193.4	322.4	580.3	20.0	48.0	96.0	144.1	240.1	400.1	720.3
325	9.3	37.6	75.2	112.7	187.9	313.1	563.7	20.0	48.0	95.9	143.9	239.8	399.6	719.3
350	8.4	36.4	72.8	109.2	182.0	303.3	545.9	19.8	47.3	94.6	141.9	236.5	394.1	709.4
375	7.4	35.0	69.9	104.9	174.9	291.4	524.6	19.3	44.9	89.9	134.8	224.7	374.6	674.2
400	6.5	32.6	65.2	97.9	163.1	271.9	489.3	19.3	40.8	81.6	122.3	203.9	339.8	611.7
425	5.5	27.3	54.6	81.9	136.5	227.5	409.5	17.1	34.1	68.3	102.4	170.6	284.4	511.9
450	4.6	21.6	43.2	64.8	107.9	179.9	323.8	13.5	27.0	54.0	81.0	134.9	224.9	404.8
475	3.7	15.7	31.3	47.0	78.3	130.6	235.0	9.8	19.6	39.2	58.8	97.9	163.2	293.8
500	2.8	11.1	22.1	33.2	55.4	92.3	166.1	6.9	13.8	27.7	41.5	69.2	115.3	207.6
538	1.4	5.9	11.8	17.7	29.5	49.2	88.6	3.7	7.4	14.8	22.2	36.9	61.6	110.8

ASTM A217 GR. WC6

0			STAND	ARD CLASS	6 B16.34 - 2	2004			SPE	CIAL CLASS	6 B16.34 - 2	2004		
		MAX	IMUM NON	- СКО СК МО	ORKING PR	ESSURE, B	ar	MA	хімим NO	N-SHOCK V	ORKING P	RESSURE,	Bar	
	150	300	600	900	1500	2500	4500	150	300	600	900	1500	2500	4500
-29 to 38	19.8	51.7	103.4	155.1	258.6	430.9	775.7	19.8	51.7	103.4	155.1	258.6	430.9	775.7
50	19.5	51.7	103.4	155.1	258.6	430.9	775.7	19.8	51.7	103.4	155.1	258.6	430.9	775.7
100	17.7	51.5	103.0	154.4	257.4	429.0	772.2	19.8	51.7	103.4	155.1	258.6	430.9	775.7
150	15.8	49.7	99.5	149.2	248.7	414.5	746.2	19.8	51.7	103.4	155.1	258.6	430.9	775.7
200	13.8	48.0	95.9	143.9	239.8	399.6	719.4	19.8	51.7	103.4	155.1	258.6	430.9	775.7
250	12.1	46.3	92.7	139.0	231.8	386.2	694.8	19.8	51.7	103.4	155.1	258.6	430.9	775.7
300	10.2	42.9	85.7	128.6	214.4	357.1	642.6	19.8	51.7	103.4	155.1	258.6	430.9	775.7
325	9.3	41.4	82.6	124.0	206.6	344.3	619.6	19.8	51.7	103.4	155.1	258.6	430.9	775.7
350	8.4	40.3	80.4	120.7	201.1	335.3	603.3	19.8	51.5	102.8	154.3	257.1	428.6	771.4
375	7.4	38.9	77.6	116.5	194.1	323.2	581.8	19.3	50.6	101.0	151.5	252.5	420.9	757.4
400	6.5	36.5	73.3	109.8	183.1	304.9	548.5	19.3	50.3	100.6	150.6	251.2	418.3	753.2
425	5.5	35.2	70.0	105.1	175.1	291.6	524.7	19.0	49.6	99.3	148.9	248.2	413.7	744.6
450	4.6	33.7	67.7	101.4	169.0	281.8	507.0	18.1	47.3	94.4	141.4	235.8	393.1	707.6
475	3.7	31.7	63.4	95.1	158.2	263.9	474.8	16.4	42.8	85.5	128.2	213.7	356.3	641.3
500	2.8	25.7	51.5	77.2	128.6	214.4	385.9	12.3	32.2	64.3	96.5	160.8	268.0	482.4
538	1.4	14.9	29.8	44.7	74.5	124.1	223.4	7.1	18.6	37.2	55.8	93.1	155.1	279.2
550	1.4(a)	12.7	25.4	38.1	63.5	105.9	190.6	6.1	15.9	31.8	47.7	79.4	132.4	238.3
575	1.4(a)	8.8	17.6	26.4	44.0	73.4	132.0	4.2	11.0	22.0	33.0	55.0	91.7	165.1
600	1.4(a)	6.1	12.2	18.3	30.5	50.9	91.6	2.9	7.6	15.3	22.9	38.2	63.6	114.5
625	1.4(a)	4.3	8.5	12.8	21.3	35.5	63.9	2.0	5.3	10.6	16.0	26.6	44.4	79.9
650	1.1(a)	2.8	5.7	8.5	14.2	23.6	42.6	1.4	3.5	7.1	10.6	17.7	29.5	53.2
Note: Use normalized a	10.30 10.4 10.4 10.4 10.4 10.4 10.4 10.5.1 250.0 430.9 775.7 100 17.7 51.5 103.4 155.1 258.6 430.9 775.7 150 15.8 49.7 99.5 149.2 248.7 414.5 746.2 19.8 51.7 103.4 155.1 258.6 430.9 775.7 200 13.8 48.0 95.9 143.9 239.8 399.6 719.4 19.8 51.7 103.4 155.1 258.6 430.9 775.7 250 12.1 46.3 92.7 139.0 231.8 386.2 694.8 19.8 51.7 103.4 155.1 258.6 430.9 775.7 325 9.3 41.4 82.6 124.0 206.6 344.3 619.6 19.8 51.7 103.4 155.1 258.6 430.9 775.7 350 8.4 40.3 80.4 120.7 201.1 353.3 603.3 19.8 51.5 102.8 154.3 257.1 428.6													

ASTM A217 GR. WC9

0			STANE	DARD CLAS	S B16.34 -	2004			SP	ECIAL CLAS	S B16.34 -	2004		
		MA	хімим ном	I-SHOCK W	ORKING PR	RESSURE, I	Bar	M	AXIMUM N	ON-SHOCK	WORKING	PRESSURE,	, Bar	
	150	300	600	900	1500	2500	4500	150	300	600	900	1500	2500	4500
-29 to 38	19.8	51.7	103.4	155.1	258.6	430.9	775.7	19.8	51.7	103.4	155.1	258.6	430.9	775.7
50	19.5	51.7	103.4	155.1	258.6	430.9	775.7	19.8	51.7	103.4	155.1	258.6	430.9	775.7
100	17.7	51.5	103.0	154.6	257.6	429.4	773.0	19.8	51.7	103.4	154.9	258.1	430.2	774.3
150	15.8	50.3	100.3	150.6	250.8	418.2	752.8	19.5	51.0	101.9	152.9	254.8	424.6	764.3
200	13.8	48.6	97.2	145.8	243.4	405.4	729.8	19.3	50.2	100.4	150.7	251.1	418.5	753.4
250	12.1	46.3	92.7	139.0	231.8	386.2	694.8	19.2	50.0	100.0	149.9	249.9	416.5	749.7
300	10.2	42.9	85.7	128.6	214.4	357.1	642.6	19.1	49.8	99.6	149.3	248.9	414.8	746.7
325	9.3	41.4	82.6	124.0	206.6	344.3	619.6	19.0	49.6	99.2	148.8	248.0	413.3	743.9
350	8.4	40.3	80.4	120.7	201.1	335.3	603.3	18.9	49.2	98.4	147.6	246.0	410.0	738.1
375	7.4	38.9	77.6	116.5	194.1	323.2	581.8	18.7	48.8	97.5	146.3	243.8	406.3	731.3
400	6.5	36.5	73.3	109.8	183.1	304.9	548.5	18.7	48.8	97.5	146.3	243.8	406.3	731.3
425	5.5	35.2	70.0	105.1	175.1	291.6	524.7	18.7	48.8	97.5	146.3	243.8	406.3	731.3
450	4.6	33.7	67.7	101.4	169.0	281.8	507.0	18.1	47.3	94.4	141.4	235.8	393.1	707.6
475	3.7	31.7	63.4	95.1	158.2	263.9	474.8	16.4	42.8	85.5	128.2	213.7	356.3	641.3
500	2.8	28.2	56.5	84.7	140.9	235.0	423.0	13.7	35.6	71.5	107.1	178.6	297.5	535.4
538	1.4	18.4	36.9	55.3	92.2	153.7	276.6	8.8	23.0	46.1	69.1	115.2	192.1	345.7
550	1.4(a)	15.6	31.3	46.9	78.2	130.3	234.5	7.5	19.5	39.1	58.6	97.7	162.8	293.1
575	1.4(a)	10.5	21.1	31.6	52.6	87.7	157.9	5.0	13.2	26.3	39.5	65.8	109.7	197.4
600	1.4(a)	6.9	13.8	20.7	34.4	57.4	103.3	3.3	8.6	17.2	25.8	43.0	71.7	129.1
625	1.4(a)	4.5	8.9	13.4	22.3	37.2	66.9	2.1	5.6	11.2	16.7	27.9	46.5	83.7
650	1.1(a)	2.8	5.7	8.5	14.2	23.6	42.6	1.4	3.5	7.1	10.6	17.7	29.5	53.2

Note: Use normalized and tempered material only. Not be used over 595°C. (a) Flanged end valve ratings terminate at 538°C.

ASTM A217 GR. C5

\circ			STAN	DARD CLAS	SS B16.34 -	2004			SF	PECIAL CLAS	SS B16.34	- 2004		
		MA	хімим NO	N-SHOCK V	VORKING P	RESSURE,	Bar	M	IAXIMUM N	ION-SHOCK	WORKING	PRESSURE	, Bar	
	150	300	600	900	1500	2500	4500	150	300	600	900	1500	2500	4500
-29 to 38	20.0	51.7	103.4	155.1	258.6	430.9	775.7	20.0	51.7	103.4	155.1	258.6	430.9	775.7
50	19.5	51.7	103.4	155.1	258.6	430.9	775.7	20.0	51.7	103.4	155.1	258.6	430.9	775.7
100	17.7	51.5	103.0	154.6	257.6	429.4	773.0	20.0	51.7	103.4	155.1	258.6	430.9	775.7
150	15.8	5.03	100.3	150.6	250.8	418.2	752.8	20.0	51.7	103.4	155.1	258.6	430.9	775.7
200	13.8	48.6	97.2	145.8	243.4	405.4	729.8	20.0	51.7	103.4	155.1	258.6	430.9	775.7
250	12.1	46.3	92.7	139.0	231.8	386.2	694.8	20.0	51.7	103.4	155.1	258.6	430.9	775.7
300	10.2	42.9	85.7	128.6	214.4	357.1	642.6	20.0	51.7	103.4	155.1	258.6	430.9	775.7
325	9.3	41.4	82.6	124.0	206.6	344.3	619.6	20.0	51.7	103.4	155.1	258.6	430.9	775.7
350	8.4	40.3	80.4	120.7	201.1	335.3	603.3	19.8	51.5	102.8	154.3	257.1	428.6	771.4
375	7.4	38.9	77.6	116.5	194.1	323.2	581.8	19.3	50.6	101.0	151.5	252.5	420.9	757.4
400	6.5	36.5	73.3	109.8	183.1	304.9	548.5	19.3	50.3	100.6	150.6	251.2	418.3	753.2
425	5.5	35.2	70.0	105.1	175.1	291.6	524.7	19.0	49.6	99.3	148.9	248.2	413.7	744.6
450	4.6	33.7	67.7	101.4	169.0	281.8	507.0	18.1	45.2	90.3	135.5	225.9	376.5	677.6
475	3.7	27.9	55.7	83.6	139.3	232.1	417.8	16.4	34.8	69.6	104.5	174.1	290.2	522.3
500	2.8	21.4	42.8	64.1	106.9	178.2	320.7	13.4	26.7	53.4	80.2	133.6	222.7	400.9
538	1.4	13.7	27.4	41.1	68.6	114.3	205.7	8.6	17.1	34.3	51.4	85.7	142.8	257.1
550	1.4(a)	12.0	24.1	36.1	60.2	100.4	180.7	7.5	15.1	30.1	45.2	75.3	125.5	225.9
575	1.4(a)	8.9	17.8	26.7	44.4	74.0	133.3	5.6	11.1	22.2	33.3	55.5	92.5	166.6
600	1.4(a)	6.2	12.5	18.7	31.2	51.9	93.5	3.9	7.8	15.6	23.4	38.9	64.9	116.8
625	1.4(a)	4.0	8.0	12.0	20.0	33.3	59.9	2.5	5.0	10.0	15.0	24.9	41.6	74.8
650	0.9(a)	2.4	4.7	7.1	11.8	19.7	35.5	1.5	3.0	5.9	8.9	14.8	24.6	44.3

Note: Use normalized and tempered material only. (a) Flanged end valve ratings terminate at 538°C.

ASTM A217 GR. C12

0			STA	NDARD CLA	ASS B16.34	- 2004			S	PECIAL CLA	SS B16.34	- 2004		
		М	AXIMUM N	DN-SHOCK	WORKING	PRESSURE	Bar	N	AXIMUM	NON-SHOCK	WORKING	PRESSUR	E, Bar	
	150	300	600	900	1500	2500	4500	150	300	600	900	1500	2500	4500
-29 to 38	20.0	51.7	103.4	155.1	258.6	430.9	775.7	20.0	51.7	103.4	155.1	258.6	430.9	775.7
50	19.5	51.7	103.4	155.1	258.6	430.9	775.7	20.0	51.7	103.4	155.1	258.6	430.9	775.7
100	17.7	51.5	103.0	154.6	257.6	429.4	773.0	20.0	51.7	103.4	155.1	258.6	430.9	775.7
150	15.8	50.3	100.3	150.6	250.8	418.2	752.8	20.0	51.7	103.4	155.1	258.6	430.9	775.7
200	13.8	48.6	97.2	145.8	243.4	405.4	729.8	20.0	51.7	103.4	155.1	258.6	430.9	775.7
250	12.1	46.3	92.7	139.0	231.8	386.2	694.8	20.0	51.7	103.4	155.1	258.6	430.9	775.7
300	10.2	42.9	85.7	128.6	214.4	357.1	642.6	20.0	51.7	103.4	155.1	258.6	430.9	775.7
325	9.3	41.4	82.6	124.0	206.6	344.3	619.6	20.0	51.7	103.4	155.1	258.6	430.9	775.7
350	8.4	40.3	80.4	120.7	201.1	335.3	603.3	19.8	51.5	102.8	154.3	257.1	428.6	771.4
375	7.4	38.9	77.6	116.5	194.1	323.2	581.8	19.3	50.6	101.0	151.5	252.5	420.9	757.4
400	6.5	36.5	73.3	109.8	183.1	304.9	548.5	19.3	50.3	100.6	150.6	251.2	418.3	753.2
425	5.5	35.2	70.0	105.1	175.1	291.6	524.7	19.0	49.6	99.3	148.9	248.2	413.7	744.6
450	4.6	33.7	67.7	101.4	169.0	281.8	507.0	18.1	47.3	94.4	141.4	235.8	393.1	707.6
475	3.7	31.7	63.4	95.1	158.2	263.9	474.8	16.4	42.8	85.5	128.2	213.7	356.3	641.3
500	2.8	28.2	56.5	84.7	140.9	235.0	423.0	13.7	35.6	71.5	107.1	178.6	297.5	535.4
538	1.4	17.5	35.0	52.5	87.5	145.8	262.4	8.4	21.9	43.7	65.6	109.3	182.2	328.0
550	1.4(a)	15.0	30.0	45.0	75.0	125.0	225.0	7.2	18.7	37.5	56.2	93.7	156.2	281.2
575	1.4 (a)	10.5	20.9	31.4	52.3	87.1	156.8	5.0	13.1	26.1	39.2	65.3	108.9	196.0
600	1.4 (a)	7.2	14.4	21.5	35.9	59.8	107.7	3.4	9.0	17.9	26.9	44.9	74.8	134.6
625	1.4 (a)	5.0	9.9	14.9	24.8	41.4	74.5	2.4	6.2	12.4	18.6	31.1	51.8	93.2
650	1.4 (a)	3.5	7.1	10.6	17.7	29.5	53.2	1.7	4.4	8.9	13.3	22.2	36.9	66.5

Note: Use normalized and tempered material only. (a) Flanged end valve ratings terminate at 538°C.

ASTM A351 GR. CF8M °C STANDARD CLASS B16.34 - 2004 SPECIAL CLASS B16.34 - 2004 MAXIMUM NON-SHOCK WORKING PRESSURE. Bar MAXIMUM NON-SHOCK WORKING PRESSURE. Bar 2500 413.7 400.9 4500 775.7 762.3 150 19.0 18.4 16.2 300 49.6 48.1 42.2 900 148.9 1500 248.2 150 19.8 19.5 600 103.4 2500 430.9 423.5 600 4500 744.6 300 900 155.1 1500 -29 to 38 258.6 254.1 235.5 92.6 84.4 144.3 240.6 721.7 50.8 47.1 101.6 152.5 50 100 126.6 211.0 351.6 632.9 18.1 94.2 141.3 392.4 706.4 14.8 13.7 12.1 10.2 38.5 35.7 33.4 77.0 71.3 66.8 115.5 107.0 100.1 320.8 297.2 278.1 577.4 534.9 500.6 474.3 43.0 39.8 37.3 85.9 79.6 74.5 70.6 128.9 119.4 111.8 214.8 199.0 186.3 358.0 331.7 310.4 644.4 597.0 558.8 150 200 250 <u>192.5</u> 178.3 166.9 16.5 15.3 14.3 13.5 300 63.2 31.6 94.9 158.1 263.5 35.3 105.9 176.4 294.1 529.3 287.2 325 9.3 30.9 61.8 92.7 91.0 154.4 257.4 252.7 463.3 13.2 34.5 68.9 103.4 172.3 517.0 350 375 400 8.4 7.4 6.5 33.8 33.3 32.9 67.7 66.7 65.7 30.3 60.7 151.6 454.9 13.0 101.5 169.2 282.1 5077 29.9 29.4 59.8 58.9 89.6 88.3 149.4 147.2 249.0 245.3 448.2 441.6 12.8 12.6 100.0 98.6 166.7 164.3 277.9 273.8 500.2 492.9 425 450 475 5.5 4.6 3.7 65.1 64.4 64.0 437.1 29.1 28.8 58.3 57.7 87.4 145.7 144.2 242.9 240.4 12.5 12.3 32.5 32.2 97.6 96.6 162.6 161.0 271.1 268.3 487.9 86.5 432. 482.9 57.3 56.5 50.0 49.8 86.0 84.7 75.2 74.8 430.1 423.0 375.8 374.2 12.3 12.3 12.2 11.0 11.0 32.0 31.7 29.0 29.0 96.0 96.0 95.1 86.9 86.9 160.0 158.6 145.1 145.1 266.6 264.3 241.7 241.7 28.7 143.4 238.9 480.0 2.8 1.4 1.4(a) 140.9 125.5 124.9 235.0 235.0 208.9 208.0 63.4 57.9 57.9 435.1 435.1 500 28.2 <u>25.2</u> 25.0 538 550 575 600 1.4(a) 1.4(a) 24.0 47.9 71.8 59.7 119.7 199.5 359.1 10.9 9.5 28.6 24.9 57.1 49.8 85.7 74.6 143.0 238.3 207.3 428.8 39.8 124.4 19.9 99.5 165.9 298.6 373.2 <u>19.8</u> 15.8 98.8 79.1 <u>164.7</u> 131.9 296.5 237.4 <u>1.4(a)</u> 1.4(a) 47.4 38.0 <u>237.2</u> 189.9 39.5 31.7 15.8 12.7 31.6 25.3 <u>131.8</u> 105.5 <u>7.6</u> 6.1 59.3 47.5 625 650 79.1 63.3 1.4(a) 1.4(a) 154.8 125.7 64.5 57.1 675 700 10.3 20.6 16.8 31.0 25.1 51.6 41.9 86.0 69.8 4.9 4.4 12.9 11.4 25.8 22.8 38.7 34.3 107.5 95.2 193.5 171.3 8.4 1.4(a) 1.4(a) 1.4(a) 1.4(a) 28.6 22.1 17.2 13.2 7.0 5.9 4.6 9.5 7.4 5.8 4.4 <u>19.1</u> 14.8 11.4 8.8 79.5 61.2 47.6 36.6 47.7 <u>143.0</u> 110.3 <u>14.0</u> 11.7 21.0 17.6 34.9 29.3 58.2 48.9 104.8 87.9 3.7 2.8 725 775 800 9.0 7.0 13.7 10.5 22.8 17.4 38.0 29.2 28.5 22.0 68.4 2.2 85.6 1.2(a) 3.5 52.6 65.6 816 1.0(a) 2.8 5.9 8.6 14.1 23.8 42.7 1.4 3.4 7.2 10.7 17.9 29.6 53.1

Note: At temperatures over 538°C, use o nly wher carbon content is 0.04% or higher. (a) Flanged end valve ratings terminate at 538°C

ASTM A351 GR. CF8C

0			STAN	DARD CLAS	S B16.34 -	2004			SPI	ECIAL CLAS	S B16.34 -	2004		
		MAX	амим ног	N-SHOCK W	ORKING PF	RESSURE, B	Bar	M	AXIMUM NO	DN-SHOCK	WORKING I	RESSURE,	Bar	
•														
	150	300	600	900	1500	2500	4500	150	300	600	900	1500	2500	4500
-29 to 38	19.0	49.6	99.3	148.9	248.2	413.7	744.6	19.8	51.7	103.4	155.1	258.6	430.9	775.7
50	18.7	48.8	97.5	146.3	243.8	406.4	731.5	19.6	51.2	102.4	153.6	256.0	426.7	768.1
100	17.4	45.3	90.6	135.9	226.5	377.4	679.4	18.8	48.9	97.9	146.8	244.7	407.8	734.1
150	15.8	42.5	84.9	127.4	212.4	353.9	637.1	17.4	45.4	90.8	136.1	226.9	378.2	680.7
200	13.8	39.9	79.9	119.8	199.7	332.8	599.1	16.5	43.1	86.1	129.2	215.3	358.8	645.8
250	12.1	37.8	75.6	113.4	189.1	315.1	567.2	16.0	41.6	83.3	124.9	208.2	347.0	624.5
300	10.2	36.1	72.2	108.3	180.4	300.7	541.3	15.4	40.2	80.3	120.5	200.9	334.8	602.6
325	9.3	35.4	70.7	106.1	176.8	294.6	530.3	15.1	39.5	78.9	118.4	197.3	328.8	591.8
350	8.4	34.8	69.5	104.3	173.8	289.6	521.3	14.9	38.8	77.6	116.4	194.0	323.3	581.9
375	7.4	34.2	68.4	102.6	171.0	285.1	513.1	14.6	38.2	76.4	114.5	190.9	318.1	572.7
400	6.5	33.9	67.8	101.7	169.5	282.6	508.6	14.5	37.8	75.7	113.5	189.2	315.4	567.7
425	5.5	33.6	67.2	100.8	168.1	280.1	504.2	14.4	37.5	75.0	112.5	187.6	312.6	562.7
450	4.6	33.5	66.9	100.4	167.3	278.8	501.8	14.3	37.3	74.7	112.0	186.7	311.1	560.0
475	3.7	31.7	63.4	95.1	158.2	263.9	474.8	14.3	37.3	74.6	111.9	186.5	310.9	559.6
500	2.8	28.2	56.5	84.7	140.9	235.0	423.0	13.7	35.6	71.5	107.1	178.6	297.5	535.4
538	1.4	25.2	50.0	75.2	125.5	208.9	375.8	11.0	29.0	57.9	86.9	145.1	241.7	435.1
550	1.4(a)	25.0	49.8	74.8	124.9	208.0	374.2	11.0	29.0	57.9	86.9	145.1	241.7	435.1
575	1.4(a)	24.0	47.9	71.8	119.7	199.5	359.1	10.9	28.6	57.1	85.7	143.0	238.3	428.8
600	1.4(a)	19.8	39.6	59.4	99.0	165.1	297.1	9.5	24.8	49.5	74.3	123.8	206.4	371.4
625	1.4(a)	13.9	27.7	41.6	69.3	115.5	207.9	6.6	17.3	34.6	52.0	86.6	144.3	259.8
650	1.4(a)	10.3	20.6	30.9	51.5	85.8	154.5	4.9	12.9	25.7	38.6	64.4	107.3	193.1
675	1.4(a)	8.0	15.9	23.9	39.8	66.3	119.4	3.8	9.9	19.9	29.8	49.7	82.9	149.2
700	1.4(a)	5.6	11.2	16.8	28.1	46.8	84.2	3.1	8.2	16.4	24.5	40.9	68.2	122.7
725	1.4(a)	4.0	8.0	11.9	19.9	33.1	59.6	2.3	5.9	11.8	17.7	29.5	49.2	88.5
750	1.2(a)	3.1	6.2	9.3	15.5	25.8	46.4	1.6	4.1	8.2	12.2	20.4	34.0	61.2
775	0.9(a)	2.5	4.9	7.4	12.3	20.4	36.8	1.2	3.1	6.2	9.3	15.5	25.8	46.4
800	0.8(a)	2.0	4.0	6.1	10.1	16.9	30.4	1.0	2.7	5.3	8.0	13.3	22.2	40.0
816	0.7(a)	1.9	3.8	5.7	9.5	15.8	28.4	0.9	2.4	4.7	7.1	11.8	19.7	35.5

Note: At temperatures over 538°C, use only when the carbon content is 0.04% or higher. (a) Flanged end valve ratings terminate at 538°C.

METRIC UNITS Pressure Temperature Ratings for modified 9Cr-1Mo-V Cast Material equivalent to ASTM A182, GR. F91 are not currently listed in ASME B-16.34 - 2004 version. Allowable stress values for this material at elevated temperatures were published in ASME Code Case 2192, March 1995. Using the allowable stress valves in Code Case 2192, and the methods outlined in ASME B16.34, Annex F, the calculated values for Pressure-Temperature Ratings ASTM A217, GR. C12A are tabulated below. ASTM A217 GB C12A

\mathbf{r}				STANDA	RD CLASS					SPECI	AL CLASS			
		MA	хімим NO	N-SHOCK \	VORKING P	RESSURE,	Bar	1	И МОМІХАН	ION-SHOCK	WORKING	PRESSURE	, Bar	
	150	300	600	900	1500	2500	4500	150	300	600	900	1500	2500	4500
29 to 38	20.0	51.7	103.4	155.1	258.6	430.9	775.7	20.0	51.7	103.4	155.1	258.6	430.9	775.7
50	19.5	51.7	103.4	155.1	258.6	430.9	775.7	20.0	51.7	103.4	155.1	258.6	430.9	775.7
100	17.7	51.5	103.0	154.6	257.6	429.4	773.0	20.0	51.7	103.4	155.1	258.6	430.9	775.7
150	15.8	50.3	100.3	150.6	250.8	418.2	752.8	20.0	51.7	103.4	155.1	258.6	430.9	775.7
200	13.8	48.6	97.2	145.8	243.4	405.4	729.8	20.0	51.7	103.4	155.1	258.6	430.9	775.7
250	12.1	46.3	92.7	139.0	231.8	386.2	694.8	20.0	51.7	103.4	155.1	258.6	430.9	775.7
300	10.2	42.9	85.7	128.6	214.4	357.1	642.6	20.0	51.7	103.4	155.1	258.6	430.9	775.7
325	9.3	41.4	82.6	124.0	206.6	344.3	619.6	20.0	51.7	103.4	155.1	258.6	430.9	775.7
350	8.4	40.3	80.4	120.7	201.1	335.3	603.3	19.8	51.5	102.8	154.3	257.1	428.6	771.4
375	7.4	38.9	77.6	116.5	194.1	323.2	581.8	19.3	50.6	101.0	151.5	252.5	420.9	757.4
400	6.5	36.5	73.3	109.8	183.1	304.9	548.5	19.3	50.3	100.6	150.6	251.2	418.3	753.2
425	5.5	35.2	70.0	105.1	175.1	291.6	524.7	19.0	49.6	99.3	148.9	248.2	413.7	744.6
450	4.6	33.7	67.7	101.4	169.0	281.8	507.0	18.1	47.3	94.4	141.4	235.8	393.1	707.6
475	3.7	31.7	63.4	95.1	158.2	263.9	474.8	16.4	42.8	85.5	128.2	213.7	356.3	641.3
500	2.8	28.2	56.5	84.7	140.9	235.0	423.0	13.7	35.6	71.5	107.1	178.6	297.5	535.4
538	1.4	25.2	50.0	75.2	125.5	208.9	375.8	11.0	29.0	57.9	86.9	145.1	241.7	435.1
550	1.4(a)	25.0	49.8	74.8	124.9	208.0	374.2	11.0	29.0	57.9	86.9	145.1	241.7	435.1
575	1.4(a)	24.0	47.9	71.8	119.7	199.5	359.1	10.9	28.6	57.1	85.7	143.0	238.3	428.8
600	1.4(a)	19.5	39.0	58.5	97.5	162.5	292.5	9.3	24.4	48.7	73.1	121.9	203.1	365.6
625	1.4(a)	14.6	29.2	43.8	73.0	121.7	219.1	7.0	18.3	36.5	54.8	91.3	152.1	273.8
650	1.4(a)	9.9	19.9	29.8	49.6	82.7	148.9	4.8	12.4	24.8	37.2	62.1	103.4	186.2

Note: (a) Flanged end valve ratings terminate at 538°C

THREADS AT A GLANCE

The following tables have been prepared to show information relating to the thread form of both ends of a tube connection fitting - tube end and pipe end.

TABLE I. PIPE THREADS

-			British Pipe T	hand				American Pl	pé Thread	
			BSP (G Seriel)	BSPHR	Series)	NPS-	National	Pipe Scralight	NPT - Name	nal Pipe Taper
	The	rikav.	BSP	Э	SP	The	ande:	NPS	Ň	PT.
Site	TRI	Angle	0.D. (mm)	Min: Dia. (mm)	Max, Dia- (mm)	T.P.)	Angle	0.0. (mm)	Min Ola (mm)	Hax Dia (mm)
Ve.	- 28	55	9.62	9.51	973	27	60	10.29	10.27	10.29
1/4	19	55	13.03	12.91	13.16	18	64	13.77	13.69	12,77
1/0	19.	55	16.54	16.41	16.66	(8)	50	17-15	17.07	17.15
1/2	14	55	20.82	20.67	20.96	14	60	21.35	21.26	21,34
3/4	14	55	26.20	26.16	26.44	14	8.0	26.67	26.59	26.67
12	-11	55	33.07	32.89	33.25	11.5	60	33.40	33.31	33.40
11/4	11	55	41.73	41.55	41.21	11.5	60	42.16	42.07	42.16
11/2	61	53	47.62	47.44	47.80	11.5	40	48.24	48.17	48.25
7	10	35	59.44	59.25	39.62	11.5	60	60 31	60.24	60 33

FIPE THREADS

A Pipe Thread is a 'universal' thread that enables port connection via a common thread form. With the addition of a tube connection fitting, pipe threads can be used to connect tube to the port of a piece of equipment or allow adaptation, both sizing and/or cooliguration, to satisfy a given situation. However, depending upon the place of manufacture or the industry in which you are working, different 'universal' pipe threads may be specified.

In Australia, most specifications will demand either 85P (British Standard Pipe - Taper or Parallel) or NPT/NPS.

Radius

EXAMPLE BSPT/BSPP

1/s* BSP - 28 threads per inth & 55 thread angle

(American Pipe Taper/Straight). The fundamental difference with these two 'universal' threads is the pitch or threads per inch (T.P.L) and the chread angle. For further information, refer to the drawings below and/or Table 1.

Pipe thread sizes are determined by the 'nominal bore' of pipe and, as such, can be very confusing when ordered. Confusion is often encountered because the wall thickness of the pipe is not included in the calculation for BSPT, BSPP, NPT or NPS thread specifications. The easiest way to determine the size you require is to use the 'Tube and Thread Profile' drawings on page 7-2.

EXAMPLE NPT/NPS

1/8" NPT - 27 threads per incir & 40 thread angle

Vet NPT NPT 60 25.40 (17) 27 Threads

AS 1722.1 SEALING THREADS OF WHITWORTH FORM (R SERIES)

Commonly termed 8SPT, gas thread, scaling thread, dry seal thread or engineering thread, AS1722.1 require mating threads, including a combination of parallel and tapered scaling ends, to effect a seal without the aid of any form of thread scalant or gasket. Generally longer and more bulky than the AS1722.2 equivalents, pipe threads manufactured to meet AS1722.1 have a limited working life if continually disassembled and re-made.

AS 1723.2 FASTENING THREADS OF WHITWORTH FORM (G SERIES)

Commonly termed BSP. M.I. F.I or plumbing thread, the thread will require a sealing aid to effect a positive seal. The sealing agent may take the form of a gasket, o-ring, thread tape, hemp or thread paste. Threads manufactured to AS1722.2 are used extensively in the Plumbing Industry. If used in the correct manner, threads manufactured to AS1722.2 can be disassembled and re-made many times over.

Tubo O.D.	Standard Compression	Internal Compression	Soldre-On	SAE 45 Flarm	SAE 45 Inversed Flare	Nines Air Brake
1/8	5/16 x 24UNF	%/32 x 26brass	5/16 x 26brass	5/16 × 24UNF	S/IA x 28UNS	1/4 x 28LINF
3/16	3/8 x 24UNF	7/8 × 24UNF	Va x 28BSP	T/8 x 24LINF	Vax 24UNF	3/8 × 24UNF
1/4	7/16 x 24LINS	7/16 = 24UNS	7/16 × 20UNF	THE & ZOUNE	7/14 × 24UNS	7/16 × 20UNF
3/16	1/2 x 24UNS	1/2 = 24UNS	1/# x 1985P	1/2 x 20UNF	1/1 × 20UNF	1/2 x 20UNF
1/8	1/16 x 24UNEF	9/18 × 24UNEF	1/8 × 1985P	S/e x ISUNF	V/8 x ISUNF	9/16 K HELINA
1/2	11/16 x 20UN	3/4 × 24UNS	V2 × MBSP	3/4 + 16UNF	3/4 x 18UNS	3/4 × 16UNF
574	n/a	7/8 x 20UNEF	nia	7/0 x TALINE	n/a	rila
3/4	n/a	1,025 x 18UNS	ri/a	11/16 X TAUNE	n/a.	rs/a
finns,	5/16 x 24UNF	nla	n/x	n/a	ida	nia
6mm	7/16 x 24LINS	13/8	n/a	m/a-	n/a	nia
Bmm	12 x 24UNS	m/a	nla	nia	nia	in/a
Dmins	9/16 x 24UNEF	iti/a	r/a	TIÚA.	n/a.	n/a
2mm	11/16 x 20UN	eria	n/a	inta	n/a	nia

n/a = not available

THREAD ABBREVIATIONS AND DEFINITIONS

The thread types listed below are referenced throughout this catalogue and are representative of some of the common threads and terms used in general industry.

ANP	American National Pipe
ANPT	American National Pipe Taper
AS	Australian Standard
Brass Thread	Fine thread common to brass machining and always 26TPI regardless of major diameter (whieworth form
BS	British Standard
BSP	British Standard Pipe
BSPP	British Standard Pipe ParaBel
BSPT	British Standard Pipe Tapered
Dry Seal	A generic term referring to a thread that seals without the aid of a thread sealant or washer
Engineering Thread	A term referring to a thread capable of scaling without the aid of a thread scalant or washer
FJ	Female Iron (BSP Female - common in the Plumbing Industry)
GAS	A term referring to 85PT or NPT thread (common in Automotive and Plumbing Industry)
OZI	International Standards Organisation
J.C.	Joint Industries Conference or J.I. Case
MJ.	Male Iron (85P Male - common in the Plumbing Industry)
NPS	National Pipe Straight (American pipe thread)
NPT	National Pipe Taper (American pipe thread)
NPTE	National Pipe Taper Fuel (Internal, straight, American pipe thread)
191	Threads per inch
Pipe Thread	A term referring to BSPT/BSPP or NPT/NPS thread
Plumbing Thread	A sorm referring to a BSP fastening thread
P.T.	Sealing, rapered, gipe thread of whiteworth form
SAE	Society of Automotive Engineers
Sealing Thread	A term referring to a thread capable of scaling without the aid of a thread scalant or washer
PSIG	Pounds per square inch gauge
Tube Thread	Thread used on the tabe end of a tabe connection fitting
UN	Unified National (not standard UNF)
UNEF	Unified National Extra Fine
UNF	Unified National Fine (formerly SAE)
UNS	Unified National Special (not standard UNF)

ARMSTRONG

SECTION

- Useful Information

COMMON ABBREVIATIONS IN THE VALVE INDUSTRY

- ✤ VALVE MATERIAL TEMPERATURE LIMITS
- **MATERIAL COMPARISON FOR CAST AND FORGED STEEL PRODUCTS**
- **DETAILS**
- **MATERIAL COMPOSITION**
- PIPE DIMENSIONS

COMMON ABBREVIATIONS IN THE VALVE INDUSTRY								
ORGANISATIONS/SOCIETIES								
ANSI	American National Standards Institute	API	American Petroleum Institute					
ASME	American Society of Mechanical Engineers	ASTM	American Society for Testing Materials					
BS	British Standards	DIN	Deutsche Industrie - Normen					
BVQI	Bureau Veritas Quality International	ISO	International Standards Organisation					
	VALVE MAT	'ERIAL	S					
Br	Bronze	A.I.	All Iron					
C.I.	Cast Iron	M.I.	Malleable Iron					
N.I.	Nickel Iron	D.I.	Ductile Iron					
C.S.	Cast Steel/Carbon Steel	F.S.	Forged Steel					
S.S.	Stainless Steel	PVC	Polyvinyl Chloride					
Ν	Nickel	Μ	Monel Metal					
Мо	Molybdenum	Al	Aluminium					
Cr	Chromium	Tef	Teflon					
13% Cr	Type 410 Stainless Steel	HF	Hard Face (Stellite Face)					
	OPERATING ME	CHAN	ISMS					
O.S. & Y	Outside Screw & Yoke	N.R.S.	Non Rising Stem					
R.S.	Rising Stem							
	END CONNE	CTION	S					
F.E.	Flanged Ends	S.E.	Screwed Ends					
F.F.D.	Flanged, Faced & Drilled	B.W.	Butt Welding Ends					
S.W.	Socket Welding Ends	Scr.	Screwed Ends					
Flg.	Flanged Ends	S.J.	Solder Ends					

VALVE MATERIAL TEMPERATURE LIMITS									
		DEGREES F							
VALVE BODY MATERIAL									
MATERIAL	LOWER	UPPER							
Cast Iron	-20	410							
Ductile Iron	-20	650							
Carbon Steel - Grade WCB	-20	1000							
Carbon Steel - Grade LCB	-50	650							
Carbon Moly - Grade WC1	-20	850							
1 1/4 Cr - 1/2 Mo - Grade WC6	-20	1000							
2 1/4 Cr - 1 Mo - Grade WC9	-20	1050							
5 Cr - 1/2 Mo - Grade C5	-20	1100							
9 Cr 1 Mo - Grade C12	-20	1100							
Type 304 SS - Grade CF8	-425	1500							
Type 347 SS - Grade CF8C	-425	1500							
Type 316 SS - Grade CF8M	-425	1500							
3 1/2 Ni - Grade LC3	-150	650							
Aluminium	-325	400							
Bronze	-325	550							
Inconel	-325	1200							
Monel	-325	900							
Hastelloy B	-325	700							
Hastelloy C	-325	1000							
Titanium		600							
Nickel	-325	500							
Alloy 20	-50	300							
VALVE TRIM MATERIA	L								
Type 304 SS	450	600							
Type 316 SS	450	600							
Hastelloy B		700							
Hastelloy C		1000							
Alloy 20	-50	600							
Type 416 410 SS 40 RC	-20	800							
TFE	-450	450							
Neoprene	-40	180							

MATERIAL COMPARISON FOR CAST AND FORGED PRODUCTS								
CENEDAL CLASSIFICATION	CASTI	NGS	FORGINGS					
GENERAL CLASSIFICATION	ASTM	BS	ASTM	BS				
	A126 - Class A	1452 - 14	-	-				
Cast Iron	A126 - Class B	1452 - 17	-	-				
	A126 - Class C	1452 - 20	_	_				
	A197	310 - B18/6	-	-				
Malleable Iron	A 47 - 32510	- B22/14	-	-				
	A 47 - 35018	-	-	-				
Ductile Iron	A395	-	-	-				
	A536	-	-	-				
	A216 - WCA	-	A105	1503 - 161B				
	-	1504 - 161	-	-				
Carbon Steel	A216 - WCB	1504 - B	A105	1503 - 161C				
	A216 - WCC	-	-	-				
	_	1504 - C	-	-				
Carbon - 1/2 Mo	A217 - WC1	1504 - 240	A182 - F1	1503 - 240B				
1/2 Cr - 1/2 Mo - 1/2 Ni	- WC4	-	-	-				
1 Cr - 1/2 Mo - 1/2 Ni	A217 - WC5	-	A182 - F12	1503 - 620				
1 1/4 Cr - 1/2 Mo	- WC6	1504 - 621	- F11	-				
2 1/4 Cr - 1 Mo	- WC9	- 622	- F22	1503 - 622				
3 Cr - 1 Mo			- F21					
5 Cr - 1/2 Mo (C0.15)	•	•	- F5					
5 Cr - 1/2 Mo (C0.25)	A217 - C5	1504 - 625	- F5a	1503 - 625				
9 Cr - 1 Mo	A217 - C12	- 629	- F9					
Carbon Steel for Low Temp.	A352 - LCB	4242 - GRA	A350 - LF1					
13 Cr	A217 - CA15	•	A182 - F6	1503 - 713				
18 Cr - 8 Ni (C0.03)	A351 - CF3		- F304L					
18 Cr - 8 Ni (C0.08)	- CF8	•	- F304	- 801				
18 Cr - 8 Ni - 2 Mo (C0.03)	A351 - CF3M		- F316L					
18 Cr - 8 Ni - 2 Mo (C0.08)	- CF8M	1632 - GRC	- F316	- 8453				
18 Cr - 8 Ni - Cb (C0.08)	A351 - CF8C		- F347	- 821Nb				
22 Cr - 12 Ni (C0.08)	- CH18	•	•	•				
22 Cr - 12 Ni (C0.10)	- CH10							
22 Cr - 12 Ni (C0.20)	- CH20			•				
23 Cr - 19 Ni (C0.20)	- CK20							
23 Cr - 19 Ni (C0.35)	- HK30							
23 Cr - 19 Ni (C0.45)	- HK40							

13 Cr - 33 Ni - Mo (C0.35)	- HT30		
15 Cr - 13 Ni - 2 Mo - Cb (C0.10)	CF - 10MC		
19 Cr - 27 Ni - 2 Mo - 3 Cu (C0.07)	- CN7M		
8 Cr - 20 Ni (C0.20)		A182 - F10	
HASTELLOY.B	A494 - N - 12MV		

BUTTWELDING END DETAILS

ASME B16.25 - 1997

Welding end detail for joint without backing ring

Welding end details intended for use on 0.88 in. (22 mm) and thinner nominal wall thicknesses

Welding end detail for joint with backing ring

Welding end details intended for use on nominal wall thicknesses greater than 0.88 in. (22 mm)

NOTE: Internal surface may be re-formed or machined for dimensions B at root face. Contour within the envelope is manufacturer's option unless otherwise specifically ordered.

		Pipe	Nominal Pipe Size (inch)							
		Schedule No.	2.1/2	3	4	5	6	8	10	
٨	inch ALL	2.96	3.95	4.62	5.69	6.78	8.78	10.94		
A	mm	ALL	75	91	117	144	172	223	278	
	inch	40	2.469	3.068	4026	5.047	6.065	7.981	10.020	
	mm	40	63	78	102	128	154	203	255	
	inch	60						7.813	9.750	
	mm	00						198	247	
	inch	80	2.323	2.900	3.826	4.813	5.761	7.625	9.562	
	mm		59	74	97	122	146	194	242	
	inch	100						7.437	9.312	
R	mm	100						189	237	
D	inch	120			3.624	4.563	5.501	7.187	9.062	
	mm	120			92	116	140	183	230	
	inch	100						7.001	8.750	
	mm	100						178	222	
	inch	160	2.125	2.624	3.438	4.313	5.187	6.813	8.500	
	mm	100	54	67	87	110	132	173	216	
	inch	VVS	1.771	2.300	3.152	4.063	4.897	6.875		
	mm		45	58	80	103	124	175		

		Pipe			Nom	inal Pipe Size (inch)		
		Schedule No.	12	14	16	18	20	24	
•	inch		12.97	14.25	16.25	18.28	20.31	24.38	
A	mm	ALL	329	362	413	464	516	619	
	inch	STD	12.000	13.250	15.250	17.250	19.250	23.250	
	mm	SID	305	337	387	438	489	591	
	inch	VS	11.750	13.000		17.000	19.000	23.000	
	mm		298	330		432	483	584	
	inch	30						22.876	
	mm	50						581	
	inch	40	11.938	13.124	15.000	16.876	18.812	22.624	
	mm		303	333	381	429	478	575	
	inch	60	11.626	12.812	14.688	16.500	18.376	22.062	
R	mm		295	325	373	419	467	560	
D	inch	80	11.374	12.500	14.312	16.124	17.938	21.562	
	mm	00	289	318	364	410	456	584	
	inch	100	11.062	12.124	13.938	15.688	17.438	20.938	
	mm	100	281	308	354	398	443	532	
	inch	120	10.750	11.812	13.562	15.250	17.000	20.376	
	mm	120	273	300	344	387	432	518	
	inch	1/10	10.500	11.500	13.124	14.876	16.500	19.876	
	mm	140	267	292	333	378	419	505	
	inch	160	10.126	11.188	12.812	14.438	16.062	19.312	
	mm	100	257	284	325	367	408	491	

ormation	

	CAH	RBON STI	EEL	ALLOY STEEL			
ASTM Designation & Grade Identifcation Elements % by weight	A216 WCB	A352 LCB	A252 LCC	A217 WC6	A217 WC9	A217 CA15	
Carbon	0.30 \$	0.30 \$	0.25	0.05-0.20	0.05-0.18	0.15	
Manganese	1.00	1.00	1.20	0.50 - 0.80	0.40 - 0.70	1.00	
Phosphorus	0.04	0.04	0.04	0.04	0.04	0.040	
Sulphur	0.045	0.045	0.045	0.045	0.045	0.040	
Silicon	0.60	0.60	0.60	0.60	0.60	1.50	
Copper	0.30 *	0.30 *	0.30 *	0.50 *	0.50 *		
Nickel	0.50 *	0.50 *	0.50 *	0.50 *	0.50 *	1.00	
Chromium	0.50 *	0.50 *	0.50 *	1.00 - 1.50	2.00 - 2.75	11.5 - 14.0	
Molybdenum	0.20 *	0.20 *	0.20 *	0.45 - 0.65	0.90 - 1.20	0.50	
Vanadium	0.03 *	0.03 *	0.03 *				
Tungsten				0.10 *	0.10 *		

MATERIAL COMPOSITION FOR CAST MATERIAL

* These are residual elements, total content of these shall not exceed 1%.

\$ Standard at AIL is 0.25 Max.

Values indicated are maximum except when range is given.

Material	ASTM	ASTM	ASTM	ASTM	Hardfacing	ASTM	ASTM
Elements	A194 Gr. B7	A320 Gr. L7	A194 Gr. 2H	A194 Gr. 7	Stellite 6	A182 Gr. F6A	A276 Type 316
Carbon	0.37 - 0.49	0.38 - 0.48	0.40 min	0.37 - 0.49	0.90 - 1.40	0.150	0.80
Manganese	0.65 - 1.10	0.75 - 1.00	1.00	0.65 - 1.10	1.00	1.000	2.000
Phosphorus	0.350	0.035	0.040	0.040		0.040	0.045
Sulphur	0.040	0.040	0.050	0.040		0.030	0.030
Silicon	0.15 - 0.35	0.15 - 0.35	0.40	0.15 - 0.35	2.00	1.000	1.000
Chromium	0.75 - 1.20	0.80 - 1.10		0.75 - 1.20	26.0 - 32.0	11.5 - 13.5	16.0 - 18.0
Molybdenum	0.15 - 0.25	0.15 - 0.25		0.15 - 0.25	1.00		2.0 - 3.0
Nickel					3.00	0.50	10.0 - 14.0
Cobalt					balance		
Tungsten					3.0 - 6.0		
Iron					3.00		
Nitrogen							

A ASTM cross reference material specification of fittings, flanges, unions and cast and forged valves can be found in the table below:

Material	Forgings	Castings	Wrought Fittings
Carbon Steel Cold Temperature Service	A105 A350-LF2	A216- WCB	A234- WPB A420- WPL6
Carbon-1/2 Molybdenum Alloy Steel High Temperature Service	A182-F1	A217-WC1 A352-LC1	A234- WP1
3-1/2 Nickel Alloy Steel Low Temperature Service	A350-LF3	A352-LC3	A420- WPL3
1/2 Cr-1/2 Mo Alloy Steel 1/2 Cr-1/2 Mo-1 Ni Alloy 3/4 Cr-1 Mo-3/4 Ni Alloy Steel 1 Cr-1/2 Mo Alloy Steel	A182-F2 A182-F12 CL2	A217-WC4 A217-WC5	A234- WP12 CL2
1-1/4 Cr-1/2 Mo Alloy Steel 2-1/4 Cr-1 Mo Alloy Steel 5 Cr-1/2 Mo Alloy Steel 5 Cr-1/2 Mo Alloy Steel 9 Cr-1 Mo Alloy Steel 13 Cr Alloy Steel	A182-F11 CL2 A182-F22 CL3 A182-F5 A182-F5a A182-F5a A182-F9 A182-F6	A217-WC6 A217-WC9 A217-C5 A217-C12 A743- CA15	A234- WP11 CL2 A234- WP22 CL3 A234- WP5 A234- WP9

Material	Forgings	Castings	Wrought Fittings
Type 304 Stainless Steel (18 Cr- 8 Ni) Standard Low Carbon High Temperature Service	A182- F304 A182- F304L A182- F304H	A351-CF3 A351-CF8	A403- WP304 A403- WP304L A403- WP304H
Type 310 Stainless Steel (25 Cr- 20 Ni)	A182- F310H	A351- CK20	A403- WP310
Type 316 Stainless Steel (16 Cr- 12 Ni-2 Mo) Standard Low Carbon High Temperature	A182- F316 A182- F316L A182- F316H	A351- CF3M A351- CF8M	A403- WP316 A403- WP316L A403- WP316H
Type 317 Stainless Steel (18 Cr- 13 Ni-3 Mo) Type 321 Stainless Steel (18 Cr- 10 Ni-Ti) Standard High Temperature Service	A182- F321 A182- F321H		A403- WP317 A403- WP321 A403- WP321H
Type 347 Stainless Steel (18 Cr- 10 Ni-Cb) Standard High Temperature Service	A182- F347 A182- F347H	A351- CF8C	A403- WP347 A403- WP347H
Type 348 Stainless Steel (18 Cr- 10 Ni-Cb) Standard High Temperature Service	A182- F348 A182- F348H		A403- WP348 A403- WP438H

What is differences between Casting valve material ASTM A352 LCB and A352 LCC, we request in our material requsition for casting valve body in Low Temperature ASTM A352 LCB while Vendor quotation offer ASTM A352 LCC.

The tensile strength of LCB is 450 - 620 N/mm2 The tensile strength of LCC is 485 - 655 N/mm2

The yield of LCB is min. 240 N/mm2 The yield of LCC is min. 275 N/mm2

All other properties are identical. This means that LCC is a better grade than LCB and normally automatically qualifies in case LCB is requested.

The American National Standard for rating valves is ANSI/ASME B16.34 and the rating tables are based on the material yield strength at various temperatures. Below is a comparison for Class 600 valves:

ASTM A352,LCB @100F, 1390 psig, @500F, 1165 psig ASTM A352,LCC @100F, 1500 psig, @ 500F, 1330 psig

LCC is rated higher based on the increased strength and is generally accepted as a substitute for LCB

Unless my specs are well out of date the main difference I see is that the carbon content of LCB is 0.3% max and LCC is 0.25% max. Consequently LCC is better if welding is a consideration. My normal response is that LCC is basically a subset of LCB, that is all LCC will comply with the requirements of LCB but not the reverse. ASME B16.34 gives differing MOP for LCB and LCC (LCC > LCB), in line with the min tensile properties noted in the above replies. The same holds true for WCB and WCC. The max Manganese content of the "C" is higher than the "B" but in the notes the "B" allows more Manganese the lower the Carbon is relative to the maximum allowance to such an extent that if you have WCB/LCB with Carbon 0.25% (i.e. as per WCC/LCC limits) the max allowable Manganese is as per WCC/LCC!

I have seen WCB/LCB specified with a max Carbon of 0.25%, why the specifying engineer did not just specify WCC/LCC is beyond me.

Cross-Reference of ASTM Material Specifications Covering Cast and Forged Valves, Fittings, Flanges and Unions

Material	Forgings	Castings	Wrought Fittings
Carbon Steel Cold Temperature Service	A105 A350-LF2	A216-WCB	A234-WPB A420-WPL6
Carbon-1/2 Moly Alloy Steel High Temperature Service	A182-F1	A217-WC1 A352-LC1	A234-WP1
3-1/2 Nickel Alloy Steel Low Temperature Service	A350-LF3	A352-LC3	A420-WPL3
1/2 Cr-1/2 Mo Alloy Steel 1/2 Cr-1/2 Mo-1 Ni Alloy Steel 3/4 Cr-1 Mo-3/4 Ni Alloy Steel 1 Cr-1/2 Mo Alloy Steel	A182-F2 A182-F12 CL2	A217-WC4 A217-WC5	A234-WP12 CL2
1-1/4 Cr-1/2 Mo Alloy Steel 2-1/4 Cr-1 Mo Alloy Steel 5 Cr-1/2 Mo Alloy Steel 5 Cr-1/2 Mo Alloy Steel 9 Cr-1 Mo Alloy Steel 13 Cr Alloy Steel	A182-F11 CL2 A182-F22 CL3 A182-F5 A182-F5a A182-F9 A182-F9 A182-F6	A217-WC6 A217-WC9 A217-C5 A217-C12 A743-CA15	A234-WP11 CL2 A234-WP22 CL3 A234-WP5 A234-WP9
Type 304 Stainless Steel (18 Cr-8 Ni) Standard Low Carbon High Temperature Service	A182-F304 A182-F304L A182-F304H	A351-CF3 A351-CF8	A403-WP304 A403-WP304L A403-WP304H
Type 310 Stainless Steel (25 Cr-20 Ni) Type 316 Stainless Steel (16 Cr-12 Ni-2 Mo) Standard Low Carbon High Temperature	A182-F310H A182-F316 A182-F316L A182-F316L A182-F316H	A351-CK20 A351-CF3M A351-CF8M	A403-WP310 A403-WP316 A403-WP316L A403-WP316H
Type 317 Stainless Steel (18 Cr-13 Ni-3 Mo) Type 321 Stainless Steel (18 Cr-10 Ni-Ti) Standard High Temperature Service	A182-F321 A182-F321H		A403-WP317 A403-WP321 A403-WP321H
Type 347 Stainless Steel (18 Cr-10 Ni-Cb) Standard High Temperature Service	A182-F347 A182-F321H	A351-CF8C	A403-WP347 A403-WP347H
Type 348 Stainless Steel (18 Cr-10 Ni-Cb) Standard High Temperature Service	A182-F348 A182-F348H		A403-WP348 A403-WP348H

Forging Materials

Chemistry Element – % Com	position	Mechanical Properti	ties	Chemistry Element – % Composition		Mechanical Properties		
ASTM A105 Carbon Steel Where temperatures are moderate and corrosion resistance is not critical.		al.	ASTM A182, Grade 5 – 4-6% Chromium 1/2% Molybdenum With moderately corrosive fluids and in oil refineries where high temperature stability and oxidation resistance of the lower alloy steels are inadequate.					
C 0.20 - 0.24 Mn 1.00 - 1.35 Si 0.15 - 0.30 P .030 Max. S 0.015 - 0.040 Cr 0.20 Ni 0.20 Mo 0.06 V 0.02 Cb 0.02 Cu 0.22 Pb 0.02 Total Residuals = 0.50	TS Min. psi(MPa YS Min. psi(MPa EL (2" Min.) RA Min. Hardness, Bhn	i) 70,00 i) 36,00 22% 30% Max.	00(485))0(250) 187	C 0.15 Max. Mn 0.30 - 0.60 P .030 Max. S 0.015 - 0.035 Si 0.50 Max Ni 0.50 Max Cr 4.00 - 6.00 Mo 0.44 - 0.65	TS Min. psi(MP YS Min. psi(MF EL (2" Min.) RA Min. Hardness, Bhn	a) a)	70,000(485) 40,000(275) 20% 35% 143-217	
ASTM A350, LF2 Where cold temperature (-50°F) impact strength is	s essential.		ASTM A182, Grade F9 – 9% C For services where the higher c and oxidation resistance of the I	hromium hrome alloys are lower alloy steels	preferred and w are inadequate.	here high temperature stability	
C 0.20 - 0.24 Mn 1.00 - 1.35 Si 0.15 - 0.30 P .030 Max. S 0.015 - 0.040 Cr 0.20 Ni 0.20 Mo 0.06 V 0.02 Cb 0.02 Cu 0.20 Pb 0.02 Total Residuals = 0.50	TS Min. psi(MPa YS Min. psi(MPa EL (2" Min.) RA Min. Hardness, Bhn -50°F Charpy Energy (Ft/Lb.) Average of Each Set of 3 Specimu For One Specim	i) 70,00 i) 36,00 22% 30% Max. Min. Ii (J) 15(20 en 12(16	00(485) 00(250) 197 Impact 0) 5)	C 0.15 Max. Mn 0.30 - 0.60 P .030 Max. S 0.030 Max Si 0.50 - 1.00 Cr 8.00 - 10.00 Mo 0.90 - 1.10	TS Min. psi(MP YS Min. psi(MF EL (2" Min.) RA Min. Hardness, Bhn	ia) ia)	85,000(585) 55,000(380) 20% 40% 179-217	
ASTM A182, Grade F11, Class 2 – 1 1/4% Chromium 1/2% Molybdenum		num	ASTM A182, Grade F316. Grad	de F316L – 18%	Chromium 8%	Nickel 2-3% Molybdenum		
To minimize graphitization encountered with carbon and carbon moly steels at high temperatures.		eels at high	For corrosion resistance applications where high temperature strength is required. Has restricted carbon level to minimize sensitization. Do not use for service temperatures above 1000°F.					
C 0.10 - 0.15 Mn 0.30 - 0.80 P .040 Max. S 0.015 - 0.035 Si 0.50 - 1.00 Cr 1.00 - 1.50 Mo 0.44 - 0.65	TS Min. psi(MPa YS Min. psi(MPa EL (2" Min.) RA Min. Hardness, Bhn	i) 70,00 40,00 20% 30% 143-2	00(485) 00(275) 207	C 0.035 Max. Mn 2.00 Max. P .040 Max. S 0.020 - 0.030 Si 1.00 Max Ni 10.00 - 14.00 Cr 16.00 - 18.00 Mo 2.00 - 3.00	TS Min. psi(MP YS Min. psi(MF EL (2" Min.) RA Min.	'a) 'a)	75,000(515) 30,000(205) 30% 30%	
ASTM A182, Grade F22, Class 3 – 2 1/4% Chromium 1% Molybdenum Where elevated temperature, surface stability, and greater strength than F11 are needed.		im n F11 are needed.	ASTM A182, Grade F316H – 18% Chromium 8% Nickel 2-3% Molybdenum For corrosion resistance applications where extreme high temperature service is expected. Has a restricted carbon range for high temperature strength above 1000°F.					
C 0.15 Max. Mn 0.30 - 0.60 P .040 Max. S 0.015 - 0.035 Si 0.50 Max Cr 2.00 - 2.50 Mo 0.87 - 1.13	TS Min. psi(MPa YS Min. psi(MPa EL (2" Min.) RA Min. Hardness, Bhn	i) 75,00 i) 40,00 20% 30% 156-2	00(515) 00(310) 207	C 0.04 - 0.10 Mn 2.00 Max. P .040 Max. S 0.020 - 0.030 Si 1.00 Max Ni 10.00 - 14.00 Cr 16.00 - 18.00 Mo 2.00 - 3.00	TS Min. psi(MP YS Min. psi(MF EL (2" Min.) RA Min.	ra) Pa)	75,000(515) 30,000(205) 30% 30%	

Valve Trim Materials

Description & General Use	Chemistry Element % Composition	Description & General Use	Chemistry Element % Composition		
13% Chromium Stainless Steel Type 410 ASTM A479 This stainless steel material lends itself readily to hardening by heat treatment and is excellent for contacting parts such as stems, gates, and discs.	C 0.10-0.15 Mn .60 Max. P .040 Max. S .030 Max. Si 1.00 Max Cr 12-13.5	Cobalt Base and Nickel Base Hard Facing Materials ASME SFA 5.13 Hard facing materials, when used on seating surfaces of Gate, Globe, and Check Valves, give extended service life and troublefree operation.	 Cobalt, Chromium and Tungsten Alloy Nickel, Chromium and Boron Alloy 		
13% Chromium Stainless Steel Type 416 ASTM A582 High quality stainless steel yoke nut material having excellent anti-galling characteristic for better operating threads.	C 0.11-0.14 Mn .60 Max. P .060 Max. S 0.25 - 0.35 Si 1.00 Max Cr 12.00 - 14.00 Ni .60 Max.	Nickel-Moly-Chromium ASTM B574, Grade N 10276 Hastelloy C-276 A high nickel alloy with exceptional resistance to corrosive attack by chlorine gas.	C .02 Max. Fe 4.00 - 7.00 Ni Balance Si 0.08 Max Co 2.5 Max. Mn 1.00 Max. Cr 14.50 - 16.50 V .35 Max. Mo 15.00 - 17.00 P .04 Max. W 3.00 - 4.50 S .03 Max.		
18% Chromium 8% Nickel, 2% Molybdenum Stainless Steel Type 316 Type 316L ASTM A182 Provides excellent resistance to corrosive media at high temperatures and toughness for service at low temperatures.	C .035 Max. Mn 2.00 Max. P .040 Max. S 0.020030 Si 1.00 Max Cr 16.00 - 18.00 Ni 10.00 - 14.00 Mo 2.00 - 3.00	Precipitation Hardened Stainless Steel A564, Gr. 630 17-4 PH Provides corrosion resistance and high strength for stems in NACE applications.	C 0.07 Max Cr 15.00 - 17.50 Mn 1.00 Max. Ni 3.00 - 5.00 P .04 Max. Cu 3.00 - 5.00 S .03 Max. Cb 0.15 - 0.45 Si 1.00 Max +Ta		
Nickel-Copper Monel Alloy K500 FED-SPEC QQ-N-286F Class A This wrought material is precipitation hardened and possesses excellent corrosion resistance, high strength properties and hardness for internal valve components.	C .25 Max. Mn 1.50 Max. S 0.010 Max. Ni 63.00 - 70.00 Si .50 Max Fe 2.00 Max Al 2.3 - 3.15 Ti .3585 Cu 27.0 - 33.0 P 0.020 Zn 0.020	S-Monel ASTM A-494, Grade M-25S Material used for Monel castings.	C .25 Max. Ni .03 Mn 1.50 Fe Balance Si 3.5 - 4.5 Cu 3.5 P .03 27.00 - 33.00		

Monel Alloy 400 ASTM B164 (N0400) Non hardened alloy, except by work hardened, that has high strength and toughness over a wide temperature range. Has excellent corrosion resistance in chlorine and alkylation service.	Pb Sn C Mn S Si Si Ni Fe Cu	0.006 0.006 0.300 Max. 2.00 Max. 0.24 Max. 0.50 Max 63.00 - 70.00 2.50 Max 27.0 - 33.0	ASTM A-743, Grade CA-15 Material used for 13 CR castings, the cast equivalent to type 410 Stainless Steel.	C Mn Si P	.15 Max. 1.00 1.50 Max. .040	S Cr Ni Mo	.040 Max. 11.50 - 14.00 1.0 Max. .50 Max.
			Cast Cobalt ASME-SEA-5 13	C	0.9-1.4	Mo	1.0
			RCoCr-A	Si	1.5	Fe	3.0
			Material used for Cobalt castings, the cast	Ni	3.0	Others	.50
			equivalent to Stellite #6.	Cr	27.0 - 31.0	Co	Balance
			ASTM A351 Grade CF8M	C Mn	08 Max 1.50 Max	Cr	18.0-21.0
			Material used for 18-8 castings, the cast	P S	.040 Max 040 Max	Ni	9.0-12.0
				Si	1.50 Max	Мо	2.0-3.0

Technical References Hydraulic Diagram Symbols & Rules

Boiler Blowdown

A blowdown of the boiler is a routine operation necessary due to the increased concentration of **Total Dissolved Solids –TDS** in the boiler during the steam production.

The blow down rate of a boiler depends on

- Steam consumption (steam used in the process and not returned as condensate to the boiler)
- · Concentration of impurities in the feed water
- Maximum allowable TDS in the boiler

The blowdown rate can be calculated as

 $q_{\rm BD} = q_{\rm S} f_{\rm c} / (b_{\rm c} - f_{\rm c})$ (1) where

 $q_{\rm BD}^{}$ = blowdown rate (kg/h)

 q_s = steam consumption (kg/h)

 f_c = Total Dissolved Solids - TDS - in the feed water (ppm)

 $b_{\rm c}{=}$ maximum allowable Total Dissolved Solids - TDS - in the boiler water (ppm)

Common Formula / Rule of Thumb

1 Boiler MW = 100HP = 1,000kW = 1,595 kg/hr (from & at 100°C at atmospheric pressure).

A lift of 1 metre imposes a back pressure of 10kPa.

The pressure in the condensate line generally will be 10% of the steam pressure.

If 1 litre of condensate is discharged to atmosphere, 10 % will flash off to steam.

Steam Trap Selection

For process applications –use a float or bucket type with inbuilt air vent

For main steam lines -use a thermodynamic

For Hospital Sterilisers –Use a balanced pressure type with near to steam element

For heat tracing –Use a bimetallic

Control Valve Sizing

For closed loop systems –size the valve with 20% pressure drop For direct injection systems –size the valve with a 35% pressure drop

Tank Heating Steam Loads kg/hr

1a –If heating through a coil

Steam Flow per hour = $\frac{4.19 \text{ x litres x (T1 - T2)}}{\text{Latent Heat of Steam}}$

1b -If direct injection

Steam Flow per hour = $\frac{4.19 \times \text{litres} \times (T1 - T2)}{\text{Total Heat of Steam}}$

Note – if heat up time was 30min, multiply above by 2, if 15mins multiply by 4 etc. if heat up time was 2 hours, divide above by 2 etc.

Tank Volume

Circular Tank Volume in litres = 3.14 x r2x h x 1000 (Note, r and h are in metres)

Heat Exchanger Steam Loads kg/hr

Steam Flow per hour = <u>4.19 x litres/hr x (T1 –T2)</u> Latent Heat of Steam

Pipe Expansion

The table below can be used to calculate the expansion of steam pipes at different operating temperatures.

Steam Temperature (°C)	Expansion pr. 100m Pipe (mm)			
66	63			
93	96			
121	136			
149	166			
177	203			
204	246			
232	279			
260	323			

SECTION

Boiler output is always stated 'from & at 0kPag and fed with water at 100°C. The actual capacity uses the correction factor below for the actual boiler operating pressure and the actual feedwater temperature. The correction factor is divided into the 'from & at 'rating.

Water Temp°C	70	140	350	500	700	1000	1200	1500	1800
4	1.18	1.19	1.21	1.21	1.21	1.22	1.22	1.23	1.23
10	1.17	1.18	1.2	1.2	1.21	1.21	1.21	1.22	1.22
16	1.16	1.17	1.18	1.19	1.2	1.2	1.2	1.21	1.21
27	1.14	1.15	1.16	1.17	1.18	1.18	1.18	1.19	1.19
38	1.12	1.13	1.14	1.15	1.15	1.16	1.16	1.17	1.17
49	1.1	1.11	1.12	1.13	1.13	1.14	1.14	1.15	1.15
60	1.08	1.09	1.1	1.11	1.11	1.12	1.12	1.13	1.13
71	1.06	1.07	1.08	1.09	1.09	1.1	1.1	1.1	1.11
82	1.04	1.05	1.06	1.07	1.07	1.08	1.08	1.08	1.09
93	1.02	1.03	1.04	1.05	1.05	1.06	1.06	1.06	1.07
99	1.01	1.02	1.03	1.04	1.04	1.05	1.05	1.05	1.06

Gauge Pressure kPa

SE	CTION
	C
	0

Deserves						Nomin	al Pipe S	Size (mr	ı)			
Pressure (bar)	50	65	80	100	125	150	200	250	300	350	400	450
	11	17	22.5	32	43	56.5	87	120	160	188	246	310
1	9	11	14	17	20.5	26	32	40	46	50	56	62
0	12.5	20	26	38	50	65	98	140	184	216	284	358
2	11	12	15	19	23	27	36	44	52	56	64	70
2	14	22	28.5	41	52	72	108	158	202	240	312	394
3	12.5	14.5	17	22	28	32	40.5	50	60	64.5	54.5	80.5
Α	15	24	31	44.5	60	79	118	166	220	262	340	430
4	14	18	19	24.5	32.5	37	45	56	67	73	84.5	91
F	16.5	26	34	48	65	84.5	127	140	238	284	370	466
Э	14.5	18	21	26.5	34.5	40	48.5	61	72.5	80	91	99
G	17	27	35	50	67.5	86.5	132	187	248	294	398	484
0	15	19	23	28	36	42.5	52.5	65.5	80	86	100	105
7	17.5	27.5	36	51.5	70	90.5	136	194	256	302	406	500
/	16.5	20.5	24.5	30	38	45	56	70	84	92	104	112
0	18	29	38	54	73.5	95	142	201.5	268	316	414	522
0	17	21.5	27	32	40	48	60	74	88	98	114	122
0	19	30	40	56	76	99	148	210	278	328	432	544
9	18.5	22.5	28	33	41	49	63	78	93	103	120	128
10	20	31	40.5	58.5	80	102.5	154	218	288	342	448	564
10	20.5	24	29	34	43	50	66	82	98	108	124	134

Blue highlighted row is condensation rate in kg/hr over a length of 100 metres White rows are the warm-up load in kg (not kg/hr) over a length of 100 metres

SEC	CTION
4	6
	Ο

Dragouro						Nomin	al Pipe S	Size (mn	ר)			
(bar)	50	65	80	100	125	150	200	250	300	350	400	450
	21	33	43	61.5	84	108	162	230	304	360	472	496
12	20.8	26	31.5	35.5	45	52	72	90	106	118	134	146
	22	34.5	45	64	87	113	170	240	320	378	494	622
14	22	28	34	41	51	60	78	98	116	128	146	158
40	26	37	48.5	69	93	121	183	256	344	406	530	668
16	24	29.5	36.5	46	55	68	84	104	124	136	156	170
40	33	46.5	62	89.5	124	165	254	374	510	610	786	984
10	27	32	39	48	60	71	88	110	132	144	164	180
20	34	52	70	102	142	194	296	440	604	724	930	1164
20	29	34	41	50	62	74	92	116	138	152	172	188
25	38	58	78	112.5	156.5	214.5	328	486	666	800	1066	1284
20	32.5	38	46	56.5	70	84	104	122	156	172	198	212
20	41	63	82.5	123	171	234	358	530	730	874	1142	1404
30	34	42	50.5	63	78	94	108	146	174	192	216	236
40	44.5	68	91.5	134	194	254	388	574	790	946	1216	1504
40	41	48	60	75	92.5	112	140.5	174.5	208	228	260	284
50	49	74.5	100	146	202	280	424	628	864	1036	1330	1668
50	47	58.5	68.5	87.5	108	130	164	204	242	266	302	330
60	53	81	108.5	159	270	362	610	890	1252	1504	1920	2436
00	52	78	77	100	124	147	190	238	280	310	354	400

Blue highlighted row is condensation rate in kg/hr over a length of 100 metres White rows are the warm-up load in kg (not kg/hr) over a length of 100 metres

Inductry.	Application	Operating Pressure		Consumptio	n production	Consumption maximum	
moustry	Application	psig	bar	lb/h	kg/h	lb/h	kg/h
	Dough room trough, 8 ft long	10	1	5	2		
	Proof Boxes, 500 cu ft capacity	10	1	10	5		
Bakeries	Ovens		0		0		
	White bread, 120 sq ft surface	10	1	30	14		
	Rye bread, 10 sq ft surface	10	1	60	27		
Breweries	Bottle washing, normal size 100 bottles/min	5	0.3	300	136		
Candy and Chocolate	Candy cooking, 30 gal cooker, 1 hour	70	5	45	20		
	Chocolate melting, jacketed, 24 inch diameter	70	5	30	14		
	Candy kettle per sq ft of jacket	70	5		0	60	27
Creameries and Dairies	Milk quarts per 100 cases per hr	5	0.3	60	27		
	Creamery cans 3 per min	50	3	300	136		
	Pasteurizer per 100 gal heated 20 min	50	3	250	113		

SEC	CTION
1	6

Inductor	Application	Operating	Pressure	Consumptio	n Production	Consumption Max		
moustry	Application	psig	bar	lb/h	kg/h	lb/h	kg/h	
	tills per 100 gal distilled water	50	3	100	45			
	Sterilizers bed pan	50	3	5	2			
Hospitals	Sterilizers instruments per 100 cu inch	50	3	5	2			
	Sterilizers water per 10 gal	50	3	5	2			
	Disinfecting ovens 100 cu ft, per 10 cu ft	50	3	25	11			
	Vacuum stills per 10 gal	100	7	15	7			
	Spotting board	100	7	30	14			
Laundry	Jacket, dress finisher	100	7	50	23			
	Steam Irons	100	7	5	2			
	Flat iron worker, 48" * 120"	100	7	300	136			
Plastic Molding	12 to 15 sq ft platen surface	125	9	30	14			

1	6

Inductry (Application	Operating	Pressure	Consumptio	n Production	Consumption Max		
maustry	Application	psig	bar	lb/h	kg/h	lb/h	kg/h	
	Corrugators per 1000 sq ft	175	12	30	14			
Production	Wood pulp paper per 10 Ib paper	50	3	400	181			
	Dishwasher	20	1	70	32			
	Standard steam tables per ft length	20	1	40	18			
	Bain Marie per ft length 30 " wide	20	1	15	7			
	Oyster steamers	20	1	15	7			
	Clam and lobster steamer	20	1	30	14			
Restaurants	Steam jacket kettle 10 gal	20	1	15	7	100	45	
	Steam jacket kettle 60 gal	20	1	60	27	200	91	
	Plate and dish warmers per 100 sq ft	20	1	60	27			
	Warming ovens per 20 cu ft	20	1	30	14			
	Vegetable steamer	20	1	30	14			
	Potato Steamer	20	1	30	14			
	Truck molds	100	7	90	41			
Tire Shops	Passenger molds	100	7	30	14			

<u>Control Valve – Effect of the product inlet temperature increasing</u> (Page 1/2)

<u>Control Valve – Effect of the product inlet temperature increasing</u> (Page 2/2)

Control Valve – Effect of the product flow decreasing (Page 1/2)

Product flow decreasing - STALL

section 16

<u>Control Valve – Effect of the product flow decreasing (Page 2/2)</u></u>

Product flow decreasing - STALL

